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Abstract

In this paper, we present an original approach for
an unsupervised learning of the structure and defor-
mation modes of 2D moving objects in long image se-
quences. The object representation relies on a statis-
tical description of the deformations applied to a pro-
totype shape. The optimal bayesian estimate of the
deformation process is obtained by mazimizing a non-
linear joint probability distribution using stochastic
and deterministic optimization techniques. The esti-
mates obtained at time t are integrated in the defor-
mation model as a priort knowledge for the segmen-
tation at time t+ 1. Deformation modes are updated
on line using a Principal Component Analysis of the
distorsions computed from the shapes estimated previ-
ously in the image sequence. The approach yields ro-
bust segmentations and s demonstrated on real-world
image sequences showing the tracking of hands and
lips undergoing complex movements.

1 Introduction

Up to the middle of the eighties, the models devel-
oped in computer vision have essentially been spec-
ified for the description and the analysis of rigid
objects undergoing rigid movements. On the other
hand, the representation and processing of deforma-
tions has recently gained considerable popularity in
many application fields [13, 10, 11]. The introduction
of deformable models to represent shapes and dy-
namic phenomena yields promising future prospects
as far as the characterization and the interpretation
of complex object movements is concerned. General-
purpose active contours [12] or snakes enforce con-
straints controlled by elastic forces based on local
structure, inflating forces and image based potentials
but are not adapted to constrain the deformations
for a particular object class [1] or application. On
the other hand, application-specific models [16] have
been proposed, but the specification of the structure
and the deformation modes of the model require an
off-line supervised training step [4].

Deformation modes may be identified by match-
ing sets of feature points over time [2, 14]. Cootes
et al. [3] consider a training set of fixed feature
points specified manually to capture the variations
of the shapes of interest. The Principal Component
Analysis (PcA) allows to determine the main vari-
ation modes superimposed on a pre-computed mean
shape. This approach has been extended recently [3].
In this method, a large training set yields a robust
and compact representation of the object class. Un-
fortunately, the method proposed in [5] is not robust
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to occlusions and cannot handle large rotations. In
[14] Pentland et al. describe an alternate method
for establishing point correspondences between two
shapes and for providing a robust canonical descrip-
tion of shapes using physically-based modeling tech-
niques [14]. This method may however be subject
to mismatches in presence of partial occlusions. In
this paper, we introduce a modeling framework to
learn automatically deformation modes associated to
the object of interest from real image data without
any human interaction (such as manual point corre-
spondence). The method requires that the object be
described as the deformations of a single prototype
object [2, 6, 5].

The model relies on a statistical description of
shape deformations, in which two deformation pro-
cesses are considered [8]. The global description of
deformations relies on the modal decomposition in-
troduced recently by Cootes et al. in [2]. Local de-
formations are modeled as stochastic perturbations
and are assumed to follow a first order Markov pro-
cess [6]. At the beginning of the image sequence,
no training has been performed and the local defor-
mation process only is identified. It is local in the
sense that it models deformations involving a point
(and its neighbors). After a few frames, the Principal
Component analysis of the shapes associated to the
local deformation process allows to identify and up-
date global deformation modes as well as the shape
structure over time. For each frame a Maximum A
Posteriori (MAP) estimate of both local deformations
and global deformation modes is obtained by max-
imizing a highly non-linear joint probability distri-
bution describing the interactions between observa-
tions (spatial or temporal gradients extracted from
the image) and the deformation process. Global op-
timization techniques are necessary to obtain optimal
solutions for the local deformation process (unless a
good initial guess is available) [6]. Due to the large
size of the space of configuration, the computation of
the MAP estimate of these local deformations is gener-
ally computationally demanding [6] but is reasonable
since it only concerns the first frames of the sequence
(where no a priori knowledge on global deformations
is available). On the other hand, global deformation
modes can be estimated efficiently on the subsequent
frames using a deterministic algorithm thanks to the
reduced number of parameters of this representation
and thanks to the good initialization provided by a
temporal prediction scheme. This procedure dynami-
cally updates the shape structure as well as the defor-
mation modes and it is no longer necessary to resort
to the local deformation process when the gathered



knowledge is sufficient to characterize completely the
global deformations associated to the object class.

In Section 2, we describe the statistical deformable
model considered in this paper. The different opti-
mization procedures used in the bayesian estimation
of deformations are presented in Section 3. The unsu-
pervised method for training the deformation modes
over time is presented in Section 4. Segmentations
and tracking on real image sequences showing mov-
ing hands with partial occlusions and mouth move-
ments are reported in the Section 5.

