
A N-DIMENSIONAL ASSIGNMENT ALGORITHM 
TO SOLVE MULTITARGET TRACKING 

Hervk Gauvrit, Jean-Pierre Le Cadre 
IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France, (e-mail: hgauvri@irisa.fr) 

and Claude Jauffret 
DCN/IngBnierie/Sud, chemin de la Gardiole, Le Brusc, 83140 Six-Fours-Les-Plages, France 

ABSTRACT 

This paper deals with combinatorial optimization in 
multitarget multisensor tracking. The cornerstone in 
any multitarget and/or multisensor tracking problem is 
the data-association problem. The approach retained 
in this paper consists to  face the combinatorial com- 
plexity. It amounts to solve a multi-dimensional as- 
signment problem. Although this problem is known 
to  be NP-Hard, the Lagrangean relaxation provides 
bounds on the optimal solution by solving successive 
2-dimensional assignment problems. 
Inherited from commonly used methods in operational 
research, the N-dimensional assignment problem first 
applied to multisensor tracking by [l] is revisited. Par- 
ticularly, issues of dummy measurements to model 
missed detection and false-alarms are carefully studied. 
General conditions required to  formulate the multitar- 
get multisensor tracking as a multi-dimensional assign- 
ment are also discussed. 

1. Introduction 

Two different problems have to be solved jointly in 
a multisensor mutitarget tracking problem: data- 
association and estimation. The approach retained in 
this paper consists to face the combinatorial complex- 
ity of data associat,ion.[3], first, and more recently [l] 
[4] and [5] have formulated multitarget tracking as a N- 
dimensional assignment problem. Multitarget tracking 
is converted in finding a feasible partition which maxi- 
mizes a cost function. However, it is well known from 
integer programming theory as soon as N2 3,  such a 
problem is NP-Hard so that no known algorithm exists 
which can guarantee a solution in time bounded by a 
polynomial in N. 

A solution consists then in relaxing some c0nstraint.s 
in order to produce an upper (lower) bound on the 
solution for a maximization (minimization) problem. 

The N-dimensional assignment' is t.hus relaxed to a 2- 
dimensional assignment problem where efficient algo- 
rithms exist (auction algorithm, signature met.hods ...). 
The dual problem is then solved by using subgradi- 
ent methods. The main interest of such methods is 
to give a measure of quality of the solution to the N- 
dimensional assignment problem. Thus, t.he algorithm 
is able to compute a solution to the primal problem at 
a few percent. 

This algorithm is an extension of commonly used 
methods in operational research [2]. However, unlike 
classical methods, dummy measurements are defined in 
order to take into account false-alarms and missed de- 
tections in data-association. These measurements are 
not submitted to constraints in the association process. 
Consequently, their introduction must. be considered 
carefully in the algorithm derivation. 

The algorithm presented in this paper is t,he same as 
proposed by [l]. We focus our presentation on some 
issues that were not discussed there in depth. Par- 
ticularly, the issues of dummy measurements to ex- 
press a 2-dimensional and to recover feasible solutions 
are investigated. More precisely, we present the algo- 
rithm in a global way. We consider a N-dimensional 
assignment problem. We discuss in a first part the 
conditions required to formulate multisensor multitar- 
get tracking as a combinatorial optimization problem. 
Next, we solve the N-dimensional problem by relaxing 
( N  - 2) set of constraints. This problem is then recast 
t.0 a 2-dimensional problem and the issues of dummy 
measurements are discussed in details. The third part 
deals with the problem of providing a feasible solu- 
tion to  the given problem based upon a solution to 
the 2-dimensional Lagrangean relaxation. This section 
is then illustrated by an example of t,he 3-dimensional 
assignment problem applied to a 3 sensors problem. 

the primal problem 
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2. Formulation of the combina- 
torial optimization problem, 
notations 

This section is devoted to a general formulation of the 
multisensor multitarget tracking problem in the com- 
binatorial optimization framework. The cost function 
of the optimization problem is defined and some issues 
are discussed. 

