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Abstract

This paper deals with the 3D structure estimation and
exploration of a scene using active vision. QOur method
18 based on the structure from controlled motion approach
which consists in constraining the camera motion in or-
der to obtain a precise and robust estimation of the 3D
structure of a geometrical primitive. Since this approach
involves to gaze on the considered primitive, we present
a method for connecting up many estimations in order to
recover the complete spatial structure of scenes composed
of cylinders and segments. We have developed perceptual
strategies able to perform a succession of robust estima-
tions without any assumption on the number and on the
localization of the different objects. Furthermore, the pro-
posed strategy ensures the completeness of the reconstruc-
tion. An exploration process centered on current visual fea-
tures and on the structure of the previously studied prim-
itives s presented. This leads to a gaze planning strategy
that mainly uses a representation of known and unknown
areas as a basis for selecting viewpoints. Finally, experi-
ments carried out on a robotic cell have proved the validity
of our approach.

1 Introduction

Many applications in robotics involve a good knowl-
edge of the robot environment. For such applications, the
aim of this paper is to obtain a complete and precise de-
scription of a scene using the visual data provided by a
camera mounted on the end effector of a robot arm. A
recent expansion of computer vision and image analysis is
related to the estimation of 3D structure from image se-
quences [1][7][17]. The approach we have chosen to get
an accurate three-dimensional geometric description of a
scene is based on the active vision paradigm and consists
in controlling the camera motion. The idea of using active
schemes to address vision issues has been recently intro-
duced [2][3]. Active vision is defined in [3] as an intelligent
data acquisition process. Since the major shortcomings
which limit the performance of vision systems are their sen-
sitivity to noise and their low accuracy, the aim of active
vision is generally to elaborate control strategies for adap-
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tively setting camera parameters (position, velocity,...)
in order to improve the knowledge of the environment [2].
Here, the purpose of active vision is handled at two levels:
a local aspect where active vision is used to constrain
the camera motion in order to improve the quality of the
reconstruction results, and a global aspect which is used
to explore the unknown areas.

The measure of the camera motion, which is necessary
for the 3D structure estimation, characterizes a domain of
research called dynamic vision. Approaches for 3D struc-
ture recovery may be divided into two main classes: the
discrete approach, where images are acquired at distant
time instants [7][17] and the continuous approach, where
images are considered at video rate [1]. The method used
here is a continuous approach which stems on the camera
velocity and on the motion of the considered primitive in
the image. More precisely, we use a “structure from con-
trolled motion” method which consists in constraining the
camera motion in order to obtain a precise and robust
estimation of 3D geometrical primitives such as points,
straight lines and cylinders [6]. Such constraints are auto-
matically ensured using visual servoing [10]. Simplifying
and improving shape estimation by viewpoint control is
also reported in [11].

As far as the global aspect of our reconstruction
scheme is concerned, active vision is used to determine
the location of the next camera position in order to obtain
a complete model of the scene. Previous works have been
done in order to answer the “where to look next” question.
Differences can be done if an a priori knowledge about
the scene is available or not. If the complete geometrical
description about the scene is known, many approaches
about automatic sensor placement are described in [9][15].
The problem is different if no a priori information about
the scene is available i.e., if the sensor is in an unknown
environment. It raises the problem of autonomous explo-
ration [8][14][16][19][18][4]. In [&], the sensor placement is
computed from a local map of the scene which is described
by an octree. The first proposed solution, called the “plan-
etarium algorithm”, gives for all the camera positions on a
sphere located around the scene, the viewpoint from which
the maximal amount of unexamined area will be visible.



