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Abstract 

This paper deals with the optimization of the receiver tra- 
jectory for target motion analysis. The observations are 
made of estimated bearings. The problem consists in deter- 
mining the sequence of controls (e.g.: the receiver headings) 
which maximizes a cost functional. This cost functional is 
generally a functional of the FIM matrix. 
The determinant of the FIM matrix has all the desirable 
properties, the monotonicity property excepted. The anal- 
ysis is thus greatly complicated. So, a large part of this 
paper is centered around approximations of the FIM deter- 
minants. Using them, it is shown that, under the long-range 
and bounded controls hypotheses, the sequence of controls 
lies in the general class of bang-bang controls. These re- 
sults demonstrate the interest of maneuver diversity. More 
generally, they provide a general framework for optimizing 
the observer trajectory. 

1. Introduction 

A fundamental problem for BOT tracking is the fol- 
lowing : if the system is observable what is the accuracy 
of the state estimate and how to  optimize the inputs of 
the system? In this syst.em approach, the observer ma- 
neuvers are the system inputs. This is a very difficult 
problem of control since, in the first hand, the system 
is only partially observed, and in the second, the cost 
functional is non-additive. In fact, the performance 
of any BOT tracking algorithm essentially depends on 
the system inputs. Note, furthermore, that  even in a 
passive context. the input optimization constitutes the 
major problem. 

A classic approach consists then in considering the 
Fisher Informat,ion Matrix (FIM) and more precisely its 
determinant. The choice of the determinant funct.iona1 
is reasonable. This is a common cost functional in the 
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estimation literature. It is the inverse of the square 
of the volume of the uncertainty ellipsoid. Further- 
more, we can show that ,  under hypotheses reasonable 
in the BOT context, the maximum of det(F1M ) is at- 
tained when the sphericity criterion is maximum. How- 
ever, as we shall see later, the det functional does not 
own the monotonicty property so it is not evident that 
adding an optimal control for the time t + 1 to a con- 
trol sequence optimal up to  time t will yield a control 
sequence up t o  time t + 1. 

This explains, for a large part, the relative complex- 
ity of this problem. We shall show that using ele- 
mentary multilinear algebra accurate approximations ' 
of det( FIM) may be obtained. More specifically, we 
shall prove that  det( FIM) may be approximated by a 
functional involving only the successive source bearing- 
rates yielding thus the general form of the optimal in- 
puts (observer maneuvers). In particular it will be 
shown that,  under the long-range and bounded con- 
trols hypotheses, the sequence of optimal controls lies 
in the general class of bang-bang controls. These re- 
sults demonstrates the interest of maneuver diversity. 
More generally, they provide a general framework for 
optimizing the observer trajectory by means of feed- 
back control. 

First, approximations of det(F1M) will be derived for 
a constant source bearing-rate. Using the same ap- 
proach, these results will be extended to the case of 
time-varying source bearing-rates. 

2. Problem statement, an his- 
torical perspective 

The performance of any TMA algorithm is dramatically 
related to  the receiver maneuvers. Optimization 'of 
the receiver maneuvers represents the main problem 
in TMA. It is therefore not surprising that a great deal 
of work has been devoted to  this subject (see [1,2]). For 
instance, for the localization problem, rather rough ap- 
proximations of the FIM (2 x 2) determinant suggest. to 
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consider bhe following int,egral cost, 

The problem can thus be immersed in the general 
framework of optimal cont.ro1 theory. More precisely, 
under t.he (realist,ic) assumption of a constant mod- 
ulus (.) of the receiver velocity, the problem consists 
in determining t,he optimal controls (i.e. the receiver 
heading U )  for the following problem3 : 

(2) 
r,  = rcose  
ry = r s in0  

tS = vcosu 
ry = vsinu . 

