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The problem of target motion analysis (TMA) has been the

subject of an important literature. However, present methods

use data estimated by a short time analysis (azimuths, Dopplers,

etc.). For far sources, the nonstationarities of the array processing

outputs, induced by the sources motion may be simply modeled.

This model leads to consider directly a spatio-temporal TMA.

Then new (spatio-temporal) data can be estimated. These

estimates correspond to a long time analysis. Further, note that

they are estimated independently of the (classical) bearings.

In this general framework, the concept of source trajectory

replaces the classical instantaneous bearings. Corresponding

TMA algorithms are then studied. Then the study of statistical

performance is carefully studied.
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I. INTRODUCTION

Conceptually, the basic problem in target motion
analysis (TMA for the sequel) is to estimate the
trajectory of an object (i.e., position and velocity) from
noise-corrupted sensor data [1]. This work is mainly
devoted to passive sonar applications and, therefore,
no a priori knowledge about sources location is
available. In the whole sonar processing, the TMA step
corresponds to a high-level processing. It uses basically
the estimated bearings, themselves obtained from array
processing, tracking, data association, etc.
The performance of any TMA algorithm is

conditioned by the statistical quality (i.e., bias and
variance) of the estimated bearings. The variance of
the estimated bearings are themselves conditioned by
the integration time in the basic array processing. This
is also true for source tracking and data association
[2]. For a fixed source, the statistical quality of the
estimated bearings can be improved by increasing
the integration time [3]. However, this is not at all
true for a moving source [4], since, in this case, the
integration time is limited by the nonstationary nature
of the problem. More precisely [4, 5] it has been
shown that for a given target-observer encounter an
optimal integration time exists and may be analytically
calculated. However, the practical interest of such
calculation is limited by the basic hypothesis: the
source trajectory is assumed to be known.
Classical array processings correspond to a short

time analysis and, thus, its performance is basically
limited by the nonstationary nature of the problem.
The natural way to overcome this problem consists
in considering a true spatio-temporal analysis instead
of classical array processing. More precisely, a model
of the nonstationary spatio-temporal data may be
easily derived. A moving source is then parameterized
by a (simplified) spatio-temporal model. This model
is defined by two (or more) parameters, its validity
(in time) is also limited but is greatly enhanced
with respect to (WRT) the classical one. Thus, it
corresponds to a long time analysis. The estimation
of these spatio-temporal source models has been
previously considered and simple and efficient methods
have been derived [6, 7] for that aim. The scope of
this work is restricted to TMA applications. For that
purpose, new (spatio-temporal) data will be included
in the TMA algorithms. This amounts to replace the
notion of (instantaneous) bearing by that of source
trajectory in the TMA data.
Let us present now the general organization of this

work. In Section II, a simplified model of the source
motion (seen by the array) is considered, its relations
with classical parameters of TMA (source state vector)
are derived. Thus a new parameter is introduced,
named _k it represents the spatial frequency rate. It
is stressed that it can be estimated independently of
the corresponding spatial frequency. The statistical
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Fig. 1. Source-observer encounter.

properties of the _k estimates are considered in Section
III.
Considering that the measurements include the

spatial frequency rate estimates, Section IV deals
with the estimation algorithms of source trajectory
parameters, while the statistical properties of the
extended TMA are considered in Section V. The
calculation of the TMA lower bounds are then
restricted to a special case study: nonmaneuvering
observer. Beyond practical interest, simple
formulations of the TMA lower bounds can be
obtained for this special case. The calculation results
are detailed in Section VI.
Simulation results are presented in Section VII,

the improvements in TMA obtained by extending
the measurements to spatial-frequency rate estimates

(_̂k) are carefully considered. Finally, Section VIII
deals with multiple source TMA. For that purpose, an
original method is presented.

II. A SIMPLIFIED MODEL OF SOURCE MOTION
SEEN BY THE ARRAY

The notations are those of [1]. Consider the
source-observer encounter depicted in Fig. 1. The
source, located at the coordinates (rxs,rys) moves with
constant velocities (vxs,vys) and is thus defined to have
the state vector:

Xs
¢
=[rxs,rys,vxs,vys]

T (1)

with T defining matrix transposition.
The observer state is similarly defined as

X0
¢
=[rx0,ry0,vx0,vy0]

T (2)

in terms of the relative state vector X, defined by

X = Xs¡X0
¢
=[rx,ry,vx,vy]

T:

The discrete time equation takes the following form:

X(tk) =©(tk, tk¡1)X(tk¡1)+U(tk)

where

©(tk, tk¡1) =
μ
Id (tk ¡ tk¡1)Id
O Id

¶
,

Id
¢
=
μ
1 0

0 1

¶ (3)

and tk is the time at the kth sample, and the vector
U(tk) = (0,0,ux(tk),uy(tk))

T accounts for the effects of
observer accelerations.
Classically, the available measurements are the

estimated angles μt (bearings) from the observer’s
platform to the source or, equivalently, the estimated
values of the spatial frequencies kt(kt = sinμt=¸,¸;
wavelength), so that:

k̂t = kt+ ºt (4)

where ºt is a zero-mean independent Gaussian noise
with variance ¾2º , and kt is related to the state vector by
the following equation:

kt = (sinμt)=¸

μt = tan
¡1
Ã
rx(t)
ry(t)

!
:

(5)

For a spatially isolated source, the variance ¾2º
is given by the following formula, classical in the
array processing literature and known as Woodward’s
formula [3, 8]:

¾2º =
3(1+p½)(2N ¡ 1)

½2p2(p2¡ 1)¼2d2N(N +1) (6)

with ¯̄̄̄
¯̄̄̄
¯
½ : signal to noise ratio

p : sensor number

N : number of snapshots

d : intersensor distance

(source in the array broadside).
We stress that the above formula is valid only for

a linear array regularly sampled (in space). This is the
array configuration for the sequel. This choice is due
to the simplicity of spatio-temporal analysis for this
array geometry as well as to practical considerations.
The various factors defining ¾2º (eq. (6)) need some

comments, especially the factor N which conditions
the measurements statistics and thus the TMA
performance. It is limited by the nonstationary nature
of the TMA problem. An optimal value of N (Nopt)
can be determined [6], conditioned by the sensor
number p and the source trajectory. Thus an increase
in p reduces Nopt. Actually, the variance of k̂ cannot
be reduced below a certain value. In the spirit of
spatio-temporal analysis, a new parameter (named _k) is
presented.
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Fig. 2. Relative source motion.

Consider, now, the relative source motion depicted
in Fig. 2, the source heading ° is defined WRT the
north. With the notations of Fig. 2, the following
equations result from elementary trigonometry

rj sinμj = rj¡1 sin(μj¡1)+ (sin°)v¢T

(equality of the projections on the north axis),

r2j = r
2
j¡1 + (v¢T)

2 +2rj¡1 cos(μj¡1¡ °)v¢T (7)

(equality of the norms), with

cos° =
vy
v

and sin° =
vx
v

¢T : sampling time:

The sampling time is the time corresponding to a
snapshot. The relative velocity vector is assumed to be
constant, this hypothesis is justified on a leg [6]. On
a leg, the previous relations are valid for any value of
the time index (n), yielding

rn sinμn = r0 sin(μn¡1)+ nv¢T sin°

r2n = r
2
0 + (nv¢T)

2 +2nr0v¢cos(μ0¡ °):
(8)

Denoting kn the instantaneous spatial frequency
(i.e., kn = sinμn=¸: wavelength), the following equality
can thus be deduced:

kn =
r0 sinμ0 + nv¢T sin°

¸[r20 + (nv¢T)
2 +2nr0v¢Tcos(°¡ μ0)]1=2

:

(9)

Considering the increment x= nv¢T=r0, then the
following first-order expansion of kn is directly deduced
from (9):

kn =
sinμ0 + xsin°

¸(1+2xcos(μ0¡ °)+ x2)1=2
1
= k0 + n_k

with

_k = [sin°¡ sinμ0cos(μ0¡ °)]
v¢T

r0

= cosμ0 sin(°¡ μ0)
v¢T

¸r0
: (10)

The parameter _k represents the (approximated)
first-order derivative of the spatial frequency.