2 A stochastic deformable model

The approach relies on the description of the object
class of interest using a “deformable template” which
incorporates a priori knowledge on the structure of
the object and its variability [2]. A particular shape
X is represented at time ¢t by a set of n labeled
points which approximate its outline. The variations
of shape X; are represented by a displacement vec-
tor dX; with respect to a mean shape (the “tem-
plate”) X} [2]. A Pca on the displacement vectors
computed from the shapes up to time ¢ allows to de-
termine the m; deformation modes. If P, designates
the matrix of the m; unit eigenvectors corresponding
to the m; largest eigenvalues, and if b; denotes the
vector (mt X 1) corresponding to the m; most signifi-
cant deformation modes, the deformable template is
represented by the following model [8]:

Xt = M(kt,et) [Xf—i—Ptbt] + Tt. (1)

Global transformations from the similarity group (ro-
tation of angle 6, scale change by a factor k; and
translation Tt) are also taken into account in this
model.
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Figure 1: Description of deformations.

In addition to this global deformation process, a
local deformation process is introduced to obtain an
accurate description of the observed deformations.
This local deformation process is prevailing at the
beginning of the sequence. It becomes a simple re-
finement of the global deformation modes when the

latter have been reliably identified. Local deforma-
tions are modeled as random perturbations on the
location of the points belonging to the globally de-
formed pattern. The local deformation process t;
is modeled as a Markov random process, which takes
into account interactions between neighboring points.
The global statistical model becomes:

Y: = M(kt,et)[X§+Ptbt] + T: + t:, (2)

where t; is the random local deformation process ap-
plied on the n labeled points. t; is assumed to be a
zero-mean first-order Gauss-Markov random process:

1 1 _
p(tt) = 561‘]) —5ttTR 1tt (3)

where R is the covariance matrix of t; and C is the
partition function.

3 Bayesian estimation of
deformations

3.1 Segmentation task

We have considered here the particular problem
of the extraction of moving objects from images se-
quences in the case where the camera is static. In this
context, we rely on observations related to spatiotem-
poral gradients extracted from the image sequence.

Let O = (O, s € S) designate an observation
field defined on a rectangular lattice S related to the
spatiotemporal variations of the intensity function at
time ¢. The Maximum A Posteriori (MAP) estimate
of the deformable template is defined by:

Y. = arg max p(O[Y:) p(Yy). (4)
t

The distribution p(O|Y:) describes the interactions
between the observations and the deformations to es-
timate.

According to the assumption on the statistics of t;
(see Equ. 3), Y, follows a first order Gauss-Markov
process:

P(Y) = & erp — 5 (Yo~ X)TR™ (Yo X0). (5)
This prior distribution controls the local and global
deformations of the original template. The similar-
ity transformations M(k:, 8:), T; and the global de-
formation modes b; are considered as deterministic
parameters of this probabilistic model.

For a given configuration of the template, the im-
age can be partitioned into two regions: the inside of
the template R7(Y;) and the outside of Rt (Y:) cor-
responding to the background. A (Gibbs) distribu-
tion p(O[Y}) is specified to describe the interactions
between local observations O(s) and the configura-
tion of the deformable model. In [8] for instance,
binary-valued observations corresponding to thresh-
olded temporal gradients have been used for the ex-
traction of moving objects (Fig. 2b):

PO = Zeap—[ Y

s€R™ (V1)

p>

s € RT(Y1)

10(s) — 1]

|O(s) —0[ ] (6)



where C’ is a normalization constant.

This distribution tends to enclose moving points
inside the deformable model and to reject static
points belonging to the background outside the out-
line of the model. The global distribution is a
highly non linear function of the model parameters
M(k¢, 8t), T¢ and b;. When no initial guess is avail-
able for these parameters the computation of the MAP
estimate requires global optimization techniques [8].

Figure 2: Fig. 2a-b - observation map O(s) used for
the segmentation of a moving hand; Fig. 2¢c-d - ob-
servation map O(s) used for the segmentation of a
mouth.

3.2 Global optimization

In order to simplify the notations, the stochastic
deformable model will be expressed at a given time
as:

Y = X(©) + ¢t (7)
where @ = (M(k,0), T, b) is the hyperparameter
vector of the model. Since ® is unknown, the prob-
lem is to estimate an pair (®, Y ) according to a
criterion of optimality:

(©,Y) = arg ({)nya% p(Y,0/0). (8)

This criterion satisfies the global maximum of the
joint distribution with respect to Y and © but re-
mains extremely difficult to implement. We have
adopted a suboptimal procedure recently described
by Lakshmanan et al. [15] for estimating global
model parameters in Markov Random Field-based
unsupervised image segmentation. Model hyperpa-
rameters are estimated alternately with the configu-
ration of the model, yielding a partial optimal solu-
tion:

~

Y, = arngzvix p(Y,O/@k),

~

Op41 = arg méix p(?k,O/@). (9)

The log-likelihood of ® with respect to (Y, O ) may
be defined from Equ.5 and Equ.6 as:

log p(Y,0/0) x —Ug(Y, O) (10)

where the energy function is specified as:

Ug(Y,0)= Y [0(s)=1[+ > [0(s)—0]

s€R-(Y) s € RT(Y)

+ 5 (Y = X(0)"R™(Y - X(®)) (11)

with at the initial step, Y = X(©).