Consider a general data association problem where 
a set of measurements, 2, has been received. Suppose 
this set composed of N scans in a multitarget tracking 
problem or N sensors in a multisensor tracking prob- 
lem. These t.wo problems are equivalent in terms of 
data association problem. The first one consists in a 
temporal association of measurements from different 
scans whereas t,he second needs to solve a spacial asso- 
ciation of measurements from N sensors at the same 
time. The aim of t,he two problems is to  estimate 
the number and the parameters of the targets in the 
surveillance region. Throughout the paper, we use the 
notations defined below : 

zil is the iEh measurement of the lS t  scan in mul- 
titarget tracking or the iih measurement received 
by the sensor 1 in multisensor tracking. We denote 
zo the dummy measurement used to  model missed 
detection or false-alarm; 

Zi l , iZ , . . . , iN  = { z i l , z i Z ,  ' . . l Z i N }  

where i l  = 0,  . . . ,  n1 . . . i~ = 0 ,  ..., nN. nj is 
the number of measurements in the j t h  scan or 
the number of measurements received by the j t h  
sensor. This set caracterizes an hypothetic track; 

y = {Zil,iz,. jN} is afeasible partition of the set of 
measurements 2 with respect to the constraints : 
for ij i'. = 1, .  . . , nj and i j  # i$ , j = 1,. . . , N 
zil,iz ,..., iN  n &;,i; ,..., i;y = 0 ; 
and 
UZil , iZ,  ..., iN = 2 ; 

' 3  

yo is the part,ition where all the measurements 
are false-alarms. A false-alarm is defined as a N- 
tuple where only one measurement is a non dummy 
measurement2 : 

r = {y} is t,he set of all the feasible partition; 

31, = {y is the true partition } corresponds to the 
event associated to t,he partition y; 

0 we will denote K t.he st,at,e vect.or of the sources in 
t.he surveillance region. 

Before defining the cost function of the problem, we 
introduce a property that it must verify : 

Proposition 1 The cost function of the problem must 
be broken down in  a cumulative sum of the contribu- 
tions of each N-tuple Zil,iz ,..,, i N .  

The cost function of the problem is defined based to 
the-probability of the event 31,. The a posteriori prob- 
ability of X, can then be expressed using Bayes'rules 
as: 

where p ( 2 I X )  = p ( 2 I X : , , X )  p(31,IX) is the 

normalization factor. p(2/31,,  X) is the likelihood of 
the measurements whereas p(X , IX)  is the a priori 
probability of the event. The details of these proba- 
bilities depend on the application. However, we stress 
that  the a priori probability of the event contains the 
information on the probabilities of detection, the den- 
sity of false-alarms etc. Thus, a first idea is t o  define 
the cost function as the likelihood rat.io or more pre- 
cisely as the  generalized likelihood ratio : 

31,€31 

In [l], the cost function is defined as the generalized 
likelihood function. However, it includes the proba- 
bility of detection through the likelihood of 3-tuples 
defined as : 

3 

s= l  

This is not a density function corresponding to  a like- 
lihood of a 3-tuple since a priori terms (probability of 
detection) are included in this expression. We show 
next how t o  retrieve the definition of this cost func- 
tion. As a conclusion, the likelihood ratio (or the gen- 
eralized likelihood rat.io) verifies property 1 but don't 
model correctly the problem. This can lead to  incorrect 
associations in solving the optimization problem. 

A second idea is thus to  consider a bayesian cost : 

31 = {%,ly E I?} is the set of all the feasible events. 