Obviously, the validity of this approximation is
conditioned by the value of the increment x, itself
depending upon the values of n, v, and r0. Its validity
domain increases with r0. The parameter _k is a
nonlinear function of the state vector X0 (eq. (3)). This
dependence is now explained. More precisely, one has
from (7), (10):

_k =
·
vx
v
¡
μ
vy
v

ry
r0
+
vx
v

rx
r0

¶
rx
r0

¸
v¢T

¸r0

=
ry

¸r30
¢T[ryvx¡ rxvy] (11)

where the time index t is omitted.
Since this formula is essential for the sequel, let

us detail it briefly. Obviously it may obtained directly
from (10) by using the following substitutions:

sin° =
vx
v
, cos° =

vy
v

sinμ0 =
rx
r
, cosμ0 =

ry
r
:

A perhaps more direct approach is

μ = tan¡1
Ã
rx
ry

!
and therefore

_μ =
vxry ¡ rxvy

r2y
cos2 μ =

vxry ¡ rxvy
r2

so that finally,

_k =
cosμ
¸
_μ¢T =

ry
¸r3

(vxry ¡ rxvy)¢T:

Further, note the following expression of _k:

_k =
ry

¸r30
det
μ
vx rx

vy ry

¶
(det meaning determinant) which provides a geometric
interpretation of the parameter _k.
The above expression (11) is instrumental for the

inclusion of the parameter _k in the TMA algorithms.
Using the notations of [1], denote tm the reference
time for the state vector, then one has directly:¯̄̄̄

rx(tj) = rx(tm)+ (tj ¡ tm)vx(tm)
ry(tj) = ry(tm) + (tj ¡ tm)vy(tm)

with ¯̄̄̄
vx(tm) = vxs(tm)¡ vx0(tm)
vy(tm) = vys(tm)¡ vy0(tm)

(12)

where vxs,vys are assumed to be constant and vx0 and
vy0 are known. Furthermore, the following relations
hold (the source velocity vector is constant):

vx(tj) = vx(tm)+ (vx0(tm)¡ vx0(tj))
= vx(tm)+®x(tm)

vy(tj) = vy(tm)+®y(tm):

(13)
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The terms ®x and ®y in (13) depend only upon the
observer maneuver. The state vector is now the vector
Xm defined by

XTm = [rx(tm),ry(tm),vx(tm),vy(tm)]
T: (14)

Using (11)—(13) the parameter _kj (denoting the
value of _k for t= tj) can be expressed in terms of the
state components:

_kj =
ry(tj)

¸r3j
¢T[ry(tj)vx(tj)¡ rx(tj)vy(tj)]

with

rj
¢
=(r2x (tj)+ r

2
y (tj))

1=2: (15)

The calculation of the partial derivatives of _kj WRT
the state components is direct, yielding

@_kj
@rx(tm)

=¡
cosμj ¢T

¸r2j
[vy(tj)(1¡ 3sin2 μj) + vx(tj)(3sinμj cosμj )]

@_kj
@ry(tm)

=¡ ¢t
¸r2
j

[vx(tj)cosμj(1¡ 3sin2 μj )

+ vy(tj) sinμj(1¡ 3cos2 μj)]

@_kj
@vx(tm)

=
cos2 μj ¢T

¸rj
¡ (tj ¡ tm)

cosμj ¢T

¸r2
j

£ [vy(tj)(1¡ 3sin2 μj ) + vx(3sinμj cosμj)]

@_kj
@vy(tm)

=¡
sinμj cosμj ¢T

¸rj
¡ (tj ¡ tm)

¢T

¸r2
j

£ [vx(tj)cosμj(1¡ 3sin2 μj) + vy(tj) sinμj(1¡ 3cos2 μj)]

with

cosμj
¢
=
ry(tj)

rj
and sinμj

¢
=
rx(tj)

rj
: (16)

The above formulas are instrumental for the
inclusion of the parameter _k in the TMA algorithm.
Let us now focus our attention on the estimation of
this parameter.

III. ON ESTIMATION OF PARAMETER _k

The lower bounds for the variance of estimation of
the parameters k0 and _k are investigated. Considering
the unique source case and the observations made
up of the array snapshots Vt, the calculations take a
classical form [7], i.e.,

L ¢
=log[p(V1,V2, : : : ,VN)=(k0, _k)]

=¡Np log¼¡
NX
t=1

logdet¡t¡
NX
t=1

tr (¡¡1t VtV
¤
t )

(17)

with ¡t
¢
=cov(Vt), the symbols tr and det denote,

respectively, the trace and the determinant, p is the
sensor number.
The functional L is the likelihood functional

associated with the observation vectors Vt which are
assumed to be circular gaussian [9] and uncorrelated
(t 6= t0). The density of the circular Gaussian vector Vt
is given by

Vt : NC(0,¡t)

with
¡t = ½DktD

¤
kt
+ Id (18)

where Id is the identity matrix, ½ is the signal/noise
ratio, and D is the steering vector [3].
The Fisher information matrix (FIM) relative to the

estimation of the two parameters k0 and _k is defined
by

F = (Fij),

F11 =¡E
μ
@2L
@k20

¶
,

F12 =¡E
μ
@2L
@k0@

_k

¶
,

F22 =¡E
μ
@2L
@_k2

¶
:

The elements of the FIM are calculated by means
of the following classical formulas (Bang’s formula
[3]):

F11 =
NX
t=1

tr
·
¡¡1t

@¡t
@k0

¡¡1t
@¡t
@k0

¸
,

F12 =
NX
t=1

tr
·
¡¡1t

@¡t
@k0

¡¡1t
@¡t
@_k

¸
:

At this point, it is worth noting the following relations:

tr
·
¡¡1t

@¡t
@_k
¡¡1t

@¡t
@_k

¸
= t tr

·
¡¡1t

@¡t
@_k
¡¡1t

@¡t
@k0

¸
= t2 tr

·
¡¡1t

@¡t
@k0

¡¡1t
@¡t
@k0

¸
: (19)

Consequently, the FIM calculation is reduced
to the calculation of F11 which is straightforwardly
obtained, i.e.,

F11 =
N½24¼2d2p2(p2¡ 1)

6(1+p½)
=N£11

and, then

F22 =
N(N +1)(2N +1)

6
£11,

F12 =
N(N +1)

2
£11:

(20)
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The lower bounds for var(k̂0) and var(_̂k) are
directly deduced from (19), yielding

var(k̂0) ¸
3(1+p½)(2N ¡ 1)

½2p2(p2¡ 1)¼2d2N(N +1)

var(_̂k) ¸ 18(1+p½)
½2p2(p2¡ 1)¼2d2(N3¡N) :

(21)

The above formula is interesting since it proves
that a lower bound of var(k̂0) is proportional to N

