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ABSTRACT 
Classical bearings-only target motion analysis (TMIA) are 
restricted to constant motion parameters (usually : posi- 
tion and velocity). However most of the interesting sources 
have maneuvering abilities, degrading, thus, dramatically 
the TMA performances. A basic idea consists in modelling 
the states of the source by an hidden Markov model (HMM 
for the sequel). The main point is then to  optimize the 
observer trajectory using methods derived from the general 
theory of dynamic programming. 

1. INTRODUCTION. 

The basic problem of target motion analysis (TMA) is to 
estimate the trajectory of an object (i.e. position and veloc- 
ity for a rectilinear movement) from noise corrupted sensor 
data. However, for numerous practical applications and es- 
pecially for long time scenarios, the source is maneuvering. 
A first approch consists to detect the source maneuvers. 
This is interesting for the detection of abrupt changes and 
is efficient when the data have the right statistical proper- 
ties. These required properties include a correct modelling 
of the source maneuvers as well as a sufficient signal to noise 
ratio. 

Since none of these requirements is generally valid in 
the passive sonar context, this advocates for the modelling 
of the whole source trajectory including maneuver uncer- 
tainity. For that purpose, a promising framework is those 
of hidden Markov model, widely used in other contexts like 
speech processing [6], frequency line tracking [8] and re- 
cently appeared in the active sonar context [3, 41. In order 
to apply them to TMA, a basic idea consists in a (two- 
level) discretization of the state-space (position and veloc- 
ity). Obviously, in the TMA context, the source state is 
only partially observed though noisy measurements (the es- 
timated bearings). 

An estimation of the source trajectory is then estimated 
by maximizing a likelihood functional. This task is devoted 
to a classical Viterbi algorithm [8] .  This approach is an el- 
egant solution to the maneuvering target tracking problem 
since it does not require any prior information on the ma- 
neuvers, so that its performance does not depend on some 
accurate criterion that hardly occurs in real scenarios. If 
the estimation of the source state is rather classical, the 
main problem comes from the optimization of the observer 
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trajectory. This problem is immersed in the general frame- 
work of dynamic programming. A main difficulty arises 
from the partial observation of the source state. This leads 
us to model the problem by means of POMDP (Partially 
Observable Markov Decision Process) for which efficient so- 
lutions exist [7]. But, once again, another type of difficulties 
emerges due to the number of states and decisions (observer 
maneuvers in our context). 

2. BEARINGS ONLY TMA GENERAL 
FRAMEWORK. 

Consider the source-observer encounter depicted in figure I. 
The source located at the coordinates (rZs, rys) moves with 
a constant velocity (vzs,vys). The state vectors of the 
source and the observer are [5]: 

A A xs = [rzs, rys, ‘uzs, vys]* xo = [rzo, ryor vzo, oyol*. (1) 

where the symbol ’*’ denotes transposition. In terms of rela- 
tive state vector X, defined by X = X,-Xo = [T,, ry. uz, uy]*s 
the discrete time equation takes the following form: 

A 

X ( t k )  = q t k ,  t k - I ) X ( t k - l )  4- U(tk) ,  (2) 

where: 

In the above formula t k  is the time at the k-th sample while 

Y 

Figure 1: Source-Observer encounter. 

the vector U ( t k )  accounts for the effects of the observer 
accelerations. 
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In the bearings-only tracking (BOT for the sequel) con- 
text, the measurements are the estimated source bearings 
8, relatively to the north axis : 

The variance U; of the estimation noise depends on the 
relative positions of the source and the observer (array), as 
weU as on the array axis. It is given by the Woodward's 
formula [2]. 

the BOT problem reduces to the estimation of the initial 
state vector XO. Even if the main difficulty comes from the 
non linear nature of the estimation problem, convenient so- 
lutions have been presented and analysed in the reference 

Assume now that the source can change its velocity. In 
fact interesting sources are those which maneuver for tac- 
tical reasons. The decisive advantage of Markov modelling 
is that one do not have to define different types of maneu- 
vers with the risk that the source does not follow any of 
them. It is just assumed that the source velocity is not rad- 
ically changed between consecutive instants. More precisely 
a two level Markov chain is considered in order to model the 
source trajectory. Let Et be the source sate, with : 

If the rectilinear and uniform motion assumption is made, 

paper ~51. 