'this definition may be modified dependingon the application 
It has the advantage to  take into account the a priori 
probability of the different partitions (through eq. (1)) 
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but does not. verify now property 1 since p(?L,IK) can 
not. split up in each N-t.uple. Consequently, a compro- 
mise solut.ion must be rebained between a good modeli- 
sation of the physical problem and the required prop- 
erty of the cost function. This solution is obtained by 
making the assumption that terms in p(?L,lX) which 
can not be broken down are equally probable. In this 
way, we obt,ain finally the cost function as defined in 
[l]. We do not go further into details of the calculat.ion. 
Based to the appr0priat.e cost function, the problem 
may be stated as choosing the partition which maxi- 
mizes the cost funct.ion. Since all the N-tuples must be 
considered, binary variables pi l ;  2...iN are introduced t,o 
indicate whether the corresponding N-tuple Zili 2 . . . i N  

belongs to  the partition. The contribution of the N- 
tuple to the cost of a partition is denoted e;,; , . . . jN .  As 
soon as property 1 is verified, this leads to  the following 
mathematical problem : 

subject to  

, n? 

(3) 

The N sets of constraints (3) are the mathematical for- 
mulation of the constraints in t,he building of the feasi- 
ble partitions. Thus, t,he multisensor multitarget track- 
ing problem has been expressed as a combinatorial op- 
timization problem more precisely as a N-dimensional 
assignment problem. We stress that  this problem is 
feasible since the N-tuples in yo verify the constraints 
(3) .  A Lagrangean relaxation algorithm is proposed as 
in [l] to  solve this difficult. NP-Hard problem. This 
method is the most efficient since it provides the tight- 
est. bounds on the solution of the given problem. 

3. The Lagrangean relaxation 
of the N-dimensional assign- 
ment problem 

This problem is NP-Hard. So, it. does not exist an 
algorithm which provides a solution in time bounded 
by a polynomial. Lagrangean relaxation is commonly 
used in integer programming since it consists in includ- 
ing the difficult constraints into the objective function. 

Alt.hough, in general t.he solut.ion t,o t,he Lagrangean 
relaxation is not t,he solution t.0 t.he given problem, it 
provides a good est.imation of it. In our problem, it is 
an easy t.ask t.0 show that t.he t,wo solut,ions are equalled 
since the constraint matrix is tot.ally unimodular [6] .  

The aim is t.hus to relax the set,s of constraint,s which 
make the problem NP-Hard in a new problem which 
can be solved efficiently. Since polynomial algorithms 
exist, for the 2-dimensional assignment problem, ( N - 2 )  
set,s of constraints are relaxed in (2). The relaxed prob- 
lem is then recast in a 2-dimensional assignment prob- 
lem. However, t.his new formulation needs some com- 
ment.s since the dummy measurements are not submit- 
ted to constraints. 

So, Suppose the last (N-2) sets of constraints be re- 
laxed. The Lagrangian relaxation of the N-dimensional 
assignment problem is of the form : 

(4) 

subject to  

where ~3 = {u3,i3);3=0...n3i.. . , U N  = {u~,iN)i,v=~...nN 
are the Lagrange multiplier vectors for the relaxed con- 
straints. For convenience of notation, we introduce 
a Lagrange multiplier uj,O ( j  = 3 - . . N ) .  Since it 
does not correspond to any relaxed cont,raint, u j , ~  = 
0 , V j  = 3 . .  . N .  This problem can then be recast in a 
2-dimensional assignment, problem as follows [2] [l] : 

subject t o  

(7) 
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2 
W i I i 2  = 0 , l  

Proof:  
Let i l  and i2 be fixed such that ( i l , i z )  # (0,O). In 
order to  verify one3 or the t,wo sets of constraint,s in 
(5)4, it must, exist a unique tuple ( i s ,  ..-,iN) for a i l  

and a ia. Thus, we choose the best one that is the one 
which maximizes (c ; ,  ...iN - u3,i3 - . . . - U N , ~ ~ ) .  Next. 
consider ( i 1 , i z )  = ( O , O ) ,  none of the two constraints 
needs to  be satisfied. Thus, (0,O) does not take part. 
directly in the maximizing problem, it can be consid- 
ered separately as we will show. Finally, the problem 
can be recast in a maximizing problem with respect to 
i l  and iz where the constraints have been modified in 
(7). Since the case (0,O) has not been considered in (6), 
the two problems (4) and (6) are not equivalent. Never- 
theless, it is straightforward to  build the solution of (4) 
based upon the solution of (6). Just add in the solution 
the N-tuples of the form (0, 0 ,  is, . . . , i ~ )  for which the 
reduced cost (c;  ,...iN - ~ 3 , ; ~  - . . . - U N  i ) > 0. 