A second solution, the “normal algorithm”, which uses the
internal structure of the octrees is also proposed. In [14],
Maver and Bajcsy use informations given by occlusions to
plan the next viewing direction. In [19], Wixson describes
strategies to search for a known object in a cluttered area.
Three strategies for sensor placement are studied and com-
pared: the “model-based strategy” based on the Connoly’s
algorithm, the “occlusion-based strategy” which uses oc-
cluding edges to restrict attention to areas that have not
been checked yet, and a strategy which simply rotates the
camera around the scene with a fixed rotation increment.
In [12], Kutulakos presents an approach for exploring a 3D
surface, using a mobile monocular camera, which is based
on the use of the occlusion boundary. In [18], Whaite and
Ferrie present a system which creates a 3D model of the en-
vironment using the data gathered by a laser range-finding
system through a sequence of exploratory probes. In or-
der to minimize the uncertainty of the parametric forms
(such as superquadric) used to describe the scene, a feed-
back based on the model uncertainty is used as a basis for
selecting viewpoints.

Our concern is to deal with the problem of recover-
ing the 3D spatial structure of a whole scene without any
knowledge on the localization and the dimension of the
different geometrical primitives of the scene (assumed to
be composed of polygons, cylinders and segments). Since
the proposed structure estimation method involves to suc-
cessively focus on each primitive of the scene, developing
perception strategies to get the complete spatial organi-
zation of complex scenes is thus necessary. Integrating
knowledge on 3D data previously gathered, and current
2D information into an exploration process allows us to
determine the next primitive to be estimated or the next
camera viewpoint.

The remainder of this paper is organized as follows: Sec-
tion 2 is devoted to the local aspect of our reconstruction
scheme and briefly describes the structure from controlled
motion framework. Section 3 is devoted to the global as-
pect and deals with the development of perception strate-
gies. Exploration strategies based on a partial 3D model of
the scene, 2D visual features extracted from the images and
a representation of the observed areas are proposed. We
demonstrate with various real time experiments that the
implemented active vision system allows the reconstruc-
tion of complex scenes with a very good accuracy.

2 Structure From Controlled Motion

The method we have used to estimate the 3D structure
of the primitives assumed to be present in the scene is
described in [6]. It is based on the measure of the camera
velocity and the corresponding motion of the primitive in
the image. More precisely, if p is the set of parameters
describing the 3D structure of a primitive, we have:

ﬁ = /B\(£7 27 TC)

(1)
where:

. E is the estimated value of p;
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e P is the set of parameters describing the 2D position
of the perspective projection of the primitive in the
image;

e and B is the measured time variation of P due to the
applied camera velocity 1.

This approach has been applied to the most represen-
tative primitives (i.e., point, straight line, circle, sphere
and cylinder) [6]. As far as cylinders are concerned, this
method provides the 3D orientation and position of their
axis, as well as their radius. For a segment, it provides the
3D orientation and position of the straight line to which
the segment belongs.

When no particular strategy concerning camera motion
is defined, important errors on the 3D structure estima-
tion can be observed. This is due to the fact that the
quality of the estimation is very sensitive to the nature of
the successive camera motions. An active vision paradigm
is thus necessary to improve the accuracy of the estima-
tion results by generating adequate camera motions. It
has been shown in [6] that two vision-based tasks (called
fixation and gazing tasks) have to be realized in order to
obtain a robust and non biased estimation. The visual ser-
voing approach [10] is perfectly suitable to perform such
tasks. Dealing with cylinders or segments, they must ap-
pear centered and vertical (or horizontal) in the image [6].
For a cylinder, this estimation scheme can be applied us-
ing only the projection of one limb, but a two limbs-based
estimation provides more robust and precise results.

Length Estimation In order to determine the length
and the position of the primitive along its axis, its vertices
have to be observed in the image, which generally implies
a complementary camera motion. A motion, around the
Z (or §) axis in the camera frame, is thus performed until
one of the two endpoints of the primitive appears at the
image center (see Figure 1). Once the camera has reached
its desired position, the 3D position of the corresponding
end point is simply computed as the intersection between
the primitive axis and the camera optical axis. A motion
in the opposite direction is then generated to determine
the position of the other endpoint. Such camera motions,
based on visual data, are again performed using the visual
servoing approach.

Figure 1: Camera motion for length estimation

A Maximum Likelihood Ratio Test for Prim-
itive Recognition The only information we initially
have on the considered scene is composed by the set of 2D
segments observed by the camera at its initial position.