¡1

while var(_̂k) depends on N with a factor of N¡3.
However, this result must be seriously mitigated since
the value of _k is usually very small (e.g., 10¡5). This
result agrees with the naive calculation of var(_̂k).
More precisely, consider a moving source whose
spatial frequencies are modeled by a linear model (i.e.,
kt = k0 + t_k), using the sequence of snapshot vectors
fVtgN1 a sequence fk̂tg of instantaneous (1 snapshot)
spatial frequencies is estimated.
Then from (20), one obtains:

var(k̂t) =
3(1+p½)

2(¼d½)2p2(p2¡ 1)
¢
=¾2k : (22)

Consider now the vector X of estimated spatial
frequencies, i.e.,

X T = (k̂1, : : : , k̂N)

then, assuming its Gaussianity:

X is N (M,¾2k Id)
with

MT = (k0,k0 + _k, : : : ,k0 + (N ¡ 1)_k): (23)

Then, using (22) and (23), the variance of _̂k is
obtained straightforwardly and coincides with (21).
It is stressed that the natures of the two calculations
of the bounds are essentially different since the first
one deals directly with the spatio-temporal data while
the second corresponds to a postprocessing. Thus, in
the second case, the estimation of _k does not contain
any extraneous information WRT the sequence of fktg.
Fortunately, this is not true for the first approach.
It is possible to consider simultaneously the

estimation of the two parameters k0 and _k, the more
natural approach seems then the 2D (in k0 and
_k) focused beamforming method [3, 7]. However,
this approach suffers from serious drawbacks like
interference between sources, spurious peaks, etc. The
modeling of the spatio-temporal data by a multiscale
state space model [7] seems to be a more promising
way. More precisely, let R̂t the estimated CSM (cross
spectral matrix) be defined as follows:

R̂t = VtV
¤
t

then R̂t is projected on the Toeplitz subspace [10] by
means of the classical algorithm (the projected matrix
is denoted R̂t,T), yielding:

1¡st row R̂t,T
¢
=(r̂0(t), r̂1(t), : : : , r̂p¡1(t))

with

r̂i(t) =
1
p¡ i tr(R̂tZ

i) 0· i· p¡ 1

Zi being the ith power of the shift matrix Z, i.e.,

Z(m,n) =
½
1 if m¡ n= 1
0 otherwise:

(24)

This projection is quite classical in the array
processing area, it amounts to a structured estimation
of the covariance matrix (Toeplitz structure) [7, 11]
and, generally, improves the angular resolution [12,
13]. Then, the spatio-temporal data are constituted of
the two-dimensional (2D) spatio-temporal data y(t,m)
defined below:

y(t,m) = r̂m(t): (25)

Then, using (10) and (18) the 2D array of data y(t,m)
can be represented by the following 2D state space
model [7]:8>><>>:

X(t+1,m) = Fm1 X(t,m) 1·m· p¡ 1
X(t,m+1) = F0F

t
1X(t,m)

y(t,m) = h¤X(t,m) +w(t,m) t0 · t· te
where Fm1 and Ft1 are, respectively, the mth and tth
power of F1 with¯̄̄̄

¯̄̄̄
¯̄̄
F1 = diag(exp(2i¼d_k1), : : : ,exp(2i¼d_ks))

F0 = diag(exp(2i¼dk1,0), : : : ,exp(2i¼dks,0))

h¤ = (1,1, : : : ,1)

s : source number:

(26)

Actually this 2D modeling simply results from the
expression of the exact spatio-temporal covariances
rm(t) (eq. (25)) i.e.,

rm(t) =
sX
j=1

¾2j exp[2i¼dm(kj,0 + t_kj)]:

Using (24) and elementary linear algebra, the noise
statistic is easily obtained:

E(w(t,m)) = 0,

E(w(t,m1)w
¤(t,m2)) =

tr(R#m1t R"m2t )
(p¡m1)(p¡m2)

with ¯̄̄̄
¯̄ tr denoting the trace of a matrix
R#m1t

¢
=Zm1Rt,R

"m2
t

¢
=(Zm2 )TRt:

Despite its simplicity, this model is quite
enlightening since it demonstrates the interest of the
notion of spatio-temporal diversity. In particular, it
is evident from (26) that the transition matrix F1 will
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play a fundamental role. Furthermore, the transition
matrices F0 and F1 may be separately estimated. It is
then possible to replace the notion of instantaneous
bearings by the source trajectory one, allowing thus
to consider long integration time. For that purpose,
original approaches have been developed [7, 28]. As
they appear fundamental for multiple source TMA,
they are presented in Section VIII. But let us now
focus our attention on the estimation of the source
state vector.

IV. ESTIMATION ALGORITHMS OF SOURCE STATE
VECTOR

The methods presented above, provide separate
estimations of the parameters k and _k. The

estimated values _̂k may thus be added to the classical
measurements k̂t.
Given the history of measured spatial frequencies

k̂j (i.e., K̂
¢
=(k̂1, : : : , k̂N)

T) and the estimated values

_̂kj (i.e., _̂K
¢
=(_̂k, : : : , _̂kL), e.g., L= number of legs), the

likelihood functional conditional on the state vector X
stands as follows:

p(K j X) = const. exp[¡ 1
2(K̂¡K)TW¡1(K̂ ¡K)]

with

K̂ ¢
=

Ã
K̂
_̂K

!
, K̂(X) ¢=

μ
K(X)
_K(X)

¶
the covariance matrix W is deduced from (19)—(21)
and

Xm = (rx(tm),ry(tm),vx(tm),vy(tm))
T (see (14))

(27)

Using (1)—(5), the matrix of partial derivatives of
the extended measurement vector takes the following
form [1]:

@K(X)
@X

=¢T

0BBBBBBB@

cos2 μ1
¸r1

,
¡sinμ1 cosμ1

¸r1
, (t1¡ tm)

cos2 μ1
¸r1

,¡(t1¡ tm)
sinμ1 cosμ1

¸r1
...

...
...

cos2 μN
¸rN

,
¡sinμN cosμN

¸rN
, (tN ¡ tm)

cos2μN
¸rN

,¡(tN ¡ tm)
sinμN cosμN

¸rN

1CCCCCCCA
(28)

while the elements of the matrix @ _K=@X are given by
(16).
A Gauss—Newton algorithm [1, 14] for the

maximization of the likelihood functional is easily

deduced from (28) and takes the following form:

X`+1 = X`¡ ½`
"μ
@K
@X

¶T
W¡1

μ
@K
@X

¶#¡1

£
μ
@K
@X

¶T
W¡1(K̂ ¡K) (29)

where K and @K=@X are evaluated at X` and the
step size ½` is selected at each iteration to ensure
convergence.

Note that the observations k̂ and _̂k being assumed
independent (they are not estimated on the same data),
the noise matrix W is (approximately) diagonal. This
assumption is considered for the rest and especially for
all the simulation results. Even if the introduction of a
nondiagonal matrix W does not induce any theoretical
difficult, it is not a more realistic hypothesis.

