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The performance analysis of source trajectory estimation

using measurements provided by multiple platforms (or arrays) is

studied. In numerous practical situations, the maneuvering ability

of the receiver (e.g., a ship towing linear arrays) is limited, leading

to the assumption that the observer motion is rectilinear and

uniform. Even if this hypothesis appears quite restrictive, practical

and tactical considerations fully justify its interest. This leads

to consider multiple (platform) target motion analysis (denoted

MTMA) and to analyze the performance of such trajectory

estimation methods.
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I. INTRODUCTION

Conceptually, the basic problem in target motion
analysis (TMA) is to estimate the trajectory of an
object (i.e., position and velocity) from noise-corrupted
sensor data [8]. These data are typically estimated
bearings that are obtained via a standard beamforming
algorithm [2]. These estimated bearings represent the
basic data or observations for the passive sonar context
within a direct path environment.
The performance of any TMA algorithm is

conditioned by the statistical quality of the data
(estimated bearings), which in turn depends on
physical parameters such as the array length, the
integration time, and so on. In particular, the array
length is a critical parameter for the performance
of the tracking and data association steps. This
advocates for the use of large towed arrays. However,
the maneuvering ability of the towing ship is itself
limited by the array length leading thus to consider
the following special case: the observer’s motion is
rectilinear and uniform (constant velocity vector).
Even if this hypothesis seems oversimplified, practical
and tactical considerations fully justify its interest. It
constitutes the basic hypothesis of this work.
If the observations can be represented by a

“mono-dimensional” time series fμ̂1, : : : , μ̂ng, where
μ̂i denotes the source bearing estimate at time i¢T,
obtained by using a single array, then a classical
result asserts that the TMA problem is actually
nonobservable without an observer maneuver [7,
9]. This means that the state vector defining the
source trajectory (constant velocity vector) cannot be
determined from the exact time series fμ1, : : : ,μng.
Assume for now that at least two estimated bearings
μ̂i,1 and μ̂i,2 are available at each time then the problem
becomes generally observable. This leads to consider
multiple platform or array target motion analysis
(denoted MTMA).
However, the observability concept is purely

algebraic. So the main problem consists in calculating
the MTMA statistical performance. Analytic
formulations of the variance of the source state vector
components are approximated in terms of physical
parameters such as source distance, source velocity,
and inter-array distance. The respective effects of these
parameters on the MTMA performance will appear
clearly. It is worth noting that a similar problem has
been previously studied [11]. The main difference
is that in this case, the data are constituted of time
delay and time-delay rate, the so-called Doppler time
compression. When the source signal is moving relative
to the receiving arrays, the various signal components
are not only time delayed but also Doppler time
compressed relative to each other [11]. Therefore,
according to [11], measurement of these differential
Dopplers provides important additional information
about the source trajectory. The paper of E. Weinstein
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Fig. 1. Typical TMA scenario.

[1] deals with optimal source localization and tracking
using differential delay and Doppler observations.
However, the analysis is restricted to a short time
analysis since the data consist of the differential delays
and differential Dopplers at a given time.
Our approach is different since the data as well as

the performance analysis methods are those of classical
TMA [8]. Surprisingly, the results appear quite similar
to E. Weinstein’s results for the short integration time
analysis case. Furthermore, the performance analysis
is extended to long integration time MTMA. This
represents the original contribution of this work.
Standard notations are used throughout this paper.

A bold capital letter denotes a vector while a
capital letter denotes a matrix or a subspace.
The symbol * means transposition [4].
rx and ry represent x and y position.
vx and vy represent x and y velocity.
t is the time variable.
m is the number of arrays.
p is the number of sensors per array.
ns is the number of snapshots (integration time)

used in the array processing [2].
n is the number of estimated bearings in the TMA

process.

II. MTMA MODEL

The physical parameters are depicted in Fig. 1. The
source, located at the coordinates (rxs,rys), moves with
a constant velocity vector v(vxs,vys) and is defined to
have the state vector:

Xs
¢
=[rxs,rys,vxs,vys]

¤: (1)

The observer state is similarly defined as:

Xobs
¢
=[rxobs,ryobs,vxobs,vyobs]

¤

so that, in terms of the relative state vector X, defined
by

X=Xs¡Xobs
¢
=[rx,ry,vx,vy]

¤

the discrete time equation of the relative motion takes
the following form:

X(tk) =©(tk, tk¡1)X(tk¡1)+U(tk) (2)

where

©(tk, tk¡1) =
μ
Id (tk ¡ tk¡1)Id
O Id

¶
, Id

¢
=
μ
1 0

0 1

¶
:

In the above formula, tk is the time at the kth
sample, while the vector

U(tk) = (0,0,ux(tk),uy(tk))
¤

accounts for the effects of the observer accelerations.
In this paper, the observer accelerations are zero (U´ 0)
which means that the observer’s motion is rectilinear
and uniform. Throughout the document, the source
state means the relative source state (eq. (2)).
As usually in TMA [8], the available measurements

are the estimated bearings μ̂t from the observation
platforms to the source, so that the observation
equation stands as follows:

μ̂t,j = μt,j +wt,j (3)

(j = 1, : : : ,m, m is number of arrays), with

μt,j = tan
¡1
Ã
rx,j(t)

ry,j(t)

!
(4)

rx,j and ry,j are the relative Cartesian coordinates of
the source with respect to (w.r.t.) the center of the jth
platform.
In (3), wt,j represents the estimation noise on the

jth platform, modeled as zero mean, Gaussian, with
variance given by the following approximate formula
(Woodward’s formula): (narrowband analysis)

¾wt,j =
1p
ns
μ3

p
1+p½
p½

(5)

with

2μ3 =

p
6
¼

¸

L

s
p¡1
p+1

1
cosμt,j

: (6)

In (5) and (6), d represents the elementary distance
between sensors (equispaced linear array), L the array
length (L= (p¡ 1)d), ¸ the wavelength, and ½ the
signal-to-noise ratio.
The various noise components wt,j are assumed to

be statistically uncorrelated from receiver to receiver.
This assumption is not very restrictive since the
receivers cannot be spaced very closely. Finally, the
source signals at the various receivers are different
from one another only by a geometrically determined
factor. Temporal correlation is not really a problem as
soon as each bearing estimation has nonoverlapping
temporal intervals.
The four-dimensional state equation (2) and

the nonlinear measurement equation (3) define the
bearings-only motion analysis process (MTMA).
The classical TMA algorithms [8] can be directly

extended to the multiple measurements. The single
change consists in replacing the scalar observation
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fμ̂tg by a vector of observations i.e., fμ̂1,t, : : : , μ̂m,tg¤ =
£̂t (1· t· n), where n is the total number of
estimated azimuths on each platform and * denotes
the transposition. Only real data are processed here.
Given the history of measured bearings