In practice, the estimate of © is performed using
a fast deterministic relaxation scheme corresponding
to a modified version of the icM algorithm.

The estimation of Y at step k + 1 is easily derived
given ©g41. The criterion of optimality becomes:

Yip1 = arngzvix p(Y,0/0Ort1). (12)

This expression may be interpreted as a Maximum
A Posteriori (MAP) of Y with respect to observations
O. The problem consists in minimizing a global en-
ergy function:

Y = arg min O(s)—1]+ O(s)—0
e =argmin > [0(s) =1+ |0(s) = 0]

s€R-(Y) S€R+(Y)

+5(Y = X(0,,,)"RT(Y — X(©,,)). (13)

In most methods involving deformable templates
(apart from the work of Grenander [6]), determin-
istic minimization algorithms are used to this end.
They are known to be very sensitive to local minima
of the objective function to minimize. The estima-

tion of Y requires stochastic algorithm to converge
to a satisfying solution when no knowledge about de-
formation modes is available (i.e. at the beginning of
the sequence, or when partial occlusions are present).

In practice only one iteration of the optimization
loop (Equ. 9) is performed. This procedure has
shown to provide good and stable results and addi-
tional iterations have only produced slight improve-
ments on the final estimates.

This optimization scheme may be modified over
time using the temporal coherence of the movement
of the deformable structure and the acquired knowl-
edge about deformation modes to provide good ini-
tial estimates from one frame to the next. The Gibbs
sampler used to estimate Y on the first frames may
then be substituted by a fast deterministic 1cMm al-
gorithm. The computational cost for the process de-
creases from 12 mn cpu time on a workstation on
the first frames to less than 1mn when deformation
modes are reliably identified. The updating of defor-
mation modes is described in the next section.

4 Unsupervised learning of
deformation modes
Given the above optimization scheme, the goal is to

update the object (i.e. its structure and deforma-
tion modes) in order to converge towards a more and



more reliable and compact representation for the seg-
mentation task. Let us recall the general form of the
deformable model:

Yt = M(kt,et) [X?+Ptbt] + Tt + tt. (14)

Given the estimate of t; and the hyperparameters of
the model at time ¢, deformations are analyzed in a
common reference coordinate system. In this refer-
ence coordinate system the new model y; becomes:

M (ke,6:) [Ye — Te],
X + Piby + M7 (ki 0:)te. (15)

ye =
ye =

The template is easily updated at time t41 according
to the following rule:

Ny 1

Xt X7 16
t4+1 N, 11 t+Nt+1yta (16)
1 _
o= Xf—i—m [Pibe + M ™ (ki 6:) 8] (17)

where N; is the current number of processed frames
(corresponding to the number of shapes analyzed
from the beginning of the sequence).

The deformation modes of the model are described
by the unit eigenvectors of the covariance matrix
Sit1, defined at time ¢t + 1 by:

t+1

1
S —§ i = X)) (v = X5 (18
t+1 N:+1 i—1(y 1) (¥ +1)- (18)

An accurate description of the main variation modes
is obtained by retaining in matrix P,y only the m;y1
eigenvectors associated to the m.41 largest eigenval-
ues. The number of eigenvalues retained in this rep-
resentation is adjusted through time in order to set
the loss of the information to a constant (and small)
value. Typically, between 99% and 99.5% of the total
variability is preserved in the truncated representa-
tion.
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Figure 3: Number of deformation modes over time
in the unsupervised training procedure (moving hand
sequence, see Fig. 5).

The number of significant modes m; is then ob-
served to increase over time at the beginning of the
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Figure 4: FEvolution over time of etgenvalues asso-
ciated to the four first deformation modes (moving
hand sequence, see Fig. 5).

sequence, before becoming constant when ¢t — oo
(for instance the final number of deformation modes
in Fig. 3 is five).

From Equ. 17 and Equ. 18, it is easily shown that
Xf_H and S;;1 converge to constant values when
t — oco. In practice the infinite time corresponds to a
sequence of more than one hundred frames where all
representative deformations of the object class have
occurred and thereby P; and its associated eigenval-
ues are completely defined. Fig. 4 shows for instance
the evolution of the eigenvalues, associated to the
four first deformation modes, over a long image se-
quence composed of more than one hundred frames.