The solution to this problem is surprisingly simple i.e. : 

21, = -28. ( 3 )  

Actually, t,he above system equation is also valid for 
TMA (moving source), the only change is the cost func- 
tiona1.A first, candidate cost is obtained by considering 
the trace of the 4 x 4 F I M ,  leading to  consider the fol- 
lowing problem : 

for which, a solution is [SI : 

v cos2 (U - e )  
U*=-3-  . 

r sin (U - 0) (4) 

However, t r ( F )  is not a very relevant functional since 
the Cram&-Rao bound involves the inverse of F- ' .  In 
fact, both statistical (probabilty of detection) and nu- 
merical considerations (max. of the sphericity crite- 
rion) plaid for t.he choice of det(F)  (F denoting the 
FIM). The problem then becomes much more compli- 
cated since an integral approximation of the cost should 
only provide a very poor lower bound. 
A very elegant approach [4] consists then in considering 
only t.he final cost Q = - logdet [ F ( T ) ]  which implies 
that  the Hamiltonian becomes particularly simple. The 
originalit,y of this approach relies on the choice of the 
state vector whose components are not. only (r,,ry) 
but overall the components of the FIM F .  In fact, the 
syst,em equat.ion becomes : 

( 5 )  

2with the following notations : 8: bearing, 6 : bearing-rate, 

'u2  is independent o f t  
r : range, u2 : variance of thr  bear. estimate 

The corresponding optimal control must, be solved by 
means of numerical met.hods, but requires the knowl- 
ege of the source trajectory. So, in order to remedy bhis 
problem, appoximations of the FIM determinant, will1 be 
carefully considered. They will allow us to  derive the 
general form of the optimal sequence of cont,rols. 

3. Some approximations of the 
FIM determinant and their 
consequences 

Consider t,he case of a non maneuvering source (con- 
stant velocit,y vector), then t.he calculation of the FIM 
is a routine exercice yielding, under the Gaussian as- 
sumption : 

where O(X) is the measurement vector generated by 
the state vector X and C is t,he diagonal matrix whose 
diagonal terms are the inverses of the variances of the 
measured bearings. The part,ial derivative matrix of 
the bearing vector O(X) with respect t o  the state vec- 
tor is directly calculated yielding : 

sinBL - 

9 71 rl - = (  a@ (x) ; 
cos8,- ncosBL  - n sin B 

dX 

rn  (7) 
T n  rR T n  

where {6i}y=l represent the source bearing at the in- 
stant i and {ri} the source-observer distance. It is quite 
remarkable that the determinant of the FIM does not 
depend on the reference time. 

The distance will be assumed to  be constant (at 
first). Further, we assume that the diagonal noise ma- 
trix C is proportional to the identity (i.e. C = a21d). 

We shall denote F k , 4  t,he FIM corresponding to  a 
reference time k and 4 consecutive measurements, 
e k , . . . , e k + 3 .  Then the FIM F k , 4  takes the following 
form (4 measurements) : 

F k , 4  = (a7' ) - 'Gk,4G; ,4  

where : 

G k , 4  = ( G k ,  G k + l ,  G k S 2 ,  G k + 3 )  

and G k  is the gradient vector of @k w.r.t,. XO, i.e. : 

G k  = ( c o s ~ k , - s i n 6 ~ , k c o s ~ k , - ~ s i n 8 ~ ) *  . (8) 

Assuming G k , 4  invertible, we have : 
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it is thus sufficient. to calcu1at.e det. G k , 4 .  

The calculation of det ( G k , 4 )  is made elsewhere [2]  
and provide t,he following second order approximation 
of det ( F k , 4 )  . 

Prop. 1 : Approximating the source-observer dis- 
tance as constant, then the 2nd order approximation of 
det, F k , 4  zs given by : 

(9) 

If a 3'd-order approximation of (cos ( 8 k + i )  ,sin ( 8 k + i ) )  

is considered then the following approximation of the 
determinant of F k . 4  is obt,ained : 

which leads to the observability criterion of Nardone 
and Aidala. 

Obviously, our attention is not limited to  four mea- 
surements per legs. So, the previous calculations will 
now be extended to any number of measurements. Let 
& be the number of measurements and consider now the 
(4 x 4) FIM F k , e ( l  2 4) defined by : 

F k , e  = ( c T ) - 2 G k , & g , e  

where : 

~ k , ~ = ( G k l G k + l l " . l G k + e )  e2 0 .  (11) 

Note that in (7.11) the source-observer distance is again 
assumed to be constant. Using classical properties of 
multilinear algebra, namely the Cauchy-Binet formula, 
det ( F k , e )  is given by the following formula : 

where : 

and : 
GE = (ci, I ci, I ci,, ci4) . (12) 