(£̂1, : : : ,£̂n) the likelihood function is [8]

P(£̂1, : : : ,£̂n j x) = cstexp
"
¡1
2

nX
t=1

k£̂t¡£t(X)k2§
#

¯̄̄̄
¯̄̄̄
¯̄̄
£t(X) defined by (1) and (2)

and

k£̂t¡£t(X)k2§
¢
=(£̂t¡£t(X))

¤§¡1(£̂t¡£t(X))

§ = diag(¾2wt,j ) (¾
2
wt,j
given by (5)):

(7)

The maximum likelihood estimate (MLE) is the
solution to the likelihood equation:

@

@X
logP(£̂1, : : : ,£̂n jX) = 0: (8)

The above equation has no explicit closed form
solution. However, a Newton [8] algorithm for the
maximization of the likelihood functional is easily
obtained. Denoting Ĉ = (£̂¤

1, : : : ,£̂
¤
n)
¤, the vector of

concatenated measurements it takes the following
form [8]:

X`+1 =X`¡ s`
·μ
@C
@X

¶¤
§¡1

@C
@X

¸¡1μ
@C
@X

¶¤
§¡1(Ĉ ¡ C)

(9)

where ` is the iteration index, s` = step size of the
algorithm and C = C(X`).
The calculation of the gradient vector is obtained

from (3)

tan(μt) =
rx(t)
ry(t)

=
rx(0)+ tvx
ry(0)+ tvy

(the index j is omitted),

and consequently:

@

@rx(0)
tan(μt) =

1
cos2(μt)

@μt
@rx(0)

=
1
ry(t)

so that

@μt
@rx(0)

=
cos2 μt
ry(t)

=
ry(t)

rt

cosμt
ry(t)

=
cosμt
rt

(10)

with rt =
q
r2x (t) + r2y (t) . The other components of the

partial derivative matrix @C=@X are obtained by the

same way, giving¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

@μt
@ry(0)

=¡sinμt
rt

@μt
@vx

=
t

ry(t)
cos2 μt =

t

rt
cosμt

@μt
@vy

=¡ t
rt
sinμt:

(11)

Using the notations in [8], the matrix @C=@X takes
the following form:

@C
@X

=
μμ

@£1
@X

¶¤
, : : : ,

μ
@£m
@X

¶¤¶¤ @C
@X

is nm£ 4
(12)

with
@£i
@X

=

0BBBB@
cosμ1,i
r1,i

¡
sinμ1,i
r1,i

(t1¡ tm)
cosμ1,i
r1,i

¡(t1¡ tm)
sinμ1,i
r1,i

...
...

...
...

cosμn,i
rn,i

¡
sinμn,i
rn,i

(tn ¡ tm)
cosμn,i
rn,i

¡(tn ¡ tm)
cosμn,i
rn,i

1CCCCA
(13)

where μj,i represents the source bearing, and rj,i
the relative distance from the ith array center,
corresponding to the source trajectory parameter
vector X. The time tm is the reference time of the state
estimate.

III. MEASUREMENTS

In passive radar or sonar, the location of a source
can be estimated by observation of its signal at two
or more spatially separated receivers. Most systems
depend on the relative (differential) time delay of the
signal wavefront between the various receivers.
When the source signal is moving relative to the

array, the various signal components are not only
time delayed but also Doppler compressed relative
to each other. Measurements of these differential
Dopplers provides important additional information
about source speed and heading.
More precisely the time-varying delay between

receivers of the ith pair is characterized by

¢¿i(t) = ®i+¯it (14)

®i and ¯i are, respectively, the time delay and
time-delay rate (Doppler time compression).
The observation ¡ is then constituted of (m¡ 1)

delays and (m¡ 1) differential Dopplers, i.e.,
¡ = (®1,®2, : : : ,®m¡1,¯1,¯2, : : : ,¯m¡1)

¤: (15)

The relations between the components of ¡
and the components of the state vector X in polar
coordinates (i.e., X= (μ,r,vμ,vr)

¤, vμ, and vr are,
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respectively, the tangential and radial components of
the source velocity vector) and are given below [11]:¯̄̄̄
®i = di sinμ=c¡ d2i cos2μ=2rc
¯i =¡divμ cosμ=rc+ d2i (vr cosμ¡ 2vμ sinμ)cosμ=2r2c

(16)

(di is the spacing between receiver i and the reference,
and c is the sound speed).
Since the components of X enter into ®i and ¯i in

a nonlinear way, it is wothwhile rewriting (16) in the
following form [11]:¯̄̄̄

c®i = dix1¡ d2i x2
c¯i =¡dix3 +d2i x4

with: ¯̄̄̄
¯̄̄̄
¯
x1 = sinμ

x2 = cos
2 μ=2r

x3 = vμ cosμ=r

x4 = (vr cosμ¡ 2vμ sinμ)cosμ=2r2:

(17)

Using this formalism and these measurements,
E. Weinstein has calculated bounds for the variance
of the estimated components of the X vector [11].
Conceptually, his approach uses the time delay and
time-delay rate as measurements. The analysis is
then essentially nonlinear (eqs. (16) or (17)). On
the other hand, we assume in this work that the
measurements are the bearings estimated on the m
various subarrays. Performance analysis of MTMA
using these measurements will now be performed
and the results compared with those of E. Weinstein.
Surprisingly, they appear quite similar for short-time
analysis.

IV. SYSTEM OBSERVABILITY IN NONMANEUVERING
SOURCE CASE

In order to study the system observability we
reformulate the system equations (2) and (3) into the
following form [8]:¯̄̄̄

Xk+1 = FXk +U

0´ zk =HkXk
with

F =©(tk+1, tk) =
μ
Id ®Id

O Id

¶
(®

¢
= tk+1¡ tk)

Xk
¢
=Xtk

Hk = (cosμk,¡sinμk,0,0):

(18)

Note that U ´ 0 from the nonmaneuvering assumption.
Thus the nonlinear bearing measurement [9] can

be manipulated to provide a pseudomeasurement
that is “linearly” related to the target state [8]. This
constitutes the basis of the pseudo-linear estimate

(PLE) [8]. It also provides a simpler way to investigate
the system observability [1, 3, 6, 10]. From (18), it
comes directly in the single platform case:¯̄̄̄

¯̄̄̄
¯̄
z0 =H0X0
z1 =H1FX0
...

zk =HkF
kX0:

(19)

Now

Fk =
μ
Id k®Id

O Id

¶
so that, the observability matrix O [10] is defined as
follows:

O =

0BBBB@
H0

H1F

...

HkF
k

1CCCCA

=

0BBBB@
cosμ0 ¡sinμ0 0 0

cosμ1 ¡sinμ1 ®cosμ1 ¡®sinμ1
...

cosμk ¡sinμk k®cosμk ¡k®sinμk

1CCCCA :
(20)

Note the analogy of (20) with (13). Now, it is quite
enlightening to factorize O:

O =¢r

0BBBBB@
ry(0) ¡rx(0) 0 0

ry(1) ¡rx(1) ®ry(1) ¡®rx(1)
...

