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ABSTRACT

We present a statistical method for the motion-based
segmentation of deformable structures undergoing non-
rigid movements. The proposed approach relies on two
models describing the shape of interest, its variabil-
ity and its movement. The first model corresponds to
a statistical deformable template that constrains the
shape and its deformations. The second model is in-
troduced to represent the optical flow field inside the
deformable template. These two models are combined
within a single probability distribution which enables
to derive optimal shape and motion estimates using a
Maximum Likelihood approach. The method requires
no manual initialization and is demonstrated here on
medical X-ray image sequences.

1. INTRODUCTION

The segmentation of motion information from visual
input is an important preliminary task in most dy-
namic image analysis problems. In an increasing num-
ber of application fields — biomedical image analysis for
instance — the objects to be modeled undergo defor-
mations which have to be analyzed and characterized.
Deformable models have been introduced to incorpo-
rate geometric information about shapes and their vari-
ability. Deformable model-based segmentation schemes
usually use spatial gradient information, related to in-
tensity edges, to extract and track object boundaries in
image sequences [3, 5, 6, 10]. In several important ap-
plication fields, however, the structures of interest are
not delineated by sharp intensity edges, but are rather
characterized by homogeneous motion fields (see for in-
stance Fig. 1). Motion-based segmentation schemes,
relying on spatio-temporal image gradients and mo-
tion models, enable to extract such homogeneous re-
gions. Motion-based segmentation is however known
to be ill-conditioned and requires some regularization.
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A Markov Random Field (MRF) model is for instance
used in [4]. It is unfortunately difficult to incorporate
shape information in standard MRFs models [4, 7].

In this paper, the regularization in the motion-based
segmentation scheme, is conducted by incorporating
statistical constraints about shape, yielding robust im-
age partitions. The shape representation relies on a
statistical description of deformations applied to a pro-
totype shape (“template”) [8, 10]. Deformations are
modeled using a Karhunen-Loeve (KL) expansion of the
distorsions observed on a representative population [5].
This model is used to constrain the a priori structure
and variability of the shapes to be extracted. Besides,
within local regions in space and time, the optical flow
field is described by linear models providing a trade-off
between accuracy and concision of the representation
[2, 4, 12]. These models are used to partition the image
into two regions: the inside of the deformable template
and the outside of the template corresponding to the
background. A Maximum Likelihood (ML) estimate of
shape and linear motion parameters is derived. An
Adaptive Segmentation Algorithm (ASA) using a simu-
lated annealing procedure as a major component is im-
plemented to perform this ML estimation. The method
combines the advantages of global optimization tech-
niques with a compact description of deformations ; in
particular, no human interaction is required to initialize
the model. Robust and accurate motion-based segmen-
tations have been obtained using this method on X-ray
medical image sequences, as shown in the last section
of this paper.

2. DEFORMABLE SHAPE MODEL

The statistical deformable model under concern here
has been introduced by the authors in [8]. The object
of interest is represented by a “deformable template”
which incorporates a priori knowledge on the structure



of the object and its variability. A particular shape x
is represented by a set of n labeled points (landmarks)
which approximate its outline. A cubic B-spline shape
representation, with n control points corresponding to
the “landmarks”, is defined ; it describes most real-
world shapes rather realistically [3, 1].

To represent the deformations of the shape, a modal
analysis technique described by Cootes el al. [5] is
adopted. The deformations of shape x are character-
ized by a displacement vector dx = x — X with respect
to a pre-computed mean shape (“template”) X. A KL
expansion of the displacement vectors observed on a
representative population allows to obtain a good rep-
resentation of deformations on a low dimension eigen-
space [5, 8]. Five to ten parameters are usually ad-
equate to obtain an accurate description of deforma-
tions. If ® designates the matrix of the m unit eigen-
vectors corresponding to the m largest eigenvalues, and
if b denotes the modal amplitudes vector (m x 1) cor-
responding to the deformation parameters associated
to the m most significant deformation modes, the de-
formable template is represented by [8]:

X = M(k,6) [x + ®b] + T. (1)

Global transformations from the similarity group
(rotation of angle 6, scale change by a factor k£ and
translation T) are taken into account in this model.
Matrix ¢ and mean vector X are estimated off-line us-
ing the KL expansion. In our approach, the deformable
B-spline curve is thus parametrized by the (4 + m) pa-
rameter vector @ = [M(k,0), T, b] and not by its
control points as done usually [1].

3. DEFORMABLE MOTION MODEL

Parametrized models of image motion make simplify-
ing assumptions about the spatio-temporal variations
of the optical flow field: the motion field is for instance
represented by a low-order polynomial [1, 2, 4]. Within
regions showing homogeneous movements, the follow-
ing affine model is often a good approximation:

a; as T as
o= L a8 e
where a;,7 = 1,...,6 designate the parameters of the
affine model and v(S) represents the optical flow vector
at spatial location s = [z, y].

The standard gradient-based formulation of the op-
tical flow measurement problem is based on the as-
sumption that the brightness I of a moving point is
constant through time, i.e. % = 0, leading to the fol-
lowing classical image flow constraint equation:

VI(s)-v(s) + L(s) = 0, (3)

where VI (s) and I; (s) are the spatial and temporal
derivatives of the image I(s) at site s. This relation
does not strictly hold if noise, changes in lightning or
surface orientation occur. Small deviations with re-
spect to the constant brightness assumption may be
described by introducing in the image flow constraint
equation independent gaussian noise terms n.(s) and
ny,(s) (with variance o7, ), as described in [13]:

VI(s)-(v(s) + ny(s)) = —IL(s) + ngn(s). (4)

The following conditional probability is easily derived
at site s and time t¢:

(VI(s) - V(s) + Li(s))”
ot IVI(9)II® + of,

(5)

where we choose the covariance matrix of ny(s) to be
diagonal with diagonal entry o2 [13].