V. STATISTICAL PROPERTIES OF EXTENDED TMA

Similar to [1], a uniform sampling rate in time
for k(ti) and _k(tj) (note that they are generally quite
different) is assumed that allows the substitution of i
for ti or tj . The FIM takes the following form:

FIM'
μ
@K
@X

¶T
W¡1

μ
@K
@X

¶
where the matrix W can be roughly approximated (for
a far source) by a diagonal matrix, i.e.,

W '
μ
¾2k IdN O

O _¾2k IdL

¶
: (30)

The details of this matrix are revealed by
partitioning it into 2£2 submatrices to obtain the
form [1] (¢T = 1):

FIM = FIM(K) +FIM( _K)

with

FIM(K)' 1
(¾kr¸)2

nX
i=1

μ
−i (i¡m)−i

(i¡m)−i (i¡m)2−i

¶
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and

−i = cos
2 μi

Ã
cos2 μi ¡ 1

2 sin2μi

¡ 1
2 sin2μi sin2 μi

!
: (31)

The first and second components of the vector
@_k=@X (eq. (16)) (i.e., @_k=@rx and @_k=@ry) are little
WRT the two last components, therefore

@_kj
@X

'
Ã
0,0,

@_k
@vx,m

,
@_k
@vy,m

!T
: (32)

A further step of approximation consists in
approximating @_k=@vx and @_k=@vy, i.e.,

@_k
@vx

' cos
2 μj
¸rj

,
@_k
@vy

'¡1
2

sin2μj
¸rj

so that

FIM(_kt)'
1

(¾_k¸r)2

LX
j=1

μ
O O

O −0j

¶
with

−0j = cos
2 μj

Ã
cos2 μj ¡ 1

2 sin(2μj)

¡ 1
2 sin(2μj) sin2 μj

!
(33)

where ri is approximated by the constant r.
This last expression reveals that, at a first glance, it

is mainly the estimation of the source velocity which
may be improved by using the extended vector of
measurements K. Actually, the effect of kt increases
with the values taken by the factor (i¡m) in FIM(K).
However, on another hand, this effect is mitigated
by the respective values of ¾2k and ¾

2
_k
(eq. (21)). The

inclusion of the vector _K in the measurement vector
can thus seriously improve the estimation of the source
velocity. This point is detailed later for a special case
study (see Section VI).

VI. A SPECIAL CASE STUDY

The utilization of a large linear towed array can
seriously restrict the ownship maneuvers. The ownship
motion is then rectilinear and with a constant velocity.
It is well known that the bearing-only TMA problem is
unobservable in this case [15, 16], but the observability
may be recovered by adding extraneous measurements
like Doppler shifts [17—19].
However, the temporal variations of the source

frequency are, generally, very weak for far sources,
which reduces the practical interest of these extraneous
measurements.
Using the bearings-only measurements, the TMA

problem is partially observable since the observability
gramian is rank deficient in the absence of ownship
maneuver [15]. This is true even if the spatial

frequency rate _̂k is added. A way for overcoming this

problem consists of a parametrization of the solution
space. More precisely, the (partial) state Xm,p is
defined as follows (eq. (14)):

Xm,p = [ry(tm),vx(tm),vy(tm)]
T: (34)

Note that this choice of the partial state Xm,p
is arbitrary; it may be any other three-dimensional
vector whose components are convenient function
of the whole state vector Xm (e.g., X

0
m,p =

[rx(tm),ry(tm),v(tm)]
T).

For a given distance r(tm) between the source and
the observer, the relative source-observer positions are
given (at any time t) by(

rx(t) = (r
2(tm)¡ r2y (tm))1=2+ (t¡ tm)vx(tm)

ry(t) = ry(tm) + (t¡ tm)vy(tm)
so that the elements of the matrix of the partial
derivatives of the extended measurement vector K
(eqs. (16), (28)) stand as follows.

1)

@ki
@ry(tm)

=¡¢Tcosμi
ri

·
cosμi
tan μm

+sinμi

¸
:

2)

@_ki
@ry(tm)

=
¢T

¸r2i

·
vx cosμi

μ
3sinμi cosμi
tan μm

+3sin2 μi¡ 1
¶

¡ vy
½
sinμi

μ
3sinμi cosμi
tan μm

+1¡ 3cos2 μi
¶
¡ cosμi
tan μm

¾¸
(35)

3) The other elements (i.e., @ki=@vx,@ki=@vy,
@_ki=@vx,@_ki=@vy) are identical to those of (16), (28).

The partial state Xm,p (34) is then estimated by
means of a Gauss-Newton algorithm similar to the
previous one (eq. (29)). The initialization step requires
a special procedure since the pseudolinear estimator
(PLE) [1] is no longer appropriate since it is obtained
by a linearization of the measurement equation. Here,
the measurement _k is a highly nonlinear function
(eq. (15)) of the state and therefore the PLE (or MIV)
estimator cannot be efficiently extended to this new
measurement.
A simpler initialization procedure replaces the PLE.

It is described below.

1) The distance r(tm) being given, approximate
μ̂(tm) by a linear regression of the estimated bearings,
then:

r̂x(tm) = r(tm)sin(μ̂(tm))

r̂y(tm) = r(tm)cos(μ̂(tm)):
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Fig. 3. TMA, partially observable case.

2)
V̂= (ATA)¡1ATBR̂xy(tm)

with

R̂xy(tm)
¢
=
¯̄̄̄
r̂x(tm)

r̂y(tm)
, V̂

¢
=
¯̄̄̄
v̂x

v̂y

A=

26664
...

...

(ti¡ tm)cos ˆ̄ i ¡(ti¡ tm)sin ˆ̄ i
...

...

37775

B =

26664
...

...

cos ˆ̄ i ¡sin ˆ̄ i
...

...

37775

(36)

where f ˆ̄ig obtained by linear regression.
The above least-square estimate V̂ comes from

an approximated expansion of the bearing μ(t)(μ(t) =
tan¡1(rx(t)=ry(t))).
This very rough approximation of the state

vector provides a convenient initialization of the
Gauss-Newton algorithms. The behavior of this
algorithm is illustrated by simulation results (Section
VII) but let us now focus our attention of the
statistical analysis of this partially observable TMA
problem.
For the sake of simplicity, the observer (ownship)

is fixed and situated at the origin. This is not restrictive
since in this partial TMA problem the observer velocity
is constant. The observer-source geometry is depicted
in Fig. 3 with the following geometric parameters [1]:

μ =
Nv¢T sin(°¡ μc)

r
=
baseline
range

®i = μc+
μ

2N
(2i¡N)

= μc+ μi, i= 0, : : : ,N

(ti¡ tm) = i
¢T

N
, i= 0, : : : ,N:

(37)

The bearings-only TMA is considered in a first
time. Then, the Fisher matrix (relative to Xm,p) takes
the following form (from Section V):

F =
1
¾2μr

2

0B@f1 f2 f3

f2 f4 f5

f3 f5 f6

1CA
with ¯̄̄̄

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

f1 =
NX
i=0

μ
cos®i
tan μm

+sin®i

¶2

f2 =
X
i

(ti¡ tm)
μ
cos2®i
tan μm

+sin®i cos®i

¶

f3 =
X
i

(ti¡ tm)
μ
cos®i sin®i
tan μm

+sin2®i

¶

f4 =
X
i

(ti¡ tm)2 cos2®i

f5 =¡
X
i

(ti¡ tm)2 cos®i sin®i

f6 =
X
i

(ti¡ tm)2 sin2®i:

(38)

An expansion (WRT μi) of the basic expressions
involved in the ffig constitutes the basis of the
statistical analysis. For instance, the second-order
expansion of these basic expressions stands as follows:

cos2®i = cos
2 μc¡ sin(2μc)μi+(sin2 μc¡ cos2 μc)μ2i

sin2®i = sin
2 μc+sin(2μc)μi+(cos

2 μc¡ sin2 μc)μ2i
sin®i cos®i = sinμc cosμc+(cos

2 μc¡ sin2 μc)μi
¡ sin(2μc)μ2i :