...
...

...

ry(k) ¡rx(k) k®ry(k) ¡k®rx(k)

1CCCCCA
with

¢r
¢
=diag(r¡1(0),r¡1(1), : : : ,r¡1(k)): (21)

This factorization is only valid if all the r(k) terms
are non-zero. Fortunately, this assumption is not
restrictive.
Denote now O0 the “dual” observability matrix

defined by

O0 =

0BBBBBBBB@

rx(0) ry(0) 0 0

rx(1) ry(1) ®rx(1) ®ry(1)

...
...

...
...

rx(k)|{z}
Tx

ry(k)|{z}
Ty

k®rx(k)| {z }
Vx

k®ry(k)| {z }
Vy

1CCCCCCCCA
:

Then, except in the special case where the source and
the observer positions are identical at a given time:

rankO = rankO0: (22)
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So, in order to study the observability, it is
sufficient to consider the matrix O0 defined by (22).
This simple identity constitutes the cornerstone for our
approach of observability.
Now, using (2) or (equivalently) (18), the vectors

Tx, Ty, Vx, and Vy can be expressed as linear
combinations of the three vectors 1, Z and Z2, i.e.,

Tx= rx(0)1+®vxZ

Vx= ®rx(1)Z+®
2vxZ

2

Ty = ry(0)1+®vyZ

Vy= ®ry(1)Z+®
2vyZ

2

with
1
¢
=(1,1, : : : ,1)¤

Z
¢
=(0,1,2, : : : ,k)¤

Z2
¢
=(0,0,2, : : : ,k(k¡ 1))¤:

(23)

It is then clear from (23), that rank (O0) and thus
rank O are bounded by 3 since the range of O0 is
spanned by the three vectors f1,Z,Z2g. There is a rank
degeneracy in the following case (rank O = 2):

rx(0)vy = ry(0)vx: (24)

This condition is itself equivalent to a zero
bearing-rate assumption. Even if the above calculations
do not provide new result, it presents a direct approach
to investigate the observability of the discrete-time
system.
Consider now a system constituted of two linear

subarrays. The physical supports of these arrays are
situated on the same line as depicted in Fig. 2. Then,
using the previous notation, the observability matrix O0
takes the following (concatenated) form:

O0 =
μO01
O02

¶
(25)

with ¯̄̄̄O01 = (Tx,Ty,Vx,Vy)
O02 =¢(T0x,T0y,V0x,V0y):

(26)

The vectors (Tx,Ty,Vx,Vy) are defined as in (23),
while the vectors defining O02 stand as follows:

T0x= Tx+(r
0
x(0)¡ rx(0))1

V0x= ®(r
0
x(0)¡ rx(0))Z+Vx

T0y = Ty

V0y=Vy

¢= diag
μ
cosμ00
cosμ0

, : : : ,
cosμ0k
cosμk

¶
= diag

μ
r00
r0
, : : : ,

r0k
rk

¶

Fig. 2. Typical simulation for 2 TMA.

so that

O0 =
μ O01
¢O01

¶
+¯
μ O O O O

¢1 O ®¢Z O

¶
¯
¢
= r0x(0)¡ rx(0) (¯ 6= 0):

(27)

Denote ker(O01) [4] the null subspace of O01 and R
its complementary subspace [4] in R4, i.e.,

R4 = kerO01©R (28)

(the symbol © meaning direct sum of two subspaces
[4]).
Let X be a vector of R4. Then X can be uniquely

decomposed as a sum of two vectors belonging
respectively to kerO01 and R:

X=K+Y, Y 2R,

K 2 kerO01 and X
¢
=(x1,x2,x3,x4)

¤:

The following results can be directly deduced from
(27).

1) If Y 6= 0, then O0X 6= 0 (i.e., X =2 kerO0) since
O01X 6= 0.
2) If Y = 0, then O0X= ¯¢(x11+®x3Z).

Consider now the second case (i.e., Y = 0):

O0X= 0 implies

x1 = x3 = 0 (1 and Z are independent):

Since X belongs to kerO01:
x2Ty + x4Vy = 0

which results (except for Ty =Vy = 0) in

x2 = x4 = 0:

Consequently, except for the special case Ty =
Vy = 0, kerO0 is reduced to the null vector in the
multiplatform case.
Finally, the following result has been

demonstrated [5].
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PROPOSITION 1 (Multiarray Case m¸ 2) If the source
does not move on the array axis, then the system is
observable.

Note that this result has been previously proved
by using a slightly different approach [5, 6] involving
a continuous-time representation of the system.
Actually, the main interest of this approach is its
versatility. Consider, for example, the first case
(single platform with constant velocity vector) with
additional measurements (Doppler shifts). Using the
previous formalism, we show that the system becomes
observable, that is, the vector X0 can be uniquely
determined from the measurement sequence [5, 6].
The effect of relative motion on the source

frequency is termed Doppler effect and modeled by
the following equation:

f(t) = f0

μ
1¡ vx

c
sinμt¡

vy
c
cosμt

¶
(29)

where f0 is the reference frequency and c the sound
speed.
The measurement now includes the instantaneous

time-varying frequency f(t) so that the matrix Hk
becomes [5]:

Hk =
μ
cosμk ¡sinμk 0 0

0 0 ¡sinμk ¡cosμk

¶
: (30)

The observability matrix O (eq. (13)) becomes

O =

0BBBB@
H0

H1F

...

HkF
k

1CCCCA=
μOμ

OD

¶
(31)

where the Oμ matrix is given by (20) and the OD matrix
is the observability matrix associated with Doppler
measurements:

OD =

0BB@
0 0 ¡sinμ0 ¡cosμ0
...
...

...
...

0 0 ¡sinμk ¡cosμk

1CCA : (32)

The dual observability matrix O0 takes then the
following form:

O0 =
Ã

O0μ
0,0,Ty,Tx

!
: (33)

Let us examine the null subspace of O0. Let Y be
a generic vector of R4. Clearly if Y does not belong to
kerO0μ then Y is not in kerO0.
Assume now that Y is in kerO0μ. If it is also in

kerO0 then:
y3Ty + y4Tx = 0:

This corresponds to the zero-bearing rate condition
(24), since otherwise Tx and Ty would be independent,
or:

rx(0)vy = ry(0)vx:

The following result has thus been demonstrated.

PROPOSITION 2 (Single Platform Case) If the
source does not move at a zero-bearing rate, then the
system using bearings and Dopplers measurements is
observable.