In (7), Ci, stands for the ij -th column of the matrix G. 
Considering for instance, a first order expansion of the 
bearings 8 k + i  (i.e. 8 k + i  = 8 k  + ii), the calculation of 
det. ( F k , e )  is reduced to t,he calculat.ion of the determi- 
nants det (GE) .  Now each of t,hese determinants is the 
determinant of a 4 x 4 matrix and may be calculated 
by using the general calculation given in [ 2 ] ,  yielding : 

1 

Result 1: 

8 

det F k , 5  A (g) 32 18 + 16cos (24) + COS @e)] , 

etc. . (13) 

The general form of this approximation of det ( F k , e )  

is thus : 

Pe [cos (24) ,. . . , cos (4(t - 4)4)] . 

The practical interest of the preceding results is evident 
since explicit forms of the FIM determinant have been 
obtained. We stress that these explicit forms involve 
only directly observable [a] parameters. More precisely 
8 may be directly estimated (i.e. without any prior 
about the source trajectory) and even ; /T  may be es- 
timated (since TIT = -8/28) from the spatio-temporal 
data received on' the sensor array. Hence, the above re- 
sults allow us to optimize the observer trajectory with- 
out any prior about the source trajectory . 

Another step of approximation is obtained by con- 
sidering an expansion (around 0) of the polynomial Pe 
(see the above eq.) yielding 4 :  

32 Pe(8) 2: C Y - ' [ & ~ ( ~  + 2& - 8) 

so that 

Using the previous formalism, an extension of the pre- 
vious results to higher order expansions of 6 k + i  is quite 
straightforward but not truly enlightening. 
It is more interesting to focus our attention on the ef- 
fect of observer maneuvers. The following property is 
an extension of the previous one to  this case. 

Consider that the temporal evolutions of the source 
bearings on two successive legs are described by t,he 
two following linear models : 

'CY = 5 4 4 3 2 0 0 0  
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Then t,he following propert,y holds ([2]) and extend t,he 
previous results : 

Prop. 2: 

det ( G E )  = ( e  - b ) ( a  - b )  sin ( b l  + cl) sin d l  

+(e - b ) ( d  - b )  sin (e1 - d l )  sin bl , 
+(b - d ) ( a  - b )  sin ( b l  + d l )  sin e1 (16) 

where b1 , cl,  d l  have, this tame, the followang meanings : 

bl = ( i 2  - i l )  81, = (i3 - i2) 4 2 ,  dl = (24 - i2) 82 
a = il , b = i 2  , c = i3, d = i4  

(i l l  i 2 )  E l-St leg (is, i 4 )  E 2-nd leg . 

The above propertmy allows us to  approximate det F k , e  

in the case of a maneuvering source and thus to  investi- 
gate the effects of the receiver maneuver. In particular, 
the role of the bearing-rate changes .clearly appears. In- 
deed, since the parameters 81 and 82 are usually small, 
we shall examine an expansion of det ( G E )  w.r.t. 81 
and 4 2  around the point (0,O). Then, we obtain the 
following types of fourth-order expansions (in 81 and 
8 2 )  of det ( G E )  : 

(det GE)' 2: I< (x2y2 - 2xy3 + y4) , 
or : 1<(x2y2 - 2x3y + y4), . 
or : 1<(x2y2 - 2x3y + z4) , (17) 

with : 
A 

A '  A '  

I< = ( b  - .)'(e - b)'(c - d)2(d- b)2 

2 = 8 1 , y = 8 2 .  (18) 

This result is quite fundamental for TMA and will be 
clarified by a geometric interpretation. Moreover, a 
general approximation of det F k , e , , e ,  is : 

where the polynomials { P;(tl, t,)}Z5=, are detailed in 
the Appendix C. From (5.15) we note that the maxi- 
mum value of det. Fk,e,,e2 is proportional t.0 f1'Q4 (.el 

!2 , 81 -02). In fact, denoting Fe(x) the FIM associ- 
ated with a constant bearing-rate 1: and Fe/2,e/2(~, -x) 
the FIM associated with a two-leg observer trajectory 
(leg 1: t /2  meas., bear. rate x; leg 2: t /2  meas., bear. 
rate -x), the previous results yield [3]: 

1 - -(As)", (20) 
- 134 

the type of the expansion only depends on the relative values 
of i ~ , i ~ , i ~ , i ~  

6t, measurements asociated with e , ,  i = 1, 2 

where Ax denotes t,he t.otal bearing variat,ion (i.e. 
A x  = ex). For usual scenarios, Ax is lit,tle in regard t,o 
1 and ,t.herefore, the increase in t,he FIM determinant, 
gained by optimized observer maneuvers may be rat,her 
impressive. Further, nobe that, this gain is proportional 
t o  N AX)^. 

