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In numerous practical situations a large array of sensors is 
required, especially for improving the system ability to detect and 
track moving sources. However, the array performance is strongly 
affected by the lack of stationarity of the impinging signals. The 

use of a large array of sensors allow us to perform the source 

localization by using the wavefront curvature. The analysis of 
the range estimates based on the wavefront curvature have been 
thoroughly performed by various authors but, to our knowledge, is 

restricted to the case of fiied sources. 
The study of the effects of source motion for range estimation 

(Section 111) and source detection (Section V) constitutes an 
important part of this work. This study reveals that the array 
performance can be far from the expected values, especially for 

large array. Therefore, the robustness of a direct processing of the 
whole sensor array is very questionable. The computational burden 
constitutes another serious drawback of this (direct) approach 

The use of partitioned processings (Sections IV and VI) 
s eem thus quite promising even if (and perhaps because) it is 
not optimal so as to fulfil the computation cost and robustness 
requirements. The performance of such processings for estimating 
the range of moving sources is presented. 

Manuscript received November 29, 1993; revised June 14, 1994. 

IEEE Log NO. TAESB1/3/09757. 

Author’s address: IRISAKNRS, Campus de Beaulieu, 35042 Rennes 
Cedex. France. 

0018-9251/95/$4.00 @ 1995 IEEE 

In numerous practical situations a large array of 
sensors is required, especially for improving the system 
ability to detect and track moving sources. However, 
the array performances are strongly affected by the 
lack of stationarity of the impinging signals which 
is due to multiple factors like time-varying source 
models, medium, and array. Here, we are chiefly 
concerned with the effects of the source motions on 
the array processing performance. 

The use of a large array of sensors allow us to 
perform the source localization by using the wavefront 
curvature. It is, typically, an instantaneous localization 
method since it assumes that the received signals 
are stationary during the observation time. On the 
opposite, the bearings-only target motion analysis 
methods rely upon a nonstationary source model. As 
it is shown, the performance of wavefront curvature 
methods may be greatly affected by the source 
motions. 

estimation (Section 111) and source detection (Section 
V) constitutes a large part of this work. An analytical 
expression of the variance of the estimated range of 
a moving source is obtained and, then, validated by 
comparing it with simulation results. The integration 
time (or equivalently the number of snapshots) appears 
to be instrumental for optimizing the variance of the 
estimated range. Obviously, it depends on the source 
lanematic parameters which are generally unknown 
but, overall, it is directly related to the array length. 

These conclusions are also valid for optimizing 
the detection performance, studied in Section V. 
This study reveals that the array performance can 
be far to the expected values, especially for large 
array and, in particular, are strongly degraded by the 
source motions. This is especially true for multiple 
moving sources since it is not possible to optimize 
the integration time for all the sources simultaneously. 
Furthermore, the robustness of a direct processing of 
the whole sensor array is very questionable (bias in 
cross-spectral estimation, wavefront coherence). The 
computational burden constitutes another drawback of 
this (direct) approach. 

The use of partitioned processings (Sections IV 
and VI) seems thus quite promising, even if-and 
perhaps because-it is not an optimal processing in 
order to fulfil the computation cost and robustness 
requirements. A natural approach for partitioned 
processing consists in considering (partitioned) 
pre-processing of a large array and the related 
source bearing estimates, these estimates being then 
associated in order to obtain a source range estimation. 
It constitutes a simplistic approach of the much more 
general problem: is it possible to exchange the angular 
performance (variance of the estimated bearings) 
against increased range performance? 

The study of the effects of source motions for range 
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with array referencr 

source I 

Fig. 1. Definition of geometric parameters. 

The position of the general problem of source 
localization is outlined in Section 11, as well as some 
fundamental quantities namely 283 and 2r3. Section 
I11 deals with the estimation of the range of a moving 
source by using the wavefront curvature and a direct 
approach. The same problem is considered in Section 
IV but, this time, with a partitioned array processing. 
Its performances are compared with those of the direct 
(and classical) approach. 

Section V is devoted to the study of the detection 
performance for moving sources. The problems related 
to bearings association are considered in Section VI. 

11. THE GENERAL PROBLEM OF SOURCE 
LOCALIZATION BY USING THE WAVEFRONT 
CURVATURE, DEFINITIONS AND NOTATIONS 

For the rest of this work, the array is assumed to 
be linear and constituted of p equispaced sensors. 
The elementary intersensor distance is denoted by d ,  
d is chosen equal to X/2 (A: wavelength). The source 
position is defined by using polar coordinates for 
instance with respect to (wrt) the array center, the 
corresponding angles and parameters are defined 
below (Fig. 1). 