We assume that each segment corresponds to the projec-
tion in the image of either a limb of a cylinder, either a
3D segment. Since the structure estimation method is spe-
cific to each kind of primitives, a preliminary recognition
process is required. To determine the nature of the ob-
served primitive, we first assume that it is a cylinder, and
a one limb-based estimation is performed. When this esti-
mation is done, two competing hypotheses can be acting.
Respectively:

e Hy: the observed primitive is a straight line. This
hypothesis implies that we have to find a radius r
close to O ;

e H;: the observed primitive is a cylinder. This hy-
pothesis implies that we have to find r = r; with
rp >0

A maximum likelihood ratio test is used to determine
which one of these two hypotheses is the right one [13].

The likelihood ratio £ is given by & = ]2\];22 where N is the
number of estimations, 7 is the mean value of the estimated
radius, and o? its variance. Hypothesis H; (cylinder) is se-
lected versus hypothesis Hyo (segment) if the obtained value
for the likelihood ratio ¢ is greater than a given threshold
(which can be easily determined by experiment). Indeed,
when the primitive is a segment, the reconstruction process
using one limb gives a low radius, with a very high vari-
ance. On the other hand, when the primitive is a cylinder,
the estimated radius is close to its real value and its vari-
ance is small. A two limbs-based estimation is then per-
formed using for the initial detection of the second limb
in the image a simple matching between the segments ob-
served in the image and the projection of the estimated
cylinder.

Experimental results The whole application pre-
sented in this paper has been implemented on an exper-
imental testbed composed of a CCD camera mounted on
the end effector of a six degrees of freedom cartesian robot.
The image processing part is performed in real time on a
commercial image processing board. [t consists in tracking
the projection of the selected straight lines or limbs along
the image sequence [5].

We here presents the results obtained for the structure
estimation of a cylinder. Figure 2.a represents the initial
image acquired by the camera and the selected cylinder.
Figure 2.b contains the image acquired by the camera after
the convergence of the visual servoing task.

(a) (b)
FI1GURE 2: Position of the cylinder in the image before and
after the focusing task
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F1GURE 3: FEstimation of the parameters of a cylinder in
the camera frame (a) estimated cylinder depth (in mm) (b)
error between the real and estimated radius of the cylinder
(in mm)

Figure 3.a describes the evolution of the estimated
depth of the cylinder displayed on Figure 2. Figure 3.b
reports the error between the real value of its radius and
the estimated one. These results underline the fact that
our estimation algorithm is particularly robust, stable and
accurate.

3 Camera Control Strategies

We are now interested in investigating the problem of
recovering a precise and complete description of a 3D scene
containing several objects using the visual reconstruction
scheme presented above. As already stated, this scheme
involves fixating at and gazing on the different primitives
in the scene. This can be done on only one primitive at
a time, hence reconstructions have to be performed in se-
quence for each primitive of the scene. After each estima-
tion of a primitive, an exploration process is required to
determine the next selection and to ensure the complete-
ness of the scene reconstruction.

3.1 Incremental scene exploration

Our concern is to deal with the problem of recover-
ing the 3D spatial structure of a whole scene without any
knowledge on the number, the localization and the dimen-
sions of the different geometrical primitives of the scene.
Thus, we have to determine viewpoints able to bring new
primitives in the field of view of the camera. Such view-
points will be computed using the previously estimated
3D map and the part of the 3D scene which has not been
already observed.

Completeness of the reconstruction. From a
viewpoint ¢;, we first compute the camera field of view.
Then, using the current 3D map of the scene, we can com-
pute the volume V(¢;) observed from this viewpoint. We
denote V(‘I)t) the area observed by the camera from the
beginning of the reconstruction process. We have:

V(@) = JV(g), with @ = o
i=1

i=1
The scene reconstruction process takes end when:
V¢t+1 ) V(@t) @] V(¢t+1) = v(@t)

This means that the exploration process is as complete as
possible if for all reachable viewpoints, the camera looks
at a known part of the scene. We thus can be sure that all



the areas of the scene are either free space, either an ob-
ject which has been reconstructed, either an un-observable
area. We now describe how ¢4 is determined.