(39)
The analysis of the following scenario has been

considered in a first time. The ownship is fixed
and situated at the origin. The source trajectory is
rectilinear and symmetric WRT the y axis; the distance
r is assumed to be constant. Note that, with the
previous notations, this scenario corresponds to μc = 0.
A high (5) order expansion of the FIM elements
ffig have been considered. Since the calculations are
(rather) tedious, they have been achieved by means of
the software MAPLE (Waterloo MAPLE Software)
WRT the parameter μ (μ =Nv¢T sin°=r), yielding the
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following approximations¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

f1 =
4N
μ2
+
4
μ2
¡ 5
3
¡ 2
3N

¡N + 31μ
2N

180

+
7μ2

18N
¡ 2μ2

45N3
+
31μ2

60

f2 =¢T

μ
N2

μ
+
N

μ
¡ 7Nμ

12
¡ μ

3
¡ μ

N2

4

¶
f3 =¢T

μ
¡N
2
¡ 1
3
¡ N

2

6
¡ 2
45

μ2

N2
+ 2

μ2

9
+

μ2N

4
+13

μ2N2

180

¶
f4 = (¢T)

2

μ
N

6
+
N2

2
+
N3

3
+

μ2

30N
¡ μ2N

8
¡ μ2N2

8
¡ μ2N3

30

¶
f5 = (¢T)

2

μ
¡Nμ

6
¡ N

2μ

4
¡ N

3μ

12

¶
f6 = (¢T)

2

μ
¡ μ2

30N
+

μ2N

8
+

μ2N2

8
+

μ2N3

30

¶
with

μ =
Nv¢T

r
sin° tm = 0: (40)

The far source hypothesis (μ¿ 1) yields a major
simplification of the above formula, so that retaining
only the significant terms (¢T = 1), the following
approximations are obtained:

f1 ' 4
®2

N
, f2 'N®, f3 '¡

N2

6

f4 '
N3

3
, f5 '¡

N4

12®
, f6 '

N5

30®2

with
®
¢
=

r

v sin°
: (41)

The calculation of the diagonal terms of the inverse
of the approximated FIM (eq. (41)) provides explicit
expressions for the lower bounds of the variance of the
kinematic parameters (i.e., the Xm,p components), i.e.,¯̄̄̄

¯̄̄̄
¯
var(r̂y)' 9

4¾
2
μN

¡1(bas)2

var(v̂x)' 57¾2μN¡3r2

var(v̂y)' 180¾2μN¡3
³ r

bas

´2
r2

(42)

with bas
¢
=Nv sin° (= baseline).

It is interesting to compare the above results
with those of the reference paper [1] even if they
are obtained for a specific maneuver strategy of the
ownship motion (special symmetric geometry). More
precisely, and with the paper notations, the authors
have obtained:¯̄̄̄

¯̄var(v̂x)' 12¾
2
μN

¡3r2

var(v̂y)' 144¾2μN¡3
³ r

bas

´2
r2:

(43)

The two expressions (eqs. (42a), (b)) are thus
rather similar to the classical one (eq. (43)). Let us
consider now the above results.

1) var(r̂y) decreases with (bas)
2, this result can

be explained by the following facts: ry(0) is equal
to r (perfectly known) and, on another hand, as the
baseline increases ry(t) differs from r.
2) var(v̂y) depends on the ratio range/baseline

(r=bas in (42)). In the extreme case where sin° is zero
then the variance of v̂y becomes infinite.
3) var(v̂x) and var(v̂y) have common and classical

factors N¡3 and r2.

Similar calculations have been conducted for
another value of μc (μc = ¼=4, see Fig. 3), yielding

f1 ' 2N, f2 '¡
N2

2
¡ ´, f3 '

N2

2
+2´,

f4 '
N3

6
¡ "

12
, f5 '¡

N3

6
+

μ"

30
, f6 '

N3

3
+
"

12

with:

´ =
N2μ

6
and "= μN3: (44)

Once again, the calculation of the diagonal terms
of the inverse of the approximated FIM (eq. (44))
provides explicit approximations of the variances, more
precisely one has:

var(r̂y) ' 9
8¾

2
μr
2N¡1

var(v̂x) ' var(v̂y)' 90¾2μN¡3
³ r

bas

´2
r2

with
bas=Nv sin(°¡ μc) (baseline): (45)

A generalization of eq. 45 stands as follows:

var(r̂y)' 9
4N

¡1(r sinμ¾μ)
2

var(v̂x)' 180N¡3
³ r

bas

´2
(r sinμ¾μ)

2

var(v̂y)' 180N¡3
³ r

bas

´2
(rcosμ¾μ)

2

(450)

Let us consider now the above results.

1) var(v̂x) and var(v̂y) are approximately equal,
they depend on N and r by the classical factors (N¡3

and r2), both depend on the parameter (r=bas). Thus
in the extreme case where sin(°¡ μc) is zero (° = μc =
¼=4) then the variances of v̂x and v̂y become infinite.

The validity of the formulas (42) and (45) has been
studied by comparing them with the exact calculations
(eq. (31)) for convenient scenari (long range source).
The agreement is quite correct (relative error does not
exceed a few percents).
Our attention is now focused on the spatial-

frequency rate (_k) TMA performance. More precisely,
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the FIM matrix G relative to the parameter vector
Xm,p (34) is directly deduced from (16), (18) giving

G
¢
=
1
¾2_k

0B@g1 g2 g3

g2 g4 g5

g3 g5 g6

1CA= 1
¾2_k

LX
i=1

(r_k(X, ti))(r_k(X, ti))T

(46)

r_k(X, ti)
¢
=

Ã
@_k(X, ti)
@ry(tm)

,
@_k(X, ti)
@vx

,
@_k
@vy

(X, ti)

!T
L : number of available(_̂ki):

Once again, a high order expansion of the various
terms of the components fgig WRT the parameter μ
has been considered, yielding for the case μc = 0 (array
broadside)¯̄̄̄

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

g1 =
4Lv2

r2μ2
, g2 =¡

2Lvy
rμ

g3 =
NLvxvy
r2μ

, g4 = L

g5 =¡
1
2
NLvx
r
, g6 =

N2v2x
r2

μ
7L2¡ 4
12L

¶
μ =

Nv sin°
r

(μc = 0)

(47)

where L is number of (_̂ki), N is total sample number.
From (47), it follows that G is approximately a

rank two matrix, leading us to consider the FIM G0

restricted to the velocities estimation, i.e.,

G0 = (¸2¾2_k r
2)¡1

μ
g4 g5

g5 g6

¶
yielding finally:¯̄̄̄

¯̄̄̄
¯
var(v̂x)' ¸2¾2_k r2

·
7L2¡ 4
4L(L2¡ 1)

¸

var(v̂y)' ¸2¾2_k r2
³ r

bas

´2μ 3L
L2¡ 1

¶
:

(48)

Now, one has from (21):

¾2_k '
18

p3½¼2d2
£ 1
N31

with N1 being the number of samples associated with

the estimation of a given _̂ki, i= 1, : : : ,L, and

N1£L=N
so that

¾2_k '
18

p3½¼2d2
L3

N3

with N designing here the total number of samples.