The bearing angles 0 are referenced wrt the 
perpendicular of the array axis, and the source distance 
r is defined as the distance of the source from the 
array center (see Fig. 1). The distance rk of a source, 
whose polar coordinates are (e ,r) ,  from the kth sensor 
is deduced from classical trigonometry, i.e., 

r~=d :+r2+2dkrcosc r  

= d: + r2  + 2dkr sine 

so that 
r k  = (r2 + dz + 2rdksin~) ' /2 

(p: odd). 

Especially for the performance calculation, the 
narrowband frame allow us to use the linear algebra 
formalism, reducing thus the notational complexity. 
Since this formalism is now classical [l, 21 it is not 
detailed further. 

a source (00,ro) and defined below: 
Let Deo,ro be the steering vector 121 associated with 

Deo,ro = (1,. . . ,exp(2ixfrk(80,ro)), . . .)' 
(the symbol t meaning transposition) with 

Tk: time delay from the 1st sensor to the kth 

i2 = -1 (2) 
f: frequency. 

The time delay Tk (60, ro) corresponds to the 
propagation of the acoustical wave in a nondispersive 
medium and is directly deduced from (l), i.e., 

c: celerity. 

The array directivity (power beam pattern) is the 
two-dimensional functional defined below: 

(*: transposition and conjugation, I I: complex 
modulus). 

This functional f ( 0 , r )  presents a global maximum 
for the exact values of the parameters (B,r) (i.e., 8 = 
80, r = ro). The parameters 26J3 and 2r3 are defined 
as the half-beamwidth, respectively, in bearing and 
distance. Even if they correspond to a deterministic 
analysis, they condition greatly the array performance 
in angular and range resolution. Neglecting the 
wavefront curvature (plane wave hypothesis), the 
following expression of 203 is obtained by using a 
second-order expansion of f(0, r )  and known as the 
Rayleigh formula [l, 21: 

L: array length. 

A second-order approximation of 283 and 213 is 
obtained by using the same way, more precisely: 
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with 
2 
=: second-order expansion 

V f: gradient vector (6) 

H :  Hessian matrix. 

The calculation of 203 and 2r3 requires the 
calculation of the Hessian matrix H(O0). For that aim, 
the steering vector D(t9,r) (in (2))  is advantageously 
written in the following form: 

DO,, = (exp(ikhl), ..., exp(ikhp))' 

with 
i 2 = - 1  

k = 2w/X = 2wf /c 

h j  = ( r2  + d? + 2djrsin6)'f2 - r (7) 

0 

range (in km) 
Fig. 2. Values of 2r3 (in km, y-axis) versus range r (x-axis, 

in km) for source in array broadside (0 = a / 2 ) .  

Numerical considerations show that the terms 
ah i la r  are little in regard to the terms ahi/a8, so that 
the matrix H has roughly the following form: 

dj = p - l d -  ( j -  1)d 15 j 5 p. 1 2  
In (7), the scalar k represents the wavenumber 

while the functions h j  represent the difference of path 
length from the source to the various sensors. 

as follows: 
With these notations, the functional f (6, r )  stands 

P 

f (e , r> = C e x p [ i k ( h ~ j  - hj)] 
j = 1  

and, the Hessian matrix at the point (60,ro) is given by 

with 
E < S  and S < G .  

Consider now the diagonalization of H ,  i.e., 

(XI and A2 eigenvalues, P orthogonal) then, direct 
calculations provide the following approximations: -- a2f - 2AA" + 2(B')2 

ao2 
S2 

X 2 N E - -  
G-E G - - E  

S2 
XING+-- -- a2f - 2A"" + 2(B")2 

ar2 and 
P E (  ; y) S 

E-G 
According to (9), the matrix P is approximately 
diagonal and consequently H can be approximated 
by A. Collecting (6), (8), and (9) the following 
approximations of 283 and 213 are thus obtained 

(9) 
with 

p = p ,  

a2f a2f given by (8). de2 and - ar2 
The calculation of 283 and 2r3 is illustrated by Figs. 
2 and 3. The value of 2r3 is plotted on the y-axis, 
whereas the corresponding value of r is plotted on the 
x-axis. Fig. 2 corresponds to a source situated at the 
bearing 0 (from the array broadside), and Fig. 3 to a 
bearing 0 = s/4. As expected, the lowest values of 2r3 
are obtained for a source in the array broadside. 
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Fig. 3. Values of 2r3 (in km, y-axis) versus range r (x-axis, 
in km) for source with bearing 0 = ~ / 4 .  