The previous calculations may be easily ext.ended 
t,o the t.hree leg case (i.e. :{x,y,z}). As previously, 
det F k , e , , e , , e ,  is an homogeneous polynomial in (x, y, z )  
i.e. : 

with : 

0 5 { i , j , k }  5 4 and : i + j +  k = 4. 

For the sake of brevity, the analytical expressions of 
the P i , j , k  are not detailed (see [3]). Practically, for 
equal legs (i.e : tl = t 2  = t3 = t), the maximum 
value (x = -y = z )  of det Fk,k,el,ez,e3 is approximately 
451'284. 

4. Geometric interpretations of 
the properties of the FIM de- 
terminant 

The preceding results advocat,e for a more system- 
atic and geometric int.erpretation. Thus, we shall 
consider the determinant det GE where as previously, 
E = { i l ,  is, i3, i4) and il < i 2  < i3 < i 4 .  

where : 

cos8 sin4 
-s in8 cos8 R1 ( Ro Ro Ro 

) and Ro = 

(22) 
In the same spirit, the vector G k  may be written as : 

where 

(23) 
A 

0 = 8 k / k ,  E = (1, 0 ,  O,O)* 

Now the following propert,y is instrumental : the ma- 
trices Ro and SO c0mmut.e. The matrices R1 and S1 
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then also commute and using this property det GE then 
becomes : 

detGE = det, ( R i l l ,  RfZE, RYE, RYE) . (24) 

The following property has thus been proved : det.GE 
is independent of k and 8k. A further step yields : 

det.I;E = det (E, RfZ-ilE, Rf3-i1E, RPWi1E) (25) 

where : 
A A e = (1, o)* , ii = i k  - il k = 2, 3,4.  (26) 

The calculation of det GE may then be achieved by re- 
calling the expression of the minimal polynomial of Ro 

Rg = 2cose Ro - Id2 (27) 
so that the minimal polynomial of RI is 
[(z - ~ ) ( z  - X)12 , x = exp(ie). 

The determinant det GE can thus be calculated 
for any subset E ,  yielding the general form of 
det Fk,l . Further note that the vector sequence 
{E, Ry- i lE ,  Ry- i lE ,  RF-i lE} is a part of a Krylov 
sequence. 

The previous calculations provide interesting insights 
about the optimization of the observer maneuvers. 
Consider for instance the following determinant: 

f ( Y )  = det(E, &,,E, RT,,E, fqxRl,?A (28) 

where: 
= el , = e2. 
Let us now calculate the partial derivative af /ay(x) ,  

we obtain: 

with: 
- s ine  - c o s t  
cos2 -sinx s0,x = 

The following property is bhen easily proved : 

Sl,xRq,, = RT,,Sl,x = s1,3x. 

so that: 

af ay(") = de@, R1,& Rq,,E, 4,3,E) (31) 

sin(4x) = 2sin(2z) - ~ 

2 '  

and, therefore: 

( 3 2 )  
af f ( Y )  = f(.) + (Y - .)$4 

8 3  
c x 4  + (y - c)px + ic + +4))1 

M 2z(y-x) .  

At this point, it, is worth not,ing that t,he vector 
S1,3xE = ( -s in3x,cos3x,-3sin3~,3cos3x)* is ap- 
proximately orthogonal 
to  the vectors {E, Rl,,E, R?,,E}. This fact is typi- 
cal of a four-dimensional state vector and corresponds 
to a diversity in maneuvers. The effect of a n  obseryer 
maneuver corresponds to  a change from c (01) t,o y (82). 

From the above equation it is clear that the increase 
of det(F,,,) is maximized when the term (2z(z - Y ) ) ~  
is maximized. Since e is bounded, an optimal sequence 
of controls is necessarily a bang;bang one or, more pre- 
cisely, a sequence of the form {Om,,, -Om,,, Omax ,  . . .}. 