Besides, we take advantage of the temporal coher-
ence of the object movements to predict the value
Bt+1 of the deformation modes at time ¢+ 1 from the
estimate at time ¢ and from the updated representa-
tion:

Bt+1 = PtT+1 (yt - X§+1)' (19)
r.e.:

biy1 = PLy (X7 4+ Pib, + M7 (ke 0,) t—X41).
(20)
When t — oo, PE, ~ P{ and X}y, ~ XJ, so
Bt+1 no longer depends on the template X}:

Bt+1 == bt + PtT M_l(kt,et)tt. (21)

b:4+1 can be used as a good initial estimate for the
deformation modes b41 in the next frame. By using
the temporal coherence of the movement of the de-
formable structure, fast local optimization techniques
can be used to obtain reliable MAP estimates. The
experimental results show in this case that the op-
timal solution provided by global optimization tech-
niques (stochastic algorithm) is indeed close to the

initial estimate given by Bt+1, M(k¢,6¢) and T at
time ¢t + 1.



The method is able to provide an accurate and
very compact representation of deformations (more
compact than the method based on the alignment
of extracted shapes according to a Generalized Pro-
scrutes Analysis[4, 5]). In Fig. 3 one can see that a
very low number of deformation modes is required to
integrate 99.5% of the total variability on a typical
test sequence. Besides the MAP estimation technique
is very robust to noise and to the presence of large
occlusions [8, 9].

Figure 5: Tracking of a moving hand against a uni-
form background (see text).

Let us notice that the heuristic temporal predic-
tion presented in Equ. 19 may be completed effi-
ciently by a temporal tracking of the complete model
which provides also good initial estimate for the lo-
cation of the model in the next frame and enables
to resort to fast local (deterministic) optimization
procedures. In [9] we have developed a Kalman fil-
ter combined with a detection of abrupt changes [7]
which performs prediction and filtering of the model
hyperparameters. This tracking procedure ensures to
converge faster to the optimal solution and is used
here when the training of the deformation modes has
converged (i.e. when X} ; ~ X} and Py ~ Py).

5 Experimental results

In our experiments, we have considered the seg-
mentation of deformable structures [1, 2, 4, 6] cor-
responding to hands (Fig. 5 and Fig. 6) and lips
(Fig. 7).

Fig. 5a and Fig. 5b present respectively an inter-
mediate step and the final result of the MAP segmen-
tation on the second frame. Fig. 5a shows the esti-
mation of the global transformations from the simi-
larity group (see Equ. 2). Global deformation modes
are not yet available on this early stage of the train-
ing process. Fig. 5b depicts the final segmentation
including the local deformation process which con-
tributes exclusively to the solution in this case.

Figure 6: Tracking of a moving hand against a tezx-
tured background (see text).

Fig. 5c and Fig. 5d show the similar result of the seg-
mentation on the third frame in which the deforma-
tion modes have been updated for the first time with
the estimation obtained from the second frame. As
can be seen, the local deformation process (Fig. 5d)
is nearly unutilized on this frame because the con-
figuration of the shape is close to the previous one.
Hence the deformation modes captured on the sec-
ond frame provide an excellent training for the third
frame.

Fig. 6 presents the same intermediate and final re-
sults for a second test sequence showing hand mov-
ing against a textured background. Fig. 6a-b and
Fig. 6¢c-d correspond respectively to frame 6 and 7 in
this sequence.

The last example (Fig. 7) presents the applica-
tion of the complete segmentation and tracking pro-
cedure (including the Kalman filter) to a mouth
structure. The distribution p(O|Y}) specified to the
mouth tends to attract the deformable template to-
ward salient features of the image corresponding to
large spatial gradients [16]. The tracking over time
provides valuable information about the global dy-
namic behavior of the deformable structure which
might be used for interpretation purposes.

6 Conclusion

In this paper, we have presented a general frame-
work for the modeling and unsupervised training of
deformation modes of nonrigid objects. The tech-
nique relies on the definition of a prototype shape on
which two deformation processes are applied. The
deformations are described using statistical models
and the optimal bayesian estimate of these deforma-
tions is computed using stochastic and deterministic
optimization techniques.

The proposed modeling and algorithmic frame-
work is comprehensive and suited to the represen-



tation of a large class of deformable objects. It may
be adapted to segmentation problem based on other
image attributes (luminance, color, texture, depth,
etc.). The use of the learning procedure also yields
promising future prospects as far as the characteriza-
tion and the interpretation of the dynamic behavior
of complex objects is concerned.

Figure 7: Tracking of mouth movements (see text).
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