For the rest of this work, the following array 
parameters have been chosen (frequency = 300 Hz, 
d: intersensor distance = X/2 = 2.5 m). 

It may be  also worthy considering the following 
approximation of the directivity function f(0, r )  (in 
(4)). This approximation relies on an approximation 
of the geometric “delays” hj (in (7)). Let us consider 

hi = (r2 + d: + 2d,rsin19)’/~ - r 

with 
d j = d ( q - j + l  1” = d a  

and A defined as 

(11) 
( drf da  . )‘I2 

A = r  1+-+2-~in6  . r 

Then, a second-order expansion of the scalar A 
(wrt: d2a2/r2 + 2da/r sine) is 

In the above expression, the terms d4a4/r4 and 
4d3a3sinO/r3 may be neglected, providing thus the 
following approximation of A (acceptable in the 
Fresnel zone): 

1 d2a2 
2 r  

A - r E dasine + - - cos2@ 

and finally: 

The above expression shows that f(0, r)  is 
approximately composed of two terms: an angular 
term corresponding to da(sint9 - sin&) and an 
angular-range term associated with the elementary 
factors (d2a2 cos2 &/2ro - d2a2 cos2 8 /2r) .  

Very roughly speaking, it seems thus that the 
range beamwidth 2r3 is a function of l/ro. Another 
interesting consequence of this approximation is that 
a convenient reparametrization of the problem may 
consist in replacing the range r by its inverse l/r. 

Assume now that 0 = 00, then it comes 

(13) 

Clearly, the maximum of the function f(&, r )  is 
attained for r = ro. However, note the difference 
with the classical Fejer kernel (of the classical 
beamforming) due to the a2 terms. Thus the 
generalized ambiguity function (GAF) f(0, r)  has two 
different structures [3]. Along the A1 = Asin0 axis the 
GAF has the sinc-squared structure, while along the 
radial A(cos28/ro) axis it has the Fresnel structure [3], 
i.e., with the notations of [3]: 

f(ro7) - IW) /CI2  

with 

F ( C )  = 1’ exp(it2) d t  = Fresnel exponential integral 

and 

C = [ T / X A ( C O S ~ O O / ~ O ) ] ~ ’ ~ L / ~ ,  L = pd. (14) 

This approximation is furthermore quite 
enlightening for the analysis of the interference 
(between sources) phenomenon. 

Assume that two sources are present, then 

f(0, r )  = ti(@, r )  + A(@, r )  + f12(@, r )  

where fi (e, r) is the directivity function associated with 
the source 1, idem for f2, f l z (6 , r )  is the interference 
term, and direct calculations provide the following 
approximation of fiz(t9, r): 

+ d2b2 ( 5  - :)I} (15) 

( r l :  source 1 range, idem for r2; 81,o = &,o = 0). 
d2a2 cos2 Bo 

This term explains the strong interferences between 
2ro sources. 

These deterministic calculations must be completed 
- d 2 a y 0 ] } 1 2  (12) by the calculation of the Cramer-Rao bounds (CRB 

for the sequel) relatively to r and 8. In the case of 
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a fixed source the calculations are quite classical [2, 
41, the elements of the Fisher Information Matrix F 
(FIM) are given below (Bang's formula) [5]: 

I 

~ ( 8 ~ , e ~ )  = -tr -R-'-R-' 
Le, aR ae2 aR I 

with 
R is the covariance matrix of the 

observations X (array output) 
R = C T D ~ , ~ D G , ~  + bId 
p = a / b  signal-to-noise ratio (16) 
tr 
O1 

It is worth comparing these (experimental) results 

is the trace of a matrix 
= 8 or r ,  82 = 8 or r .  

with the theoretical results of the literature [2, 4, 61. 
Using the approximation (12), L. Kopp and D. Thubert 
[2] have obtained a very simple and interesting form 
of the FIM relatively to the parameters 81 = sin8 and 
e2 = r - l ,  i.e., 

with 

01 = sino, 02 = r-' , diag: diagonal matrix. 