Once again, this result is not new but the effect
of measurements is clearly demonstrated by this
approach. At first, the previous analysis calls for the
inclusion of Dopplers in the measurements but, in a
multifrequency context, they do not appear especially
informative. More specifically, it is shown that the
performance corresponding to time delay and Doppler
measurements and multifrequency estimated bearings
are nearly equivalent.

V. MANEUVERING SOURCE CASE

Proposition 2 can be directly extended to a
multiarray system. However, it is more interesting
and enlightening to consider the case of maneuvering
source. The practical interest of a multiplatform
system becomes more evident. The tools and general
notations are identical to those used previously.
The source trajectory consists of two legs with an
instantaneous velocity change. In this case, the state
vector of the source (X0) is of dimension 6 and the
observation equation (19) takes the following form
(single array):¯̄̄̄

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄

z0 =H0X0
z1 =H1F1X0
...

zk =HkF
k
1 X0

zk+1 =Hk+1F2F
k
1 X0Ã source maneuver

...

zk+i =Hk+iF
i
2F

k
1 X0

(34)

with

H` = (cosμ`,¡sinμ`,0,0,0,0)
X0 = (rx(0),ry(0),vx,1,vy,1,vx,2,vy,2)

¤

F1 =

0B@Id2 ®Id2 0

0 Id2 0

0 0 Id2

1CA ,

F2 =

0B@Id2 0 ®Id2

0 Id2 0

0 0 Id2

1CA :
The first two components rx(0) and ry(0) of the state
vector X0 represent the initial source position while
(vx,1,vy,1) and (vx,2,vy,2) represent the source velocity
vectors on the two consecutive legs.
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The transition matrices F1 and F2 may be expressed
as Kronecker product [4]:

F1 =

0B@1 ® 0

0 1 0

0 0 1

1CA− Id2, F2 =

0B@1 0 ®

0 1 0

0 0 1

1CA− Id2
and the composition of F1 and F2 satisfies to the
following property:

F`2F
m
1 = F

m
1 F

`
2 =

0B@Id `®Id m®Id

0 Id 0

0 0 Id

1CA : (35)

The matrix O0 (22) then takes on the following
form:

O0 = (Rx jRy j Sx j Sy j Tx j Ty)
with¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

Rx = rx(0)
μ 1
10

¶
+®vx,1

μ Z
k10

¶
+®vx,2

μ 0
Z0

¶
Ry = ry(0)

μ 1
10

¶
+®vy,1

μ Z
k10

¶
+®vy,2

μ 0
Z0

¶
Sx = ®rx(1)

μ Z
k10

¶
+®2vx,1

μZ2
k10

¶
+®2vx,2

μ 0

kZ0

¶
Tx = ®rx(1)

μ
0

Z0

¶
+®2vx,1

μ
0

kZ0

¶
+®2vx,2

μ
0

Z02

¶
(36)

(Sy and Ty have the form of Sx and Tx, (ry(1),vy,1,vy,2)
replacing (rx(1),vx,1,vx,2)).
The following space inclusion1,2,3 is directly

deduced from (36):

ImO0 ½ sp
½μ 1

10

¶
,
μZ
10

¶
,
μ 0
Z0

¶
,
μZ2
10

¶
,
μ 0

Z02

¶¾
:

Therefore,
rank(O0)· 5:

From (36), the following hypotheses (denoted H1 and
H2):

det
μ
rx(1) vx,1

ry(1) vy,1

¶
and det

μ
vx,1 vx,2

vy,1 vy,2

¶
6= 0

imply
rank(O0) = 5:

The dimension of the observable space is thus
increased by two. The unobservable space is of
dimension 1 and spanned by the vector X0.
Next, consider a system made of two linear

subarrays situated on the same line (Fig. 2). Then, the
observability matrix O0 of the general system takes the

1(sp(X1, : : : ,Xn) denotes the vector space spanned by the vectors
fX1, : : : ,Xng).
2ImO0 denotes the image of O0.
3The index hh0ii stands for the second leg.

following form:

O0 =
μO01
O02

¶
:

Hence,

O0 =
μ O01
¢O01

¶
+¯
μ
0 0 0 0 0 0

¢1 0 ®¢S2 0 ®¢T2 0

¶
(37)

where:

¯
¢
= r0x(0)¡ rx(0), ¢= diag

μ
r00
r0
, : : : ,

r0k+i
rk+i

¶
and (with the notations of (35)):

S2
¢
=
μ Z
k10

¶
, T2

¢
=
μ 0
Z0

¶
(the index hh0ii corresponds for S2 and T2 to the
second leg).
ker(O01) denotes the null subspace of O01 and R its

complementary subspace in R6:

R6 = kerO01©R: (38)

In addition, let X be a vector of R6. Then X can be
uniquely decomposed as

X=K+Y, Y 2R and K 2 kerO01
and if Y = 0, then it comes from (38):

O0X= ¯¢
μ
x1

μ0
1

¶
+®x3

μ 0
S2

¶
+®x5

μ 0
T2

¶¶
:

(39)

Since the vectors (1), (S2), and (T2) are linearly
independent, the following property holds:

O0X= 0 and X 2 kerO01, x1 = x3 = x5 = 0:

(40)

Now it has been previously shown (under the two
hypotheses H1 and H2) that dimkerO01 = 1 and more
precisely kerO01 = sp(X0). Therefore:

O0X= 0 and

X2 kerO01, rx(0) = vx,1 = vx,2 = 0
(41)

but this contradicts the hypotheses H1 and H2 since the
two determinants are null if (41) is valid.
Further, note that H1 (or H2) is equivalent to a zero

bearing-rate assumption. This reasoning can be directly
but tediously extended to the general case of ` legs,
yielding the following result.

PROPOSITION 3 Consider a system comprising multiple
nonmaneuvering arrays. If on each leg of the source
trajectory the source bearing rate is non-zero, then the
system is observable.
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Proposition 3 requires some comments.

COMMENT 1 The instants of velocity changes are
assumed to be known.

COMMENT 2 The dimension of the source state
vector X0 (defining the source trajectory) is equal to
`+2. Practically, the estimation of X0 may be greatly
affected as ` increases.

The knowledge of the instants of velocity changes
seems quite restrictive but, actually, the notion of
observability may be extended to these instants. More
precisely, define μ the vector of velocity changes (i.e.,
μ = (t1, t2, : : : , t`¡1)

¤). Then μ is observable if and only
if:

O(X0,μ) =O(X0,μ0), μ = μ0: (42)

Using the previous formalism (37), the observability of
the velocity change can be demonstrated if H1 and H2
are valid.