Finally, the following approximations of var(v̂x) and
var(v̂y) are obtained

var(v̂x) ' 3¾2μr2N¡3
μ
L2(7L2¡ 4)
4(L2¡ 1)

¶

var(v̂y) ' 3¾2μr2
³ r

bas

´2
N¡3

μ
3L4

L2¡ 1
¶
:

(49)

The above formulas (eq. (49)) are rather similar
to the approximations of var(v̂x) and var(v̂y) obtained
for the bearings-only analysis (eq. (42)) except for the
constant terms and (obviously) the factor L.
First, note that according to (49) the factor L must

be chosen as little as possible. A direct application
of (49) leads thus to choose L equal to 2. However,
this choice must be mitigated by the adequacy of the
linear approximation of _kt (eq. (19)). So that, in order
to reduce the bias, a higher value of L is generally
necessary. This point is discussed in the analysis of the
simulation results.
Actually, the values of var(v̂x) and var(v̂y) obtained

by formulas (42) (bearings-only analysis) and (49)
(spatial-frequency rate analysis) present a great
similarity. Both depend similarly of the same geometric
(r,r=bas) and statistical (¾2μ ,N) factors. However, let
us emphasize that the interest of spatial-frequency rate
analysis relies on the availability of separated estimated
values of f_kigLi=1. As seen later, the formula (49)
confirms the interest of including the spatial-frequency
rate in the TMA.
As previously, similar calculations have been

conducted for μc = ¼=4, yielding the following
approximations:

var(v̂x) = var(v̂y)' ¸2¾2_k
³ r

bas

´2
r2
μ

3L
L2¡ 1

¶
:

(50)

As previously, the approximations of var(v̂x) and
var(v̂y) are identical and depend upon the same
geometric and statistic factors than for bearings-only
TMA.
For the partial TMA problem, the reduced state

is estimated conditionally to a given distance r(tm).
Assume now that the following equality holds:

r0(tm) = kr(tm) (k > 0)

then ¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

r0xs(tm) = krxs(tm) + (1+ k)rxo(tm)

r0ys(tm) = krys(tm) + (1¡ k)ryo(tm)

v0xs = kvxs+(1¡ k)vxo
v0ys = kvys+(1¡ k)vyo:

(51)

Consequently, a relative error on r(tm) of a factor
k induces a relative error of the same factor for
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TABLE I
Ownship Trajectory

Ownship Velocity Vector Velocity Vector
Position t = 0 Odd Legs Even Legs

vx0(0) = vy0(0) = 0 vx0 = 3 m/s,
vy0 = 2 m/s

vx0 =¡2 m/s,
vy0 = 3 m/s

TABLE II
Target Trajectory

rxs rys vxs vys

t = 0 15000 m 35000 m 2 m/s 5 m/s
t = tm 21656 m 51640 m 2 m/s 5 m/s

(var(rys))
1=2, (var(vxs))

1=2, (var(vys))
1=2. Thus it is

worthwhile (for practical utilization) to represent the
statistical results by an abacus.

VII. SIMULATION RESULTS

The previous results (especially Sections IV—VI)
are now compared with simulation results. The
comparisons are divided in two parts. The first one
deals with the performance study for the observable
case (nonuniform ownship motion, see Sections IV, V)
while the second is devoted to the partially observable
one (constant velocity vector of the ownship, see
Section VI).

A. TMA Performance (Observable Case)

The purpose of the simulations is to illustrate the
improvements of TMA induced by the inclusion of

spatial-frequency rate estimates (_̂k) in the TMA itself.
For that aim, two scenarios are considered. The data
are simulated by means of the variance formulas

Fig. 4. Source-observer geometry of scenario 1.

TABLE III
Simulation Results and Comparison With Theoretical Bounds

(Scenario 1)

rxs rys vxs vys

A. Bearings-Only TMA

Empirical mean
(300 trials)

21717 m 51786 m 2.1 m/s 5.03 m/s

Empirical SD 300
trials

1001 m 2321 m 0.5 m/s 1.2 m/s

Theoretical bounds
SD

1076 m 2491 m 0.53 m/s 1.26 m/s

B. Bearings+1_̂k/leg TMA

Empirical mean
(300 trials)

21655 m 51637 m 1.99 m/s 4.99 m/s

Empirical SD (300
trials)

110 m 255 m 0.058 m/s 0.134 m/s

Theoretical bounds
SD

106 m 239 m 0.055 m/s 0.124 m/s

C. Bearings+3_̂k/leg TMA

Empirical mean
(300 trials)

21637 m 51600 m 1.99 m/s 4.97 m/s

Empirical SD (300
trials)

286 m 656 m 0.14 m/s 0.32 m/s

Theoretical bounds
SD

278 m 636 m 0.13 m/s 0.31 m/s

relative to k̂t and _̂k` (more precisely (6) and (21)). The
general simulation parameters are presented here:
1) linear array of sensors (32 equispaced sensors,
d = 2m), 2) signal-to-noise ratio: ½=¡10 dB, 3) total
number of snapshots: N = 2000, each bearing estimate
corresponds to 10 snapshots.
The parameters of the two scenarios are detailed

below in Tables I—III.
Scenario 1
number of estimated bearings: (200).
number of legs: L= 4.
total simulation duration: T = 3328 s referenced

WRT tm = 3328 s).
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TABLE IV
Ownship Trajectory

Ownship Velocity Vector Velocity Vector
Position t = 0 Odd Legs Even Legs

vx0 = 5 m/s vx0 = 0 m/s
rx0(0) = ry0(0) = 0

vy0 = 0 m/s vy0 = 5 m/s

TABLE V
Target Trajectory

rxs rys vxs vys

t = 0 5000 m 20000 m 6 m/s 3 m/s
t = tm 14812 m 24806 m 6 m/s 3 m/s

The geometry of this TMA problem is depicted
in Fig. 4. The target motion parameters are then
estimated by means of the iterative algorithm
(Gauss-Newton) described in Section IV. This
algorithm does not suffer from any problem of
convergence (in the unique source case). The whole
scenario is repeated 300 times allowing us to compute
empirical estimates of the variances of source motion
parameter estimates and to compare them with
the calculated bounds (Section V). The results are
summarized in Table III.
Scenario 2 (see Table IV—VI)
number of estimated bearings: (200).
number of estimated values _̂k=leg : 4.
total simulation duration: T = 1602 s (tm = 1602 s).
The geometry of this TMA problem is depicted in

Fig. 5. The results are summarized in Table VI.
These simulation results require some comments.

Fig. 5. Source-observer geometry of scenario 2.

TABLE VI
Simulation Results and Comparison With Theoretical Bounds

(Scenario 2)

rxs rys vxs vys

A. Bearings-Only TMA

Empirical mean
(300 trials)

14569 m 24724 m 5.97 m/s 2.91 m/s

Empirical SD 300
trials

246 m 588 m 0.2 m/s 0.61 m/s

Theoretical bounds
SD

275 m 660 m 0.23 m/s 0.67 m/s

B. Bearings+ _̂k (3 legs)

Empirical mean 14600 m 24802 m 6.00 m/s 3.00 m/s
Empirical SD 31 m 79 m 0.031 m/s 0.095 m/s
Theoretical bounds 29 m 70 m 0.026 m/s 0.081 m/s

C. Bearings+ _̂k (4 legs)

Empirical mean 14611 m 24793 m 6.01 m/s 2.99 m/s
Empirical SD 40 m 77 m 0.026 m/s 0.11 m/s
Theoretical bounds
SD

26 m 52 m 0.018 m/s 0.053 m/s

1) The quality of the target parameter estimates is
greatly improved by the utilization of the estimated
spatial-frequency rates _̂k. This is mainly due to the
value of ¾2_k (eq. (21)), corresponding to long
integration times.
2) It seems preferable to use a reduced number of