A two levels algorithm for scene exploration.
Our incremental strategy leads to an exploration process
which is handled at two levels:

e When a new primitive appears in the field of view of
the camera, or has been previously observed, it is es-
timated. In that case, we do not need to compute ex-
plicitly new viewpoints. This level is called local ex-
ploration. It allows to split the observed areas into
free-space and reconstructed objects.

e When a local exploration ends, a more complex strat-
egy has to be implemented in order to focus on parts
of the 3D space which have not been already observed.
This level is called global exploration.

3.2 Local exploration

As already stated, the scene is assumed to be only com-
posed of polyhedral objects and cylinders, so that the con-
tours of all the objects projected in the image plane form
a set of segments. The first step in the scene reconstruc-
tion process is to obtain the list of these segments. It is
simply obtained by extracting the edges in the image with
a Shen Castan filter, and applying a Hough transform on
the edges which computes the equation of the different
segments. We denote these lists wg,, where ¢; is the cor-
responding camera location. The image processing algo-
rithm we use during the active 3D estimation allows us to
only track a limited number of segments at the video rate.
Thus, for real time issue, we cannot create a list at each
iteration of the estimation process. So, they are created
after each reconstruction, and are used for the selection of
the next considered segment.

An other list, denoted 4, is used. It contains all the
unestimated segments previously observed, and the camera
position ¢; from which they have been observed. More
precisely, we have Qs = {(Si,éx),t = 1... N,k € [0,¢]}
where S; represents a 2D segment, ¢ = Ut ¢ and N is
the number of untreated segments.

Step 0 Initialization. We consider that the camera is
located in ¢¢ and wg, is acquired. We do not have any
information on the parameters of the corresponding 3D
primitives. Therefore the 3D map of the scene is initially
empty. Thus, initially, Qs = wg, = {(Si,¢0),t = 1...n}
and ® = ¢o. We extract from Qs a segment S; to be es-
timated. In fact, we choose the segment S; which is the
nearest from the image position corresponding to the gaz-
ing task (horizontal or vertical and centered in the image).
Step 1 Active 3D estimation and 3D map creation.
An estimation based on §; is performed, including the
recognition process and the structure estimation process.
The obtained parameters p of the primitive are introduced
into the 3D global map of the scene.

Step 2 Local and global 2D lists generation. Af-
ter the active estimation, because of the camera motion
implied by this process, the camera is located in ¢;. A
new local database wg! corresponding to this position is
constructed.
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Using the projection of the current 3D map into the im-
age, a simple matching algorithm is performed in order to
determine the set of segments of wg! which have been pre-
viously estimated (see Figure 4.b where the dashed lines
correspond to segments which are the projection of esti-
mated primitives). The matched segments are then sup-
pressed from wg! which is merged with the global 2D list
Q¢ (thus, ® = Ui_,¢, U ¢, and Qe contains all the seg-
ments which have been observed from all the previous
viewpoints, and which have not been estimated yet).

T ) )

FIGURE 4: (a) Image acquired (b) 2D database and results
of the matching (c) neighboring graph

Step 3 Segment selection. If one (ore more) unesti-
mated segment is in the current list W the new cam-

era position is chosen as ¢:1+1 = ¢; and a new segment
S; is chosen. An active estimation (step 1) based on
this segment is then performed. In the case where several
unestimated segments are in the current list, a choice is
performed in order to select the next chosen segment. Us-
ing the w; , and the current 3D map, a neighboring graph
is computed where the nodes are composed of the junc-
tions between segments and where the vertices represent
the state of the segment i.e., treated (T) or untreated (U)
(see Figure 4c). Using this graph, we look for an unesti-
mated segment connex to the last estimated one. If such
a segment exists, it is selected. Otherwise, we choose the
untreated segment the nearest from the optimal position
for its robust 3D estimation. We iterate the steps esti-
mation, 2D lists creation and selection until one of
the segments present in the current list we! has not been
estimated.