VI. VARIANCES APPROXIMATIONS FOR 2 TMA

The computation of an analytical expression for
parameter estimation variances (Appendix A) for
two bearings-only TMA was carried out with a view
to know the main factors on which they depend. The
results yield interesting insights into the variations of
the standard deviation error within different scenarios.
In this section we explain three cases that allow us to
compute refined approximations of the variances. All
cases are based on the same scenario that is depicted
in Fig. 2. The spacing between the two arrays is 2d,
and at t= 0 the distance between the center of the two
platforms and the source is r and its azimuth is μ.
In the first case we assume that for each array the

distance from the source (r1 and r2) is constant and
the azimuth is linearly varying with time. This is quite
a good approximation if and only if r is much greater
than d and than the length of the source course.
This gives an expression of the variances that can be
computed for any given μ.
The second case is a little more realistic in the

sense that the distance between the source and the
arrays is stated to be linearly varying so that the
equations of r(t) and μ(t) can be written out. Although
these approximations make more sense they are hardly
tractable in order to obtain a formal expression of the
variances for any μ.
The last case consists in writing the Fisher

information matrix (FIM) directly using the
coordinates of the source. In that case one has only
to expand as Taylor series the inverse of the distance
between the source and the arrays. This case gives an
approximation of the variances which are a function
of the main variables of the scenarios including r, μ, v,
and °.

A. Case 1: r is Constant

In this part one considers that the distance between
the platforms and the source is constant, and that the
azimuth variance estimation is also constant. First of
all, let us define all the parameters.

2d is the distance between the center of the arrays.
r is the distance between the source and the center

of the two arrays.
ri is the distance between the ith array and the

source.
μ is the azimuth of the source at initial time for the

midpoint of the two platforms.
μi is the azimuth of the source at initial time for the

ith platform.
ºi is the sector on which the source is seen by the

ith array.
2n+1 is the number of bearing measurements

(t=¡n, : : : ,n).
basi is the baseline of the movement of the source

for the ith array.
¾i is the azimuth estimation standard deviation

error for the ith array.

With these notations one can write

μi(t) = μi+(t=2n)ºi, i= 1,2, t=¡n, : : : ,n

basi = j(2n+1)±tv sin(°¡ μi)j, i= 1,2

r21 = r
2 + d2 +2rd sin(μ)

r22 = r
2 + d2¡ 2rd sin(μ)

sinºi = basi=ri, i= 1,2:

The total FIM is the sum of the FIM of the two
arrays:

F = F1 +F2

with

F1 =
X
t

1
r21¾

2
1

·
−1(t) t±t−1(t)

t±t−1(t) t2±t2−1(t)

¸
and

−1(t) =

"
cos2μ1(t) ¡sinμ1(t)cosμ1(t)

¡sinμ1(t)cosμ1(t) sin2 μ1(t)

#
:

F2 has the same expression but using μ2(t) instead
of μ1(t). The FIM has the form:

F =

26664
f1 f2 f4 f5

f2 f3 f5 f6

f4 f5 f7 f8

f5 f6 f8 f9
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with

f1=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

cos2 μi(t)

f2=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

¡sinμi(t)cosμi(t)

f3=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

sin2μi(t)

f4=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

t ±tcos2μi(t)

f5=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

¡t ±tsinμi(t)cosμi(t)

f6=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

t ±tsin2 μi(t)

f7=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

t2 ±t2 cos2 μi(t)

f8=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

¡t2 ±t2 sinμi(t)cosμi(t)

f9=
X
i=1,2

1
r2i ¾

2
i

nX
t=¡n

t2 ±t2 sin2μi(t):

These trigonometric expressions are expanded into
Taylor series with respect to ² about the value 0, and
the sum is evaluated. The inverse of this matrix yields
the variance estimation of the position and velocity
parameters. All these computations can be done
thanks to MAPLE an interactive computer algebra
system. Unfortunately this computation yields too large
expressions which can be evaluated only for a certain
μ. That means that the coefficients of the different
orders of the expansion of these trigonometric
expressions have an internal representation in the
computer that cannot be handled to compute the
inverse of the matrix. Approximations for μ = 0 or
μ = ¼=4 can be obtained, but a general expression
involving μ as is cannot be computed due to the
numerical burden.
Since the source range is much greater than the

total length of the arrays, the standard deviation error
on the bearing estimates are stated equal for all the
platforms. With this simplification the inverse of the
FIM can be computed, and the Cramer-Rao lower
bound (CRLB) of each element of the state vector can
be found.
For μ = 0 the terms f1 to f9 can be expanded up

to order 6 and the inverse of the FIM is computed.
The following expressions are obtained after having
kept the higher order term of the numerator and the
denominator of the diagonal terms of the inverse of the

FIM:

var(r̂x) =
(r2 +d2)2

2(2n+1)r2
¾2 (43)

var(r̂y) =
(r2 + d2)2

2(2n+1)d2
¾2 (44)

var(v̂x) =
3(r2 +d2)2

2n(n+1)(2n+1)r2 ±t2
¾2 (45)

var(v̂y) =
3(r2 + d2)2

2n(n+1)(2n+1)d2 ±t2
¾2: (46)

Since none of these equations depends on the
speed of the source, when the source increase its
velocity, this approximation becomes less and less
accurate. If one try to compute the Taylor series of
the terms f1 to f9 to a higher order, the analytical
calculation the inverse of the FIM becomes intractable.
For μ = ¼=4 at the mid-point of the observation

interval the following expressions were obtained:

var(r̂x) =
r4 + d4 +4r2d2

(2n+1)r(r+
p
r2¡2d2)¾

2 (47)

var(r̂y) =
r(r4¡3d4)

(2n+1)d2(r+
p
r2¡ 2d2)¾

2 (48)

var(v̂x) =
r4 + d4 +4r2d2

n(n+1)(2n+1)d2(r+
p
r2¡ 2d2)±t2 ¾

2

(49)

var(v̂y) =
r(r4¡ 3d4)

n(n+1)(2n+1)d2(r+
p
r2¡ 2d2)±t2 ¾

2:

(50)

In all those expressions the factor ¾2 is present.
This is the estimation variance of the central bearing
μ. This variance is computed with the Woodward
formula (5). In this formula the array length L can be
expressed as d (the platform interspace) multiplied by
a constant.
With the last remark in mind it can be seen that

the terms relative to the x component are proportional
to r2=d2 and those relative to the y component vary as
r4=d4. In the same way it can be seen that the position
variances behave like 1=n (2n+1 is the number of
bearing measurements), and the velocity variances vary
as 1=n3. This means that the longer the integration
time, the better the estimation will be, especially for
the velocity. The source movement has been integrated
in the estimator, so it is not limited by the source
velocity and long-time integration can be performed
without any loss of generality.