Problem (6) is solved using 2-dimensional assignment 
algorithm (auction, signature method . . .). Notice that 
the use of the auction requires some modifications to 
take into account dummy measurements [l]. The main 
int,erest. in relaxation methods and more precisely in 
Lagrangean relaxation relies upon the following prop- 
ert,y : 
Proposition 2 

, N  

This property is deduced from the fact that the set of 
feasible solutions of (2) is included in t.he set of fea- 
sible solutions of (4). The difference (a2* - @N) is 
called the duality gap in the litterature. Thus based 
upon a feasible solution of (2), t,he method provides 
an overestimate' of the duality gap. As we mentioned 
above, in the multi-dimensional assignment problem, 
there's no duality gap. Thus, the solution will be at  a 
few percent of the optimal one depending on t.he rate of 
convergence of the algorit,hm used t o  optimize the dual 
function. The interest is the opportunity to define a 
stopping crit,eria from which data-association does not 
need to be pursued due to the noise level. 

31f il or i2 equals zero 
4The set of feasible solutions of (4) is nonempty since the 

5we refer to it as the approximated gap 
N-tuples in y o  verify the constraints. 

The minimization of the dual function is obtained 
by using subgradient, methods since t,his function have 
the nice pr0pert.y of being a cont,inuous piecewise lin- 
ear convex function[6]. So having a starting point, e.g., 
u(O) = {u(o)}j=I ...N we may solve the minimization 
problem by calculating a sequence of poinbs : 

3 

Different strategies may be employed to choose the step 
in the direction of a subgradient g y ) .  It exists 

a subgradient, which is very easy to compute since it 
corresponds t o  the violated constraints : 
v j  = 3 . .  .Ni- - 1. .  .n. 

3 -  3 

In ( S ) ,  p:l...iN is the optimalsolution of the Lagrangean 
relaxation (4). We stress that  the global performance of 
the N-dimensional assignment problem depends mainly 
upon the rapidity of convergence of the algorithm used 
t.0 optimize the dual problem. 

For clarity of presentation, the primal problem was 
relaxed by including the ( N -  2) last sets of constraints 
into the objective function. ,This relaxation may be 
also archieved by relaxing one set of constraints at  
a time[l]. We thus obtain a recursive formulation of 
the %dimensional assignment problem (4) which is the 
form retained for the algorithm derivation. Starting 
from r = N to r = 3,  the rth Lagrangean relaxation 
CPt-l) is expressed based upon at )  by relaxing the last 
set of constraints6. Then, a:-') is recast to aU 
defining a recursive form based to T r ) .  Property 2 is 
then recast t o  : 

-(r-1) 

Proposition 3 

N0t.e that the discussion on t,he issues of the dummy 
measurements still remain valid. Finally, we propose 
in the next section to detail the method for obtaining a 
feasible solution t o  the given problem. We recall that 
t.his feasible solution serves to estimate the approxi- 
mated gap. 

'the set of constraints on i, 
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4. Obtaining feasible solutions solving the following 2-dimensional assignment prob- 
lem : 

L L  From the solution of t.he 2-dimensional assignment, al- 
gorithm, we show t.hat a feasible solut,ion to t,he pri- 
mal problem is obt,ained by successively solving 2- 
dimensional algorithms. Constraints are enforced one 
at a time. The issues of dummy measurements for re- 
covering feasible solutions are investigated. We denote 
W2* the set of solutions of the 2-dimensional assign- 
ment problem (6). First, based upon W2*, constraints 
on i 3  are enforced by solving a 2-dimensional problem, 
in order to provide a feasible solution to This 
procedure is then applied to the solution of this new 
2-dimensional problem, W3*, to  enforce constraints on 
i 4  and is repeated till enforcing constraints on i ~ .  