Backtracking. If all the segments of wy have been con-
sidered and if at least one of the 2D segrtnents previously
observed have not been estimated (i.e., wg! empty and
Qs not empty), we look in Q4 for the couple (S;, @& ), for
which the distance between the current camera location ¢,
and the location ¢ (from which the segment S; has been
observed) is minimal. Then, the camera moves to the po-
sition ¢y (thus, ¢141 = ¢r). An active estimation (step
1) is then performed. Finally, if Qs is empty (i.e., all the
2D segments observed from any previous camera positions
have been treated), a new viewpoint must be found. A
global exploration is thus necessary.

Results The example reported here (see Figure 5) deals
with a scene composed of a cylinder (whose radius is
40 mm) and five polygons which lie in different planes.
In Figure 6.a is displayed the initial image acquired by the
camera. Note that the whole scene is not in the camera
field of view for that position.

Figure 6 shows the images acquired before each optimal
estimation and the corresponding list of segments. Fig-



Figure 5: Ezternal view of the scene

ure 6.a shows the image acquired from the initial position
¢o of the camera. At this time, no reconstruction has been
performed and only three segments appear in the field of
view of the camera. The first segment extracted from wg,
is the right limb of the cylinder. After the recognition pro-
cess and the estimation based on the two limbs, the camera
is located in ¢1 (see image 6.b). All the segments in the
list wg, have been treated. Using s, the segment which
has been previously observed from the position ¢ and has
not been treated yet is selected. Thus the camera moves to
¢o and gazes on this segment. After the reconstruction of
the corresponding primitive, camera is located in ¢2 (see
image 6.c). One of the two segments connex to the last es-

A

(d)
FiGURE 6: Different steps of the local exploration process
(view from position ¢o,d1, d2, ¢¢)

timated one is selected and reconstructed. The process is
iterated until all the primitives observed during this local
exploration process are reconstructed (i.e., obtained at the
position ¢g, see image 6.d). Note that several primitives
which did not appear in the initial field of view of the cam-
era have been detected and reconstructed. The 3D model
of the scene at this step of the reconstruction process is
displayed on Figure 7.

)

4
(a) (b)

FIGURE T: Results of the first local exploration process: (a)
Reconstructed scene and projection on a virtual plane of
the unknown area (b) Reconstructed scene and volumetric
representation of the occluded area

Since this exploration strategy is local, it avoids com-
puting explicitly new viewpoints. Let us note that some

objects or complex scenes can not be completely recovered
using this local exploration. The composition of simple
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primitives, such as polygons, can be treated by this algo-
rithm but more complex combinations raise new problems:
an object can be occluded by another one (or by itself) or
may not have been observed from the different viewpoints.
Exploration probes are thus necessary to make sure that
the whole scene has been reconstructed.

3.3 Global exploration

We have chosen to formulate the probing strategy as a
function minimization. We define a function to be min-
imized which reflects the quality of a new viewpoint. It
integrates the expected gain of the new position, and the
cost of the displacement from the previous to the new po-
sition. This leads to a gaze planning strategy that mainly
uses a representation of known and unknown areas, ob-
tained after the local exploration, as a basis for selecting
viewpoints.

Viewpoint Selection. The function F to be min-
imized must integrate the constraints imposed by the
robotic system and evaluate the quality of the viewpoint.
Thus, we define a set of independent measures which de-
fine the quality or the badness of a viewpoint. As in [16],
each result of a given measure belongs to [0,1] (or has an
infinitive value for unreachable positions). A value near 0
results from an ideal situation. The function F to be op-
timized is taken as a weighted sum of this set of measures.

e The quality of a new position ¢:41 is defined by the
volume of the unknown area which appears in the field
of view of the camera. The new observed area is given
by G(¢¢+1) where (see Figure 8) :

G(dt41) = V(dig41) — V(de41) N V(D) (2)
where V(¢¢41) defines the part of the scene observed
from the position ¢;41 and V(¢e41) N V(P¢) defines the
sub-part of V(¢:4+1) which has been already observed.

The measure of the quality of the position ¢;41 is then
given by :

volume(G(¢e41))
volume(V(¢pi41))

Remark: In fact, G(¢:) defines the potential volume
of unknown area using the current knowledge on the
3D scene. If a new object appears in the camera field
of view, the new observed area will be smaller than the

expected one (G'(¢¢) C G(d:)).