The diagonal form of the approximated (17) FIM 
is remarkable. This can also been considered as a 
consequence of the orientation of the uncertainty 
ellipsoid (with axis 283 and 2r3, in (9)). Furthermore, 
it is worth noting the general form of the 3 x 3 Fisher 
matrix F ( p ,  8, r ) : 

c f ( p , p )  is a scalar). 
Therefore the analysis is restricted to F ( 8 , r )  for the 

rest of this work. 
The error bounds relative to the estimation of 81 

and 8 2  are directly deduced from (16) and stands as 
follows [2]: 

(18) 
r r  

(1 + pp)360c2 
- N P 2  - 4) 

(standard deviation (SD) bounds). 

the following form: 
]It is interesting to rewrite the error bound a:-: in 

&R - J 1 + P P  
r - l  --3- 

PP 

....-- 
so o L - *  ' I 

I00  150 200 2so 
range (in km) 

Fig. 4. Variance (sqrt) of the estimated range (in m, y-axis) versus 
range (in km, x-axis) for fixed source and linear array ( p  = 100, 

d = X/2, 0 = ~ 1 4 ) .  

g 6 0  

5 4 0  .'.' .... 
2000 

so 100 isa 200 

range (in km) 

Fig. 5. Vanance(sqrt) of estimated range (in m, y-axis) versus 
range (in km, x-axis) for fixed source and linear array ( p  = 1O00, 

d = X/2, 0 = ~ 1 4 ) .  

with 

2-3 = -~ 

L = p d  p 2 3 .  

The term 2-3 can thus be considered as an inverse 
range half-beamwidth. Note that it doesn't depend of r 
and that the following relations hold from (18, 19) [2]: 

If now we choose 8 = 0, then it comes 

This approximation is important since it proves that 
the relative error for estimating the range r is directly 
related to the variance of the bearing estimate in the 
one hand and to the ratio r / L  in the other. 

to the case where the observation is reduced to a 
single snapshot (N = 1). In the general case, the 
elements of F are multiplied by the scalar N and thus 
the lower bounds of the estimator variance are divided 
by N .  

For the sake of computation cost, (16) may be 
expanded in order to require only the computation 
of scalar products, this detail having a considerable 
importance for a large array (e.g., p = 1000). A lower 
bound of the variance of P is deduced from (16). This 
calculation is illustrated by Figs. 4 and 5. For the two 
figures the source parameters are identical ( p  = a / b  = 
0 dB, 8 = ~ / 4 ,  fixed sources), N the snapshot number 
is equal to 1 (for the both figures) while the sensor 
number p is equal to 100 for Fig. 4 and to 1000 for 
Fig. 5, the intersensor distance d being equal to X/2. 

It is worth noting that the formula (16) corresponds 
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y t  
L- A"" 
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Fig. 6. Geometry of source motion (A,  and A,-1 are source 
position at time f,, and f f l - l ,  respectively). 

The graph represents the square root of var(i) 
(SD (P) in meters) versus the distance d of the source 
(in kilometers, x-axis). As expected, the SD of F is 
considerably reduced as p increases from 100 to 1000 
since it is approximately divided by a factor 500. 

Actually, this (experimental) result may also be 
illustrated by a formula established by Schultheiss in 
the wideband case ( N  = 1) [4]: 

P - 1  

and w =2wf L = p d  

8 referenced wrt the array broadside. 
This formula shows that var(P) depends of the 

range as a factor of ( r /L )4  and agrees with the results 
of J. M. E Moura and A. B. Baggeroer 131. 

I l l .  ON THE ESTIMATION OF THE RANGE OF A 
MOVING SOURCE 

For the sequel, the following assumptions are made 
(for the sake of simplicity): the source motion is linear 
and uniform (the velocity vector is constant), the array 
is fixed, the working temporal frequency is omitted. 

We now consider the effects of source motion on 
its estimated range 17, 81. The classical beamforming 
(CBF) consists in calculating the following quadratic 
form with the notations of Section 11. 

. N - l  

with X,: snapshot vector [l] 

then (21) 
A (6, P) = argmaxg(f3, r ) .  

Since we are concerned with the effects of the 
source motion on the array processing performance, 
a simplified model of the range is considered. More 
precisely, let Y ,  be the source array distance at the 
time t, (t, = nAT,AT: snapshot time) then (with the 
notations of Fig. 6) the following relations are easily 
deduced from classical trigonometry: 

r,cos8, = rocos8o + (cosp)nvAT 

(equality of the projections) 

r," = + (nvAT)2 + 2ro(nvAT)cos(Bo - p)  (22) 

(norm equality) 

(p:  source heading). 