B. Case 2: r and μ Linearly Varying

In the previous section it has been seen that
considering r as a constant is a convenient but
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restrictive hypothesis. In this case we develop the
algorithm assuming that r(t) and μ(t) are linearly
varying.
The parameters μ(t), r(t), v, and ° have been

defined

r(t) =
q
(rx0 + tvx)2 + (ry0 + tvy)2 =

q
r2x (t)+ r2y (t)

μ(t) = arctan

Ã
rx(t)
ry(t)

!

v =
q
v2x + v2y

° = arctan

Ã
vx
vy

!
:

One has to compute the derivative of μ(t) and r(t)
with respect to t

@μ(t)
@t

=
vxry(t)¡ vyrx(t)

r2y (t)
cos2 μ(t)

=
vr(t)(sin(°)cos(μ(t))¡ cos(°)sin(μ(t)))

r2(t)cos2(μ(t))

=
v

r(t)
sin(°¡ μ(t)): (51)

In the same way:

@r(t)
@t

=
vxrx(t)+ vyry(t)

r(t)

= vcos(°¡ μ(t)): (52)

Therefore, the first-order expansions of r(t) and
μ(t) obtained for t 2 [¡T;T] are the following:

μ(t)
1
= μ(0)+ t

v

r(0)
sin(°¡ μ(0)) (53)

r(t)
1
= r(0)+ tvcos(°¡ μ(0)): (54)

Thanks to these hypothesis the baseline is easily
expressed as

baseline= j2r(0)sin(((2n+1)±tv=r(0)sin(°¡ μ(0)))j:
(55)

With these expressions and the notations of the
preceding subsection, the FIM can be computed
for the two platform case and its inverse may be
calculated in order to have an analytic formulation
of the variances. But there is still the problem of
dimensionality of the calculation involved. Since the
computation for an arbitrary μ cannot be implemented,
it must be fixed at the beginning of the calculation. For

μ = 0 the following expressions hold

var(r̂x) =
r2 + d2

2(2n+1)(1¡ cos2(d=r))¾
2 (56)

var(r̂y) =
r2 + d2

2(2n+1)cos2(d=r)
¾2 (57)

var(v̂x) =
3(r2 + d2)

2n(n+1)(2n+1)(1¡ cos2(d=r))¾
2 (58)

var(v̂y) =
3(r2 + d2)

2n(n+1)(2n+1)cos2(d=r)
¾2: (59)

After a second-order expansion of the cosine
functions, the equations obtained with the first
case emerge. If the cosines are kept as is, this
approximation is better than the first one when the
velocity of the source increases and when the number
of bearing measurements increases too. It means that
when the baseline gets higher this second analytical
approximation of the variances fits better to the reality
than those obtained with the first case.

C. Case 3

In this third case we deal with the equations that
define the temporal evolution of rx(t) and ry(t) to
compute the FIM. This matrix that was expressed in
terms of sines and cosines, can be computed using the
elements of the state vector, using the already known
relations:

rx(t) = r(t) sin(μ(t))

rx1(t) = rx1(0)+ t ±tvx = r sin(μ) +d+ t ±tvx

rx2(t) = rx2(0)+ t ±tvx = r sin(μ)¡d+ t ±tvx
ry(t) = r(t)cos(μ(t)) = rcos(μ) + t ±tvy:

The total FIM is still the sum of the FIM relative
to the different arrays:

F = F1 +F2

with

F1 =
X
t

1
r1(t)4¾

2
1

·
−01(t) t ±t−01(t)

n±t−01(t) t2 ±t2−01(t)

¸
and

−01(t) =

"
r2x1(t) rx1(t)ry(t)

rx1(t)ry(t) r2y (t)

#
:

F2 has the same expression but using rx2(t) instead
of rx1(t). The FIM has the the form:

F =

26664
f1 f2 f4 f5

f2 f3 f5 f6

f4 f5 f7 f8

f5 f6 f8 f9
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with

f1=
X
i=1,2

1
¾2i

nX
t=¡n

r2xi(t)
r4i (t)

f2 =
X
i=1,2

1
¾2i

nX
t=¡n

rxi(t)ry(t)

r4i (t)

f3=
X
i=1,2

1
¾2i

nX
t=¡n

r2y (t)

r4i (t)

f4=
X
i=1,2

1
¾2i

nX
t=¡n

t ±tr2xi(t)
r4i (t)

f5=
X
i=1,2

1
¾2i

nX
t=¡n

t ±trxi(t)ry(t)

r4i (t)

f6=
X
i=1,2

1
¾2i

nX
t=¡n

t ±tr2y (t)

r4i (t)

f7=
X
i=1,2

1
¾2i

nX
t=¡n

t2 ±t2r2xi(t)
r4i (t)

f8=
X
i=1,2

1
¾2i

nX
t=¡n

t2 ±t2rxi(t)ry(t)

r4i (t)

f9=
X
i=1,2

1
¾2i

nX
t=¡n

t2 ±t2r2y (t)

r4i (t)
:

These expressions are expanded into Taylor series
with respect to r(0) about the infinity up to the order
6. The expansions of the ffig9i=1 are quite simple
because the numerator and the denominator are
polynomials of the variable r(0). As in the preceding
subsection ¾1 and ¾2 will be stated equal to simplify
the computation. The inversion of the FIM can be
done even if μ is kept as a parameter and the following
result is obtained

var(r̂x) =
r4

2(2n+1)d2
tan2(μ)¾2 (60)

var(r̂y) =
r4 cos2(μ)

2(2n+1)d2 cos2(μ)
¾2

μ 6=¼=2
=

r4

2(2n+1)d2
¾2 (61)

var(v̂x) =
45r4 sin2(μ)

2 ±t2n(n+1)(2n+1)[15d2 cos2(μ) + (2n¡ 1)(2n+3)±t2v2 sin2(μ¡ °)]¾
2 (62)

var(v̂y) =
45r4 cos2(μ)

2 ±t2n(n+1)(2n+1)[15d2 cos2(μ) + (2n¡ 1)(2n+3)±t2v2 sin2(μ¡ °)]¾
2: (63)

Unfortunately the computation cannot be done
more precisely. If the expressions f1 to f9 are
expanded to an order over 6, the calculation of the
inverse of the FIM induces long equations that cannot
be simplified. If these expressions are used for μ = 0
or μ = ¼=2, the results obtained are 0, 1, or the
wrong answer. These answers hold for these particular
bearings because in each equation the numerator or
the denominator (or both of them) are proportional
to the sine or the cosine of the bearing. For these
particular values of μ the following approximations are
obtained.
For μ = 0:

var(r̂x) =
[15d2 +3(3n2 +3n¡ 1)±t2v2 sin2(°)]r2

2(2n+1)[15d2 + (2n¡ 1)(2n+3)±t2v2 sin2(°)]¾
2

(64)

var(r̂y) =
r4

2(2n+1)d2
¾2 (65)

var(v̂x) =
[3d2 + n(n+1)±t2v2 sin2(°)]r2

n(n+1)(2n+1)±t2d2
¾2 (66)

var(v̂y) =
45r4

2 ±t2n(n+1)(2n+1)
[15d2 + (2n¡ 1)(2n+3)±t2v2 sin2(°)]