3)

9(¢t+1) =1-

D V()
[
]

t
area previously
observed

V(‘ﬁt‘.l%’
area observed
from the new viewpoint

G(dri1) .
ain : area discovered
rom the new position

Figure 8: Quality of a new position (2D projection)

e To compute the cost of the camera displacement be-
tween viewpoints ¢; and ¢4+1, we use the distance be-
tween these two positions. More precisely, this measure



is given by:

Naai ) )
| @i, — Qiy g |

1
C(¢e, bet1) = Naa ; ﬁ1| Qirrae ~ Qingin |

where

(4)

- Nga is the number of robot degrees of freedom ;

- gi is the position of the robot joint i (note that :
¢ = (q07q17"'7qudl))'

- | Qiyguw — Qingin | gives the distance between the
joint limits on axis .

- Bi are weights which allow to fix the relative im-
portance of an axis with respect to the others (for
instance, rotationnal motions may be preferred to
translationnal ones).

e Furthermore, additional constraints are associated to
camera locations. The goal of these constraints is :

- to avoid unreachable viewpoints (i.e., camera loca-
tion out of the joint limits of the robot. This is a
binary test which returns an infinite value when the
position is unreachable:

0 if ¢ is reachable
00

(3)

Al¢) = { else

- to avoid positions near the robot joint limits. The
measure associated to this constraint is optimal
(equal to 0) if the camera is located at the mid-
dle of the extension of each axis of the robot:

Ngai 4(Qi . QintaeT@iniin )2

_ 2
" Naat E (Qirgar — Qingin )?

B(¢)

(6)

The function F(¢¢+1) to be minimized is thus defined as :

F(ope41) = A(@)Far1g(des1 )+ a2C(ds, dry1)FazB(d) (7)

Determining the weights a; is not a simple problem. Here,
the weights are predetermined in order to reflect the rel-
ative importance of the different measures. For example,
the gain of a new position is more important than the cost
of the camera displacement. We have defined a priority
order of the coefficients «; such that a1 > a2 > as.

Optimization. We have to determine the position
¢best which minimize the energy function F(¢). Each po-
sition ¢ € SFEs5 could be a priori a solution of this opti-
mization problem. In order to avoid possible obstacles, we
allow the camera to only move on an hemisphere located
around the scene (assumed to be inside the hemisphere).
Thus, the camera location is described by a vector with
five parameters (8, ¢, Qs,Q,,Q.) where 8 is the latitude
and ¢ the longitude of the camera on the hemisphere, and
Qz, 0, and Q. are the angles which define the camera
orientation.

To minimize F(¢), we chose to use a fast deterministic
relaxation scheme corresponding to a modified version of
the ICM algorithm. First, F(¢) is minimized using large
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variation steps of the parameters. When the minimum is
found, the process is iterated with smaller variation steps.
Unlike stochastic relaxation methods such as simulated
annealing, we cannot ensure that the global minimum of
the function is reached. However our method is not time-
comsuming and experimental results show that we always
get a correct minimum in a low number of iterations. Fur-
thermore, in our problem, finding the global minimum at
each iteration of the exploration is not really necessary as
long as the new viewpoint discovers a large part of the
scene.

Results. Figure 9 shows the different steps of the global
exploration of the scene. Each figure shows the obtained
3D scene, the camera trajectory and the projection on a
virtual plane of the unknown areas. Figure 9.a corresponds
to the camera position ¢e obtained just after the local ex-
ploration process described in the previous paragraph. The
first camera displacements (see Figure 9.b and 9.c) allows
to reduce significantly the unknown areas. At position ¢13
(see Figure 9.d) a new primitive is detected. A new local
exploration process is performed. It ends at position ¢24
(Figure 9.f). At this step, the two polygons on the “top”
of the scene have been reconstructed. A new global explo-
ration is then performed. It moves the camera to position
¢25 (Figure 9.g) where a new segment which belongs to
the last object of the scene appears in the field of view
of the camera. After a last local exploration process, the

A~

2

-

Y

<

F1GURE 10: 3D model of the reconstructed scene and polar
view of the camera trajectory

four segments of this polygon are reconstructed and the
camera is located in ¢so (Figure 9.h). At this step, 99%
of the space has been observed, which ensures that the re-
construction of the scene is complete. Figure 10 shows the
final 3D model of the scene (to be compared to Figure 5
and the camera trajectory.