_̂k per leg (e.g., one _̂k=leg), which confirms the
theoretical results of Section VI.
3) In scenario 2 the standard deviation (SD) of the

velocity estimates decreases with the number of legs
(all other parameters being fixed).
4) Practically, the improvements relative to the

estimation of the components of the (target) stage
vector (SD) are comprised between 3 and 10. They
decrease with the number of _̂k per leg and with the
inverse of the distance observer-target.
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TABLE VII
TMA Parameters (Scenario 3)

rxs(t) rys(t) r(t) vxs vys

t = 0 50000 m 10000 m 50999 m ¡3 m/s 5 m/s
t = tm 45200 m 18000 m 41326 m ¡3 m/s 5 m/s

μ(deg) ¾μ(deg) _k ¾_k

½=¡10 dB 71.9 0.96 ¡1:25£ 10¡5 2:6£ 10¡6
½=¡20 dB 71.9 5.41 ¡1:25£ 10¡5 1:45£ 10¡5

B. TMA Performance, Partially Observable Case

As previously, these simulations deal with the

study of the effects of including _̂k in the TMA. The
general simulation parameters are presented here:
1) linear array of sensors (32 equispaced sensors),
2) total duration of the TMA scenario (1600 s),
3) total number of snapshots N = 1200, number of
estimated bearings: 120 (each bearing estimated on

10 snapshots), 4) number of estimated _̂k: 4 (each
estimated on 300 snapshots), 5) initial position of the
ownship (rxo = ryo = 0 m), ownship velocity vector
(vxo = 5 m/s, vyo = 0 m/s).
The parameters of the two scenarios are now

presented.
Scenario 3: This scenario is rather critical since

the target is situated in the vicinity of the array axis
(endfire). Two values of signal to noise ratio are
considered and shown in Table VII.
The target-ownship geometry is depicted in

Fig. 6, μ and _k stand for the averaged (deterministic)
values of μ and _k. Then the results are summarized in
Table VIII.

Fig. 6. Source-observer geometry of scenario 3.

TABLE VIII
Simulation Results and Comparison With Theoretical Bounds

(Scenario 3). Range r Replaced by Its Exact Value

rys(tm) vxs vys

A. Bearings-Only TMA

Mean 300 trials 17989 m ¡3:1 m/s 4.94 m/s
Empirical SD 133 m 2.44 m/s 0.57 m/s
Theoretical bound SD 133 m 2.42 m/s 0.57 m/s

B. Bearings+ _k TMA

Mean 300 trials 17999 m ¡2:99 m/s 5.00 m/s
Empirical SD 44 m 0.52 m/s 0.16 m/s
Theoretical bound SD 48 m 0.50 m/s 0.16 m/s

C. Bearings-Only TMA

Mean 300 trials 18065 m ¡5:53 m/s 4.32 m/s
Empirical SD 753 m 15.69 m/s 3.9 m/s
Theoretical bound SD 749 m 13.59 m/s 3.23 m/s

D. Bearings+ _k TMA

Mean 300 trials 18008 m ¡3:4 m/s 4.7 m/s
Empirical SD 324 m 2.7 m/s 1.14 m/s
Theoretical bound SD 271 m 2.8 m/s 0.91 m/s

Note: ½=¡10 dB in A and B. ½=¡20 dB in C and D.

Scenario 4: An easier scenario is now considered.
The source trajectory parameters are detailed in
Table IX.
The target-ownship geometry is depicted in Fig. 7

and the results are summarized in Table X.
As previously, the quality of the source trajectory

parameter estimate is greatly improved by the
spatial-frequency rates _̂k. This is especially true for
a weak source (½=¡20 dB), since in this case the
SD of bearings-only TMA relative to velocity is very
important (see Tables VIII and X). Then, the
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TABLE IX
TMA Parameters (Scenario 4)

rxs(t) rys(t) r(t) vxs vys

t = 0 30000 m 30000 m 42426 m 4 m/s ¡4 m/s
t = tm 36400 m 23600 m 36926 m 4 m/s ¡4 m/s

μ(deg) ¾μ(deg) _k ¾_k

½=¡10 dB 47,5 0.42 ¡9:7£ 10¡6 2:6£ 10¡6
½=¡20 dB 47,5 2.35 ¡9:7£ 10¡6 1:45£ 10¡5

bearings+_k TMA reduce dramatically the SD of
source velocity components.

VIII. TOWARDS MULTIPLE SOURCE TMA

In numerous situations the quality of the source
tracks is very questionable. This occurs frequently
in practical situations like sources crossing, change
of sources’ level, etc. Even with a good step of data
association, the statistical quality of the track may
be seriously degraded. A way to overcome this
problem consists in merging data association and
source tracking [20, 21] or in considering multiple
sources TMA [22]. However, multiple sources TMA
is frequently considered after source tracking and data
association steps [23]. Furthermore, the (nonlinear)
estimation of the multiple source’s state requires an
iterative optimization of the likelihood functional. The
optimization can thus be rather time consuming but,
overall, can suffer from numerous local minima [21,
23]. Even if it is (theoretically) possible to overcome
this problem by using extensive computations (e.g.,
annealing method), the convergence of the whole

Fig. 7. Source-observer geometry of scenario 4.

TABLE X
Simulation Results and Comparison With Theoretical Bounds

(Scenario 4). Range r Replaced by Its Exact Value

rys(tm) vxs vys

A. Bearings-Only TMA

Mean 300 trials 23602 m 4.14 m/s ¡3:85 m/s
Empirical SD 54 m 1.76 m/s 1.75 m/s
Theoretical bound SD 60 m 1.83 m/s 1.83 m/s

B. Bearings+ _k TMA

Mean 300 trials 23618 m 4.38 m/s ¡3:58 m/s
Empirical SD 30 m 0.44 m/s 0.46 m/s
Theoretical bound SD 26 m 0.33 m/s 0.33 m/s

C. Bearings-Only TMA

Mean 300 trials 23591 m 1.83 m/s ¡6:07 m/s
Empirical SD 350 m 12.90 m/s 12.80 m/s
Theoretical bound SD 340 m 10.26 m/s 10.26 m/s

D. Bearings+ _k TMA

Mean 300 trials 23629 m 4.11 m/s ¡3:88 m/s
Empirical SD 211 m 2.12 m/s 2.11 m/s
Theoretical bound SD 144 m 1.85 m/s 1.85 m/s

Note: ½=¡10 dB in A and B. ½=¡20 dB in C and D.

process is not ensured. A radically new way for
multiple sources TMA is now presented.
It relies upon the properties of the 2D state space

model of the spatio-temporal data derived in Section
III, itself based on the simplified model (eq. (10))
of the spatial frequency of a moving source. The
advantages for multiple source TMA are presented
here.

1) The 2D state space model of the spatio-
temporal data is linear.
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2) The parameters fk0,igsi=1 and f_kigsi=1 may be
separately and directly estimated by a noniterative and
simple procedure.
3) The association of the various f_̂ki,tg is greatly

simplified by their closeness.

The first point means that the (nonlinear) state
estimation, classical in TMA [1], is replaced by an
estimation of the transition matrix F1. More precisely,
the problem becomes a realization problem [24, 25].
Furthermore, thanks to the special structure of the
2D state space model (26), the transition matrix F1
may be estimated apart from F0 and, more important,
without any a priori knowledge of F0 (the initial spatial
frequencies). This last point is fundamental since
it avoids the basic problem of sources interference
[7] and allows us to derive direct (noniterative)
methods for estimating F1, avoiding, thus, the local
minima problems. Furthermore, these methods can
be extended to the whole 2D array of spatio-temporal
data (large integration time). Note that the changes of
sources’ level do not affect basically the performance
of these methods (except for the estimation noise
level).
The parameters f_kigsi=1 being estimated, the data

association is greatly simplified and these parameters
can be incorporated in the extended TMA algorithm
presented previously (Section IV). Let us now present
a multidimensional estimation of the parameters _kj .
This approach is multidimensional and multiscale and
relies heavily on an interpolation procedure presented
below.
Using (26), the following interpolation formula

is valid for the state vector of the “STS” m. The
STS (spatio-temporal sequence) m designs here the
temporal sequence fy(t,m)gt (the spatial index m is
fixed).