P (I:(s) | v(s), VI(s)) x exp—

4. DEFORMABLE MOTION-BASED
SEGMENTATION

The image is partitioned into two distinct regions: the
inside of the deformable B-spline model Fé and the

background I'9. Let v/, (s) and v9(s) denote the opti-
cal flow vector at point s belonging to regions Fé and
' respectively:

vi(s) = S(s)- A, (6
Vals) = S(s)- A% (7
where: S(s) = g g (1) 2 2 (1) (8)

and A! and A© are the affine parameters corresponding
to regions I'S and I'9:

AC = [a?,a?,ag,a?,ag,ag]T_ (10)

The ML estimate of the deformable model parameters
© and of the affine motion parameters (A7, A°) is de-
fined by:

(©*, AT A°%) = arg_ max P (I, |©, 47, 4%, V),
o (11)

where VI and I, designate spatial and temporal im-
age derivatives vectors. Under standard independence



assumptions, the conditional probability of I; may be
expressed as:

P (I;|©, Af, A9, VI)

o 5 (VI() VA(s) + L(s))?
= I+ o

'
erl

exp —
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where the partition function does not depend on pa-

rameters ©, A! and A°.

The computation of the exact ML estimate (11) is
usually untractable. In practice we estimate alternately
the shape of the deformable structure controlled by @
and the affine motion parameters A!, A9, yielding a
partial optimal solution, as proposed by Lakshmanan

et al. for unsupervised image segmentation [11]:

(@%) = argmax P(It|®,.AI*,.AO*,VI),
(AT*, A40%) = arg_max P (I, | ©*, AL, AC, V).
’ (13)

The Adaptive Segmentation Algorithm (AsA) described
in [11] is used to compute such an estimate. The AsA
procedure is basically a simulated annealing procedure
over ®, which is interrupted at regular intervals to get
an ML estimate of A/ and A°.

Let (:)T designate the current estimate of ® ob-
tained by running a Gibbs Sampler [7] at tempera-
ture T. The stochastic Gibbs sampling procedure is
interrupted at regular intervals before decreasing the
temperature parameter 7. O is used to estimate the
affine parameters A! and A© according to:

I . (VI(s) - vi(s) + Ii(s))?
A’ = argmin ; 2 VI[P + o2
sel.,
Or

A° arg min Z ) 'Va(S) i It(z))2-
° oy [IVI(s)|* + o7,
- (14)
For this model, Al and A° simply correspond to
standard Linear Least-Squares estimates. The theoret-
ical convergence of this algorithm to a partial optimal
solution (Eq. 13) has been established in [11]. For the-
oretical convergence, the ASA algorithm must satisfy
some constraints related to the temperature schedule
[7, 11]. In our experiments, we have adopted a fast
suboptimal exponential decreasing temperature sched-
ule. Although this does not ensure convergence to the
optimal estimate, it yields satisfactory final segmenta-
tions in practice.
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5. EXPERIMENTAL RESULTS

The performance of the motion segmentation algorithm
is evaluated here on a medical X-ray image sequence
showing the movement of the left ventricle of a heart.
X-Ray images generally show poor intensity edges (Fig. 1)
and consequently are difficult to partition using stan-
dard intensity-based segmentation algorithms [3, 5, 6,
10]. When available, motion information may thus pro-
vide an useful alternative clue for the segmentation
task.

In our experiments, n = 30 landmarks have been
selected manually by an expert clinician on a repre-
sentative population of 10 shapes extracted from a car-
diac cycle sequence and m = 7 deformation modes have
been considered. This statistical knowledge has been
integrated in our model as a priori knowledge on the
shape and deformations of the beating heart.

The motion-based segmentation algorithm was able
to extract and track the left ventricle reliably over the
whole 40 image sequence, by initializing the deformable
model in the current frame by the final configuration of
©® estimated on the previous frame (Fig. la-c). Let us
notice that the initial configuration of the deformable
template in the first image of the sequence was defined
at random.

Manual segmentations (Fig. 1d-f) performed by an
expert clinician enable to evaluate the ability of the al-
gorithm to provide suitable results, as far as this appli-
cation is concerned. The optimization procedure based
on the Gibbs sampler dynamics leads to CPU times of
less than 10 mn for one frame, on a Sun Sparcl0 work-
station. Simulated annealing may be used here with an
acceptable cost, thanks to the reduced number of pa-
rameters (4 4+ m) that have to be estimated. This per-
formance may be compared to the computationaly de-
manding scheme associated to the statistical approach
described in [6].

6. CONCLUSION

In this paper, we have presented a deformable tem-
plate and motion-based segmentation method for ex-
tracting and tracking non-rigid structures in long im-
age sequences. Qur approach combines statistical con-
straints on the shape, deformations and velocity fields
characterizing the movement of the deformable struc-
ture. The proposed modeling and algorithmic frame-
work yields promising future prospects for the charac-
terization of the dynamic behavior of a large class of
deformable objects.



d

Figure 1: Motion-based segmentation of the left ventricle (256x256 images) a-c) results of the AsA algorithm ; d-f)
results provided by an expert clinician (by courtesy of LTSI- Université Rennes I).
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