It remains to determine the optimal number of con- 
trol commutations (from 8max to -Omax) as well as 
their locations. Using the previous results, the prob- 
lem may be formulated as follows. Consider a multilegs 
observer trajectory, then the problem consists in max- 
imizing det(Fll,i2,13, ...) ( l i :  length of the i-th leg) given 
below : 

(m-)8det(fil,l,,13) M P(Z1, 4 k a X ) @  4 1 
+ ~ ( ~ 1 , 1 2 , e ~ ~ X ) ( 2 e m U X )  + P(11,13,emCZX)(2eT72QX) + ' . .  ' 

( 3 3 )  
The instants of commutation may then be determined 
by maximizing the previous expression. The polynomi- 
als P(li, l j ,  0) may be obtained by means of the Cayley- 
Hamilton theorem. 

This optimization problem may be connected with 
the Hadamard inequality. Indeed, let us recall a classi- 
cal formulation of the Hadamard inequality: 

MaxiV,} det,(V1, . . . , V,) 
with constraints llvlll = € I , . - . ,  llVnll = E n  (34) 
dim(V) = n. 

A solution to the above problem is easily obtained by 
means of differential calculus (Lagrange multipliers) [3] 
yielding: the vectors solving the above problem are 
mutually ort,hogonal vect.ors satisfying the const,raints. 
For our applicat,ion, angle constraints must be added, 
leading to replace the above problem by 

Maxiv,} det(V1, . . . , V,) 
with const.raints llVl 11 = ~ 1 , .  . . , IIVnll = E, 

cos(V1,Vz) = ... = C O S ( V n - l , V n )  2 7. 
( 3 5 )  

'dim(V) = ?z 
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A solution t,o t,his optimization is obt.ained by means of 
Kuhn-Tucker mult,ipliers giving [3] : the solution vectors 
are the vectors maximizing the n- 1 angles (Vi, Vi+l>. 

5 .  The effects of range varia- 
t ions: 

Up t o  now, the effects of range variations have not been 
considered. However, the analysis is greatly simplified 
if we remark that the effects of range and bearing-rate 
variations are geometrically uncoupled. This follows 
easily by considering det ( G E ) .  Including the range, 
det(GE) becomes : 

1 1 

Ti l  Ti4 
- - - . . . -  det (Rf'E,+..,Rf'E) (36) 

From the above equality, we note that  the effects of 
range and bearing-rate variations are uncoupled. More 
precise calculations can be achieved if we consider (for 
instance) a first order expansion of the source-receiver 
distance (i.e. ,rk+i = r k  + i f ) ,  then the general formula 
is obtained ( e  constant) : 

1 

' 8  
. 32 (sine) 

det Fk,e 2I 
r8(rg + T ) 2  . . . (rg + 6 i )  

where : 
Pe (8, i) = Pe (8) . &e (i) 

with 

, - . . , c o s  4( t -4)8  
q27$i2 + q3r0f3 + q 4 i 4  

( '11 

( .  1 (I 

A ro = rk . 
(37) 

We thus see that  the polynomial Pe 0,f is actually 

the product, of the two polynomials Pe B and &e (T). 
This factorization is quite general and is simply due to  
the basic properties of the determinant. Therefore, the 
effects of range variations are easily taken into account. 
More precisely, it. is sufficient to  replace the mat,rix RI 
by the matrix (1 + i / r ) - ' R I  in the previous (geomet- 
ric) analysis. Moreover, both 4 and 8 are directly ob- 
servable, i.e. may be estimated from the available data  
(i.e. the bearings ik). 

Conclusion 
Optimization of the observer maneuvers has been con- 
sidered along t,his paper. This problem is not relevant 

of classical optimal control. Using basic tools of multi- 
linear algebra, it has been proved that this functional 
may be accurately approximated by a functional in- 
volving only the successive source bearing-range rates. 
In particular, it has been shown that under the long- 
range and bounded controls hypotheses, the sequence 
of optimal control lies in the general class of bang-bang 
controls'. They demonstrate the interest of maneuver 
diversity. More generally, they provide us with a sim- 
ple and feasible approach for optimizing the receiver 
trajectory. 
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