Using the elementary lemma : 

Pr(A, B(C)  = Pr(AIB, C) Pr(B/C), 

it comes : 

It is furthermore, quite reasonable to assume that the tran- 
sition over the velocities is independent from the transitions 
over position space, so that : 

Pr(Et+l IEt) = Pr(Xt+l IXt, V,) Pr(V,+l IE). ( 5 )  

The Markov chain modelling the source trajectory and de- 
fined by ( 5 )  may be considered as a two-level one. A first 
level is devoted to the transition upon the position while 
the second one deals with the velocity. It is stressed that 
this model is quite general. The observations are defined 
by the following equation (Baye's formula) : 

Pr (E  = E,$ = 0,) Pr(6 = 0,) 
Pr(8 = 0 , ( E  = E,) = . (6) Pr(E = E;)  

Note that in the above equation the space of the obser- 
vations (i.e. bearings) is discretized. Practically, this dis- 
cretization corresponds to the beamwidth [2]. In the abs- 
cence of any pripr information about the source state or the 
measurements 0, it is worth to consider them as constant, 
so that : 

Pr(e = e , p  = E,) = ~ s t . ~ r ( ~  = E,$ = e,>, ( 7 )  
where 'Cst' is a normalizing factor. 

The calculation of the probability Pr (E = E,lS = 8,) is 
achieved by considering the position cells (2, y) associated 
with the line of sight (0 = 8,) and its neighborhood. It is 
now necessary to consider the statistical criteria. 

3. STRUCTURE OF THE FISHER 
INFORMATION MATRIX (FIM). 

The partial derivatives of 0t w.r.t. XO the initial state vec- 
tor (eq. 2) are easily obtained (rectilinear and uniform mo- 
tion), yielding the following gradient vector Gt : 

In this case, the FIM is straightforwardly deduced from 
(81, giving : 

with : 

The general structure (9) of the FIM is quite remark- 
able. It may be easily extended to the case of a maneuvering 
source. For that purpose, the source trajectory is modelled 
as a multileg one, which is quite coherent with our discrete 
modelling (5) of the source trajectory. Consequently, the 
dimension of the state vector i s  enlarged since it includes 
now the initial position of the source as well as its various 
velocity vectors. To be more precise, consider a source tra- 
jectory constituted of n legs, each one corresponding t o  J 
bearings, then the FIM (denoted FI,,J) takes the following 
form : 

FI+J = FI,J + F J + ~ , ~ J  $. ... .f F(,-I)J,,J 
J 

= [DO,n+l (k)Do*,n+l (k)] '8 f i k  

k=1 

2 5  

+ [ ~ l , n + l ( k ) ~ ; , n + l ( k ) ]  @ n k  

+ ... 

+ [Dn-i,n+l (k)%i,n+i(k)] @ f i k  

k = J + 1  

nJ 

k = ( n - l ) J + l  

with : 
P q-p-2  - A 

D p , q ( k )  = ( 1 JST ... J S T  ( k - p J ) b T  0 . . "  0 )"(Il) 
\ / 

9 
x 

f& given by (lo),  @: Kronecker product. 

4. MARKOV DECISION PROCESS (MDP), 
GENERAL PRINCIPLES. 

The general aim of the M D P  is to determine a sequence of 
decisions. generally denoted d (here : observer maneuvers) 
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which maximizes a criterion related to the state i of the 
Markov chain. If the process is in state z at time t and an 
action d is chosen, then two things occur [I] : 

1 .  A cost C(z. d )  is incurred, 
2 .  The next state of the system is chosen according to 

If we let Xt denote the state of the process at time t ,  and dt  
the decision chosen at t ,  then assumption ( 2 )  is equivalent 
to stating that 

the transition probability P,, ( d ) .  

Pr[Xt+l = j l X o , d o ,  ..., X t  = i , d t  = d ] = P i J ( d ) .  (12) 

Thus, both the elementary costs C(i, d )  and the transi- 
tion probabilities P,,(d) are functions only of the last state 
and the subsequent decision. It is easily shown that if a 
stationary policy (i.e. x )  is employed, then the sequence 
of states ( X T ,  t = 0 , 1 , 2 , .  . .) forms a Markov chain with 
transition probabilities e P I J ( x ( i ) ) ,  giving thus the de- 
nomination MDP to the process. 