¾2:

(67)

For μ = ¼=2:

var(r̂x) =
3r6

n(n+1)(2n+1)±t2v2 cos2(°)d2
¾2 (68)

var(r̂y) =
3(3n2 +3n¡ 1)r2

2(2n¡ 1)(2n+1)(2n+3)¾
2 (69)

var(v̂x) =
[45d2¡ (2n¡ 1)(2n+3)±t2v2 cos2(°)]r4
2n(n+1)(2n¡ 1)(2n+1)

(2n+3)±t4v2d2 cos2(°)

¾2

(70)
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Fig. 3. Baseline definition for array and source.

var(v̂y) =
3r4

2n(n+1)(2n+1)±t2d2
¾2: (71)

When μ = ¼=2 it can be easily observed that when
the heading of the source (°) is ¼=2 (the source moves
in the array axis) the elements of the state vector
relative to y are not observable. This is the result that
has been demonstrated in Section IV (Fig. 3).
Some comparisons between the real value of

the CRLB and its approximation given by (60)—(63)
have been conducted. It should be noted that when
the particular expressions for μ = 0 or μ = ¼=2 fits
better to the real value than the general expression,
the latter is still quite efficient (no more than 40%
relative error for reasonable scenarios). Here are
two examples for μ = 0. The main parameters are
set as follows: r = 15 km, 2d = 2000 m, v = 20 ms¡1,
° = 0 rad, 2n+1 = 101, ±t= 1 s. The curves on Fig. 4
(respectively, Fig. 5) represent the relative error on
the estimation variances of the different elements of
the state vector when the heading varies from ¡¼ to ¼

Fig. 4. Relative error on the variances between the real value and the result of the approximation for μ = 0 rad, r = 15 km,
2d = 2000 m, v = 20 ms¡1, 2n+1 = 101, ±t= 1 s.

(respectively, when the number of integration 2n+1
varies from 20 to 1000).

VII. ANALYTICAL EXPRESSIONS OF VARIANCES FOR
MTMA

Once an efficient method to compute the FIM and
its inverse has been found for the two-platform case,
it can be easily extended to the multiplatform case
(m¸ 2, m number of platforms). In the generic figure
(Fig. 6) there are 2m+1 arrays separated one from
each other by the distance d. The central array is the
origin of the space, that is the array from where r and
μ are computed. ° is still the heading of the source and
v its velocity.
The computation of an analytical formula of the

estimation variances for MTMA is of great interest,
especially when the arrays are the result of the division
of one large array. In that case it may be interesting
to know how the number of subarrays influence the
variances of the estimation of the elements of the state
vector.
If the last method explained is used in order to

calculate the FIM, the terms f1 to f9 have the same
expression except that the sum over the platforms is
changed: X

i=1,2

¡!
mX

i=¡m
:

In addition, the expression of rxi(t) is modified:

rxi(t) = rx0 + id+ t ±tvx = r sin(μ)+ t ±tvx:

The expressions f1 to f9 are expanded into Taylor
series with respect to r(0) about the infinity. ¾1 and ¾2
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Fig. 5. Relative error on the variances between the real value and the result of the approximation for μ = 0 rad, r = 15 km, d = 2000 m,
v = 20 ms¡1, ° = 0 rad, ±t = 1 s.

are be stated equal to simplify the computation. The
inversion of the FIM can be done even if μ is kept as a
parameter and the following result are obtained

var(r̂x) =
3r4

(2n+1)m(2m+1)(m+1)d2
tan2(μ)¾2 (72)

var(r̂y) =
3r4

(2n+1)m(2m+1)(m+1)d2
¾2 (73)

var(v̂x) =
45r4 sin2(μ)

±t2n(n+1)(2n+1)(2m+1)[5m(m+1)d2 cos2(μ) + (2n¡ 1)(2n+3)±t2v2 sin2(μ¡ °)]¾
2 (74)

var(v̂y) =
45r4 cos2(μ)

±t2n(n+1)(2n+1)(2m+1)[5m(m+1)d2 cos2(μ) + (2n¡ 1)(2n+3)±t2v2 sin2(μ¡ °)]¾
2: (75)

Fig. 6. Typical simulation for MIMA.

Two very important terms appear in these formulas:
the array and the source baseline. These parameters
have the following formulation:

Abas = 2mdjcosμj= Ltotjcosμj (76)

Sbas = (2n+1)v ±tjsin(μ¡ °)j (77)

where Ltot is the total length of the arrays. These
factors does not appear exactly but via two
approximations of their square:

m(m+1)d2 cos2 μ ' 1
4A2bas (78)

(2n¡1)(2n+3)v2 ±t2 sin2(μ¡ °)' S2bas: (79)
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With this approximations the formulations of the
variances can be rewritten as

var(r̂x) =
12r4 sin2 μ

(2n+1)(2m+1)A2bas
¾2 (80)

var(r̂y) =
12r4 cos2 μ

(2n+1)(2m+1)A2bas
¾2 (81)

var(v̂x) =
180r4 sin2 μ

±t2n(n+1)(2n+1)(2m+1)[5A2bas + 4S2bas]
¾2

(82)

var(v̂y) =
180r4 cos2 μ

±t2n(n+1)(2n+1)(2m+1)[5A2bas + 4S2bas]
¾2:

(83)

These equations provide interesting insights [8].

1) All these equations are proportional to
¾2, which means that the quality of the bearing
measurements conditions the quality of the position
and velocity estimates.
2) The position estimates improve with observation

interval, but the velocity estimates improve with its
third power. This means that integration time is of
great importance especially for the estimation of the
source velocity.
3) The position estimates accuracy does not

depend, with this first-order approximation, on the
source baseline. In fact, if more terms are computed
on the numerator and the denominator this baseline
appears. This means that as long as the source baseline
is much less than its range, it does not modify the
position estimates variances.
4) In the case where one large array is divided

into multiple subarrays, bearing estimation accuracy
is essentially proportional to m3 and inversly
proportional to 4m2d2 cos2(μ), the square of the
effective baseline of the total array. The source
baseline (Sbas) is defined by (2n+1)±tvjsin(μ¡ °)j.
In this situation the position variances vary as
m2(r=Abas)4, and the velocity estimates error vary as
m2r4=(A2bas(A2bas +S2bas)).
5) In the case where identical arrays are added

one after the other, the bearing estimation variance
is not sensitive to m. Thus, in this situation the
position variances vary as m¡1(r=Abas)4, and the
velocity estimates error vary as m¡1r4=
(A2bas(A2bas +S2bas)).
As for the two-platform case, these formulas are

not precise enough or simply wrong for μ = 0 or ¼=2.
So for these bearings a separate computation has to
be done. A new approximation of Sbas appears in the
numerator of the expression of the variance of rx at
μ = 0 and of ry at μ = ¼=2:

(3n2 +3n¡ 1)±t2v2 sin2(μ¡ °)' 3
4S2bas: (84)

For μ = 0, the following expressions are
obtained (Abas and Sbas are used instead of their
approximations):

var(r̂x) =
[5A2bas +9S2bas]r2

(2n+1)(2m+1)[5A2bas +4S2bas]
¾2

(85)

var(r̂y) =
12r4

(2n+1)(2m+1)A2bas
¾2 (86)

var(v̂x) =
3[A2bas +S2bas]r2

n(n+1)(2n+1)(2m+1)A2bas
¾2 (87)

var(v̂y) =
180r4

±t2n(n+1)(2n+1)(2m+1)
[5A2bas +4S2bas]

¾2:

(88)

It can be pointed out that at μ = 0 the array
baseline is the total length of the arrays. For μ = ¼=2
the following formulations are obtained

var(r̂x) =
144r6

(2n+1)(2m+1)L2totS2bas
¾2 (89)

var(r̂y) =
9S2basr2

(2n+1)(2m+1)S2bas
¾2

° 6=¼=2
=

9r2

(2n+1)(2m+1)
¾2 (90)

var(v̂x) =
9[5L2tot ¡ 4S2bas]r4

±t2n(n+1)(2n+1)(2m+1)L2totS2bas
¾2

(91)

var(v̂y) =
9S2basr4¾2

±t2n(n+1)(2n+1)(2m+1)L2totS2bas
° 6=¼=2
=

9r4¾2

±t2n(n+1)(2n+1)(2m+1)L2tot
:

(92)

At this point Weinstein’s results can be compared
with ours. As they are expressed in polar coordinate,
for μ = 0, rx and vx have to be compared with rμ and
vμ, in the same way ry and vy have to be compared
with r and vr. Weinstein’s has the following notation
for its results.

M Number of sensors (2m+1 in our
results)

MS(!)=N(!) Postbeamforming signal-to-noise
ratio (SNR)

L Length of total array
c Sound celerity
T Obsevation time.
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With these notations, Weinstein’s analytical
formulations of the variances are the following:

var(μ̂) =
12c2

T

¼

M +1
M ¡ 1

Z 1

0

!2[MS(!)=N(!)]2

1+MS(!)=N(!)
d!

μ
1

Lsin(μ)

¶2
(93)

var(r̂) =
720c2

T

¼

(M +1)(M2¡ 4)
(M ¡ 1)3

Z 1

0

!2[MS(!)=N(!)]2

1+MS(!)=N(!)
d!

μ
r

Lsin(μ)

¶4
(94)

var(v̂μ)j (μ,r)
known

=
144c2

T3

¼

M +1
M ¡ 1

Z 1

0

!2[MS(!)=N(!)]2

1+MS(!)=N(!)
d!

μ
r

Lsin(μ)

¶2
(95)

var(v̂r)j (μ,r)
known

=
8640c2

T3

¼

(M +1)(M2¡4)
(M ¡ 1)3

Z 1

0

!2[MS(!)=N(!)]2

1+MS(!)=N(!)
d!

μ
r

Lsin(μ)

¶4
: (96)

The integral term represents the wideband
processing, and it must be compared with our
narrowband analysis term (1+p½)=p2½2 that appears
in the expression of the ¾2. In these formulas the
source baseline does not appear because this is a
short-time TMA. In our results, if identical arrays
are concatenated one after the other, the term ¾2

is not sensitive to m. This leads to conclude that for
μ = 0 the elements of the states vector one wanted
to compare vary exactly as expected. Only the
coefficients are different due to the different
approaches

var(r̂x) and var(r̂μ) vary as
1
n

1
m

μ
r

Abas

¶2

var(r̂y) and var(r̂) vary as
1
n

1
m

μ
r

Abas

¶4

var(v̂x) and var(v̂μ) vary as
1
n3
1
m

μ
r

Abas

¶2

var(v̂y) and var(v̂r) vary as
1
n3
1
m

μ
r

Abas

¶4
:

This means that it is equivalent to consider only
the bearings measurements than utilizing the time
delay (bearing) and the time delay rate (the so-called
Doppler compression), to perform multiple platform
TMA with short integration time (one bearing
estimation).

VIII. DISCUSSION

Multiple platform TMA has been considered.
The observability of the system has been carefully
studied and general conclusions about single and
multiple platform TMA have been obtained. Analytical
approximations of source position and velocity
estimation error variances have been derived for long
integration time, giving thus the main parameters
on which they depend. These results corroborate
and extend those of [8] for long integration times,
and agree with those of E. Weinstein [11] for short
integration times (and μ = 0).

A. Fisher Information Matrix

Being able to compute a lower bound on the
variance of any unbiased estimator is extremely useful.
This bound is known as the CRLB. As we wish to
estimate a vector parameter (X= fx1, : : : ,xng), its
CRLB will allow us to place a bound on the variance
of each element of the vector. The CRLB of the ith
element of the vector parameter is found as the [i, i]
element of the inverse of a matrix:

var(x̂i)¸ [F¡1(X)]i,i
where F(X) is the FIM. The latter is defined by

[F(X)]i,j =¡E
(
@2 lnp(μX)
@xi@xj

)
1· i,j · n:
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In evaluating F(X) we use the true value of X.
From (7) one can write out

F =
μ
@μ(X)
@X

¶¤
§¡1

μ
@μ(X)
@X

¶
where μ(X) is the measurement vector generated by
the state vector X, and § is the diagonal matrix of the
inverse of the variances of the measured bearings. The
partial derivative of the bearing vector with respect to
the state vector is

@μ(X)
@X

=

0BBBBBB@

@μ1
@rx

@μ1
@ry

@μ1
@vx

@μ1
@vy

...
...

...
...

@μn
@rx

@μn
@ry

@μn
@vx

@μn
@vy

1CCCCCCA :

So the [i,j] element of the FIM is computed via
the following sum:

(F)i,j =
nX
t=1

1
¾2μt

@2μt(X)
@Xi@Xj

:

In the multiple platform case the vector £
replaces μ. The former is built by replacing the scalar
observation fμtg by a vectorial one:

£t = fμ1,t, : : : ,μm,tg:
The FIM is still defined by

F =
μ
@£(X)
@X

¶¤
§¡1

μ
@£(X)
@X

¶
:

The expression of the [i,j] element of the FIM is
now the following:

(F)i,j =
nX
t=1

mX
p=1

1
¾2μp,t

@2μp,t(X)
@Xi@Xj

= n
mX
p=1

nX
t=1

1
¾2μp,t

@2μp,t(X)
@Xi@Xj

=
mX
p=1

(Fp)i,j

where Fp is the FIM of the pth platform. This equation
shows strikingly that the total FIM is the sum of the
FIM of all the platforms.
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