Let us describe in det,ail this procedure. W2* is de- 
fined as an ordered set : 

subject, to 

21i3 = 1, 1 = 1 . .  . L  
i3=0 . x1i3 = 0 , 1  

Proof 
We give some elements t,o show that the solution of this 
2-dimensional assignment problem is a feasible solution 
to the 3-dimensional Lagrangean relaxation. First, we 
recall the expression of a?) : 

@ L 3 ) ( U 4 , .  . . , U N )  = 

. . . 
(12) 

nl n N  

max (ci  l...iN - u 4 , i 4  - . . . 
P*1 " " N  . 

Zl=0 iN=O 

Note that the length L of this finite set is greater 
or equal to  n1 due to  the fact that dummy measure- 
ments may have been associated to multiple measure- 
ments in order to  satisfy constraints (7) in problem (6). 
Moreover, since the optimal solution W2* satisfies con- 
straints (7), {aj}j=I . . .L verify : 

V a j  # O ,  uaj = ( 1 , . . . , n z } .  

Since we know how to associate an element of { i l } o  ... n ,  

to a unique element of { i 2 } 0 . . . n 2 ,  we would like to asso- 
ciate each couple (il, i 2 )  to a unique element { i 3 } 0  ... n3 

so t.hat each element { i s }  0...n3 would be associated to 
a unique couple ( i l ,  i 2 ) .  Thus, we only need to define a 
cost function on two variables: one describing the first 
index set and another describing the third index set. 
Since, multiple measurements from the second index 
set may be assigned to the dummy measurement of the 
first index set, we introduce a new index 1 = 0 . . . L and 
define new costs ,Blj3 as : 

. . . pj iN  = 1, i3 = 1 

subject to 

The best7 feasible solution t.0 the 3-dimensional as- 
signment problem, based upon a solution to the 2- 
dimensional Lagrangean relaxation, is thus obtained by 

7in terms of maximization 
2 w&2i3 = 1, i3 = 1 . .  . n 3  
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In (15), d:lizi3 and w?lizi3 are given below : 

% ’‘ 25 z 
2 2 0 -  
s 

15-  

Now, suppose a solution t.0 ( l o ) ,  z3*, is obtained. Not,e 
that the feasible set of (10) may be empty due to  vari- 
ables zli3 preassigned to  0. This may arrive when a 
preprocessing is used t,o limit the number of candidat.e 
N-tuples. Nevertheless, it is possible to  avoid this draw- 
back. So we consider for the sequel that  the feasible set. 
is not. empty. W3* = {w::$~} is then deduced from 
z3* as follows : 

- 
0 : s n w r  pOsibm 
U : huelargelpositim 
x : OS”I€d target pa$ibon 

0 , otherwise 

It is straightforward t,o verify that  W3* verify con- 
straints (15). 

We present on fig.1 an example of the application of 
the 3-dimensional assignment problem to the 3 passive 
sensors. The cost function was defined as in [l]. The 
measurements were azimuths and the measurement er- 
ror variance was 1 deg. This scenario was generated for 
the ideal case Pd = 1 and P f a  = 0. The relative ap- 
proximated gap was E 2% at the end of the algorihtm. 

Scenario for three sensnrs and fixed sources 
50 I I 

g.30 -351 B 

0 

10 20 30 40 50 
distance in x (km) 

Figure 1: Example of a 3-dimensional assignment prob- 
lem for the 3 passive sensors 

5 .  Conclusion 

proposed by El]. In t.his paper, we have focussed the 
discussion on the condit,ions required to  formulate the 
problem as a multi-dimensional assignment problem 
and on the definition of the cost. function to  optimize. 
Moreover, the different, steps in the algorithm have 
been studied carefully, particularly the issues of dummy 
measurements in t,he algorithm derivation. Proofs have 
been given. 
However, some more work need to  be pursued for ap- 
plying t.he algorithm to real applications, more pre- 
cisely for the passive sonar. We stress that  this method 
is particularly appealing since Lagrangean relaxation 
provides information of how close the solution is from 
t.he optimal solution of the given problem. 
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