X
³
t+

m0
m
,m
´
= Fm01 X(t,m): (52)

Actually, this formula simply results from the
expression of the exact spatio-temporal covariances
rm(t) (25):

rm(t) =
sX
j=1

¾2j exp[2i¼dm(kj,0 + t_kj)]:

Therefore, according to (26) and (52), the
interpolated data z̃(t,m) corresponding to state space
model outputs (26) without noise, satisfy:

z̃
³
t+ j

m0
m
,m
´
= h¤X

³
t+ j

m0
m
,m
´

= h¤Fjm01 X(t,m): (53)

It is thus possible to consider the same power of
the transition matrix F1 (i.e., F

m0
1 ) by interpolating the

various STS.

Let H̃t,m0,c be the matrix built with the interpolated
ỹ data on the various STS, i.e.,

H̃t,m0,c
¢
=0BBBB@
y(t,m0) y(t,m0 +1) ¢ ¢ ¢ y(t,m0 + c)

y(t+1,m0) ỹ(t+ ¿1,m0 +1) ¢ ¢ ¢ ỹ(t+ ¿c,m0 + c)

...
...

...

y(t+ r,m0) ỹ(t+ r¿1,m0 +1) ¢ ¢ ¢ ỹ(t+ r¿c,m0 + c)

1CCCCA
with

¿1
¢
=

m0
m0 +1

,¿2
¢
=

m0
m0 +2

, : : : ,¿c
¢
=

m0
m0 + c

: (54)

The scalars ¿1,¿2, : : : ,¿c represent the compression
(of time) factors relative to the STS m0 +1, : : : ,m0 + c.
In this case, the reference STS corresponds to the
spatial index m0. Obviously the choice of this reference
index is arbitrary.
Now, without consideration of the estimation noise

(relative to y) the following factorization holds:

H̃t,m0,c =

0BBBBBBB@

h¤

h¤Fm01
h¤F2m01

...

h¤Frm01

1CCCCCCCA
£ (X(t,m0),X(t,m0 +1), : : : ,X(t,m0 + c))

=OXt,
with

Xt
¢
=(X(t,m0),X(t,m0 +1), : : : ,X(t,m0 + c))

O : observability matrix:
(55)

A direct consequence of (55) is the following rank
property [24, 26]:

rank(H̃t,m0,c) = rank(O) = dim(X): (56)

Practically the estimated observability matrix Ô
is obtained from H̃t,m0,c by means of a singular value
decomposition (SVD) [27] and an estimated matrix F̂1
is deduced from Ô by using the classical shift property,
i.e. [24],

O"Fm01 =O#

with

O" =

0BBBBB@
h¤

h¤Fm01
...

h¤F(r¡1)m01

1CCCCCA O# =

0BBBBB@
h¤Fm01

h¤F2m01

...

h¤Frm01

1CCCCCA :
(57)
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The previous method seems to be promising thanks
to its simplicity. However, the main limitation comes
from the estimation noise w(t,m) (defined in (26))
of the spatio-temporal data y(t,m). Fortunately, this
noise has a particular and useful property: it is spatially
correlated and its correlation matrix is proportional to
a sum of the sources’ covariance matrices.
Actually, the correlation matrix of the estimation

noise takes the following form in the unique source
case:

E[w(t,m1)w
¤(t,m2)] = ½

2 exp(¡2i¼d(m2¡m1)kt)
(58)

where m1 6=m2,½: signal-to-noise ratio.
For the two sources case, the exact expression of

cov(w(t,m1)w
¤(t,m2)) is rather complicated [7] but

its asymptotic value (sensor number p great) is quite
interesting since:

lim
p!1E[w(t,m1)w

¤(t,m2)]

= ½21 exp(¡2i¼d(m2¡m1)k1,t)
+ ½22 exp(¡2i¼d(m2¡m1)k2,t)

(½1 and ½2 s=n ratios of the two sources): (59)

Consequently, the covariance matrix of the
estimation noise fw(t,m)gm tends towards a matrix
proportional to the sum of the covariance matrices
of the strong sources. Therefore, the estimation noise
w(t,m) which is a limitating factor for multiple sources
TMA, may be seriously reduced by applying a spatial
filter to the data. The simpler one is the beamforming
[3].
In order to detect (track) a weak moving source, it

is worthwhile to consider a set of beams (k0,k1, : : : ,k`)
whose spatial frequencies ki are chosen (3 dB covering)
in order to “isolate” a sector as described in Fig. 8.
The formalism of the spatio-temporal analysis is
similar to the previous one (eqs. (52)—(57)) and is,
thus, briefly described below [7]. Let us, first, define
the vectors Yt, Ỹt+1, Ỹt+2 : : ::

Yt
¢
=(y(t,m0),y(t,m0 +1), : : : ,y(t,m))

T

Ỹt+1
¢
=(y(t+1,m0), ỹ(t+ ¿1,m0 +1), : : :)

T:

¢ ¢ ¢

(60)

Note that the vectors Yt, Ỹt+1, Ỹt+2 are anything but
the rows of the matrix H̃t,m0,c and therefore (eq. (53))
the following property holds (without consideration of
the estimation noise):

D¤k0Yt = h
¤

0@ mX
j=m0

exp(2i¼djk0)X(t,j)

1A
D¤k0Ỹt+1 = h

¤F1

0@ mX
j=m0

exp(2i¼djk0)X(t,j)

1A :
...

(61)

Fig. 8. Spatial sectors.

These equalities lead us to consider the following
matrix HB defined below:

HB(t) =

0BBBB@
D¤k0Yt D¤k1Yt ¢ ¢ ¢ D¤k`Yt

D¤k0Ỹt+1 D¤k1Ỹt+1 ¢ ¢ ¢ D¤k` Ỹt+1

...
...

...

1CCCCA
then, as previously, the following factorization holds:

HB(t) =O ¢X 0t : (62)

Thus, according to (62), the practical utilization
of SVD for estimating F1 (and the f_kigsi=1) is quite
classical [7, 24] and relies upon (62).
The above methods may be replaced by an

equivalent one based on autoregressive (AR)
modeling. This last type of method has the advantage
of being easily extended to the modeling of
time-varying f_ki,tgsi=1 [28].
The proposed method yields satisfying results

for the estimation of multiple spatial-frequency rate
f_kigsi=1, even for weak sources [7] or a time-varying
source level, allowing us to consider multiple sources
TMA.

IX. CONCLUSION

The spatial-frequency rate has been introduced in
TMA. Besides the addition of a new measurement
for improving TMA performance, it represents a
fundamental change for TMA since the notion of
source trajectory replaces the classical one based
on instantaneous bearings. Extension of TMA to
these new measurements has been presented but
the accent has been, overall, put on the statistical
performance study. Especially for the special case of a
nonmaneuvering observer, analytical calculations have
been conducted. In all the cases, the improvements of
the TMA performance due to these measurements are
important.
Furthermore, it provides a new approach to the

difficult problem of multiple sources TMA.
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LE CADRE & TRÉMOIS: PROPERTIES AND PERFORMANCE OF EXTENDED TARGET MOTION ANALYSIS 83

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 12:05 from IEEE Xplore.  Restrictions apply.