The problem is to find the control policy A = ( T O ,  SI, . . .) 
such that the sequence of decisions dk = xk(Xk ,  &-I) min- 
imizes a cost functional J defined classically by : 

The dynamic programming equation takes the general form : 

J*(L,~) = m i n C [ c l , , ( d )  + ~ * ( k  + ~ , j ) l ~ i j ( d )  i E S. 
d € C  

3 € S  

(14) 
The value of the control which gives the minimum is the 
optimal decision rule at time k if the state is i at this instant. 
This equation is solved backward in time with the terminal 
condition J * ( N ,  i) = 0 

This is the classical approach of dynamic programming. 
However, our problem may differ from it by the nature of 
the cost functional. To be more precise, the cost functional 
(13) is replaced by the following one : 

(i E S). 

where : 
e H is a matrix functional, 

Ft(i, d t , j )  is the instantaneous FIM associated with 
the transition from state i to state j with the decision 
dt . 

The choice of the functional H is very critical. Actually, 
the principle of dynamic programming optimization (14) 
can be applied if the functional H satisfies the following 
monotony property : 

Definition : Let A and B be two positive definite ma- 
trices and C positive semi-definite. Then the monotony 
property holds iff. : 

H(A) < H ( B )  + H ( A  + C) < H ( B  + C).  (16) 

Assume ITOW that H is furthermore a differentiable func- 
tional on M:, the following property holds : 

Property : If H is differentiable and satisfies (16), then : 

H(A) = g(Tr(AM)), (17) 

where g is a monotone (real) function, Tr is the matrix trace 
and M is a fixed matrix. 

Actually it is obvious than the determinant functional 
does not satisfies (16). This seriously advocates for the use 
of the trace functional, despite the fundamental role of the 
determinant in information theory. Using (11) the trace of 
Ft takes the following simple form : 

Tr[Ft(i, d t , j ) ]  = 
1 + ( I  - 1)J2ST2 + ( t  + -L - ( I  - 1)J)26T2 E::;m-l NS,, 

T 2 ( t  + &)&+*I 
(18) 

with : 
0 6T : time interval between two consecutive steps of 

0 I : index of the source leg, 

J : number of steps associated with a leg, 

0 N,,, : number of samplings during a tansition. 

In the case of complete information (the source state is 
available) the observer trajectory may be optimized by us- 
ing the DP algorithm (14) with a functional given by (18). 
For each time and system state, a decision is chosen. These 
computations have to be done backward in time. The deci- 
sions consist of the observer velocity changes. The following 
decision table (see fig. 2) has been obtained for the  two 1a.t 
steps ( t  = 19, t = 20)  of a 20 step scenario. The obsener 
is always on the center of the position grid. and on each 
grid node there is an arrow representing the optimal decl- 
sion (change of observer velocity) when the source is on this 
node. 

However, in practical situations, the source state is not 
directly observable. The only available informations consist 
of estimated bearings and the MDP problem then becomes 
far more complicated. Actually, it will be immersed in the 
general framework of Partially Observable Markov Decision 
Process (POMDP). 

the MDP, 

5. A POMDP FRAMEWORK. 

The central process (the Markov chain) Xt is not directly 
observable. An observation Bt (here the bearing) is associ- 
ated with X t .  Let II(X) = { x  E Rnlx 2 0 ,  E:=, ~i = I} be 
the set of all the distribution on X and Nt = {a(l), d l , .  . . , ~ ( t -  
l), dt-1) the “history” of the decisions and observations up 
to time t .  We consider, the, the following system evolution : 

state transition : p$  

observation probability : t$ = Pr[& = BIXt+l = 
j ,dt  = 4, 
Ht+i = Ht U {&,et), 
elementary cost : wf,, associated with the following 
event : under the decsion d the state goes from i to 
j and and observation 0 is produced. 

Pr[Xt+l = jlXt = i, dt  = 4, 
A 
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t=19 t=20 
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Figure 2: Commands for the two last steps of a scenario : (eso, eyer v,,, eYs) = ( O , O ,  10, -10). 
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