Influence of the weight in the energy function.
We want here to analyze the influence of the weights a;
involved in (7) on the camera trajectory. We consider a
scene with only two objects: a cylinder and a polygon
which have been reconstructed during a first local explo-
ration/reconstruction process. In the first strategy (Fig-
ure 11.a), the distance between two viewpoints is not taken
into account, thus this strategy is mainly based on the
maximization of the new observed area (the weight az in
(7) is null). The second strategy (Figure 11.b) uses the dis-
tance between this two viewpoints in order to minimize the
total distance covered by the camera. Figure 11.c shows
the distance covered by the camera versus the number of
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FIGURE 9: Different steps of the global exploration process (camera trajectory, 3D model of the final reconstructed scene

and projection on an virtual plane of the unknown area)

viewpoints for both strategies. We note that if the distance
between two viewpoints is not taken into account, the cam-
era motion behaves like a “bee flight”. Such motion does
not occur if the distance cost is introduced into the energy
function (the camera motion is more continuous). This un-
derlines the interest in introducing the distance parameter
into the energy function.

600
distance is taken into account

5000 distance is NOT taken into account//

N
o
s}

3000

2000

distance covered by camera in mm

1000

10 5. 20 2t
number of positions C

5 5
FiGUuRE 11: Global exploration of the scene. Camera mo-
tion with (a) as = 0 (b) az > 0. (c) Distance covered by
the camera for the both strategies
Seeing behind occlusions Due to the constraints
imposed on the camera positions (located on an hemi-
sphere around the scene), our method is not able to ensure
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the absolute completness of the reconstruction (especially
for occluded areas). However, different approaches can be
used in order to cope with the occlusions problem: we can
use the same global exploration algorithm but restricted
to small areas located around the unknown/occluded ar-
eas (see the reconstruction of a polyhedron on Figure 12).
We thus have to take care about possible obstacles (which
can be introduced in the cost function to be minimized).
Furthermore, it seems to be useful to gaze on the occlud-
ing contours/segments and then move to observe the area
occluded by these contours (see for example [12][14]).

4 Conclusion

In this paper, we have proposed a method for 3D envi-
ronment perception using a sequence of images acquired by
a mobile camera. We have described a reconstruction pro-
cess which provides an accurate and robust estimation of
the parameters of a geometrical primitive. As this method
is based on peculiar camera motions, perceptual strategies
able to appropriately perform a succession of such individ-
ual primitive reconstruction have been proposed in order to
recover the complete spatial structure of complex scenes.
An important feature of our approach is its ability to easily
determine the next primitive to be estimated without any
knowledge or assumption on the number, the localization
and the spatial relation between objects. Furthermore, we
do not have to define complex planning strategies. Our
strategy can be defined as an on-line strategy (VS an off-
line strategy where a plan must be previously computed).
Our approach is entirely bottom-up and does not use any
a priort on the environment except the nature of the con-
sidered primitives.

Finally, experiments carried out on a robotic cell have
proved the validity of our approach (accurate, stable and
robust results, efficient exploration algorithms), but have
also shown its limitations (the constraints on the camera
motion, which are necessary to obtain precise results, im-
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FIGURE 12: Polyhedron reconstruction (a) image of the scene, (b) two polygons have been reconstructed after the local

exploration (c) unobserved areas after the local, the other areas are occluded (d) Model computed at the end of the re-

construction process (e) unobserved areas after the global exploration (all the remaining unobserved areas are inside the

polyhedron) (f) camera trajectory

ply the sequencing of visual estimations and we cannot per-
form several active estimations in parallel). Future work
will thus be devoted to determine optimal camera motions
for a simultaneous structure estimation of a set of geomet-
rical primitives.
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