Assuming that the factor x(x = nvAT/ro) is little in 
regard to 1, first- order expansions of the range r, and 
cos8, are directly deduced from (22), i.e., 

1 r ,  = ro + cos(80 - p)(nvAT) 

(the symbol A meaning 1st order expansion). (23) 

If N snapshots are considered (in (21)) the 
mean values ( c o s O ~ , r ~ )  of cos8, and r, are thus 
approximated at thc first order: 

COS 8~ = COS 8 0  
1 

(COS p - COS 80 COS(~O - p) )  v AT 
1 0  

(24) 
r M  = 1 ro + cos(&, - p)v AT 

The source motion results in a spreading of the 
source mainlobe wrt the parameters 8 and r .  Contrary 
to the stationary case (i.e., fixed sources) it is not 
possible to calculate the CRB (wrt 8 and r in the 
case of a moving source (it may be considered as 
Bayesian problem); however the variance of the 
(averaged) estimators of r M  (i.e., i ~ )  and OM (i.e., 
O M )  can be calculated by using a Taylor expansion on a 
neighborhood of r M  and O M .  

For that purpose, consider the derivative g(R, i )  

wrt the parameter vector R(R ' ( 8 , r ) ' )  of P(R,k) (21) 
defined below: 

t = O  
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Then a first-order expansion of g(dM,ff), is 
considered, i.e., 

g ( & f , f f )  k - h f , B )  + ( V g ( % d w h 4  - R M )  

itself equivalent to 

g(&,A) g ( % f J )  

+ (Vg(Ru,R) + Vg(Ru,k - R ) ) ( h  - O M )  

so that finally, neglecting the second-order term (i.e., 
Vg(R, R - R)), the following linear approximation of 
g ( i ? M , R )  is obtained: 

g( f lu ,R)  ‘v g ( f l M , R )  + (Vg(%4,R))(fihf - R M ) .  

(26) 

Since, by definition of d ~ ,  the nullity of g(dM,k) 
is assumed, the following equality is straightforwardly 
deduced from (26): 

~ I M  - RM 21 -(Vg(n,,R))-’g(R,,ff). (27) 

Using (27), it is possible to derive an estiyation of 
the variances of 6~ and PM (respectively var(8M) and 
var(iM)), given by (Appendix A and [7]): 

with 

A = i(C + C*) with C = U,, . DAM. 

Note that (28) has been obtained by means pf a 
first-order expansion of the functional g(R,R) and at 
the expense of the approximation (26). This approach 
has the advantage of simplicity but can be replaced 
by the more rigourous approach of D. E Gingras and 
S. L. Hobbs [9, 101. More precisely, let R(R) the value 
of the parameter vector R defined (implicitely) by 

g(R(R),R) = 0. (29) 

Thanks to the implicit function theorem [ll], 
R(R) is a differentiable function of the matrix, and its 
“partial” derivative wrt R is given by (differentiation 
chain rule) [ll]: 

Now, by definition of R(R), the above partial 
derivative is null, so that 

The rest of the derivation relies on two classical 
lemmas. 

LEMMA 1 [12] 

1 
lim COV(?;j,f&) = Nrikrjt 

N-CC 

with 
- A ,  

r;j = element of R, ith row, j th  column 

r . . = r . .  - r . .  
‘ I  ‘1 ‘ I  

(31) 

E(?;,) = rij. 

The elements of the matrix R can be (asymptotically) 
considered as a complex circular [13] Gaussian vector 
with mean and covariance given above. 

LEMMA 2 [lo, 121 Assume that 2 is asymptotically a 
gaussian vector of mean 20 and covariance (l/N)C, 
and f an analytical vector-valued function of 2, then the 
vector f ( Z )  is itserf asymptotically gaussian with mean 
f ( 2 o )  and covariance (l/N)f’Cf’*(f’ = af p2). 

Applying Lemmas 1 and 2, the vector R(k) is 
asymptotically Gaussian and its covariance stands as 
follows: 

a q R )  * 
cov(R(ff)) = (F) cov(8) ( aR) 

aR(R)/aR given by (29) so that, finally 

with 

( m  t 8, n t r ) .  (32) 

Here, the function g is the partial derivative (wrt 
R) of the function P(R,w, R), the averaged parameter 
vector QM being defined by (24) and R being the exact 
averaged matrix (i.e., R = ( l / N ) z L o ( R f ) ) .  

The approach of S.  L. Hobbs [lo] seems more 
general than the classical method of expansion (26). 
However, the computational burden is bigger (this is 
not very important) and, overall, the results of the two 
approaches are rather similar. 

variance of the estimated range is illustrated by Figs. 
7 to 13. 

A “short” array is considered for Figs. 7-9. In the 
first case, the source parameters are 80 = 2n/3 and 
,O = 7r/4, v = 10 m/s, ro = 10 km, p = -10 dB, and p, 
the number of sensors, is 50. 

The SD of P is approximated by (B), actually 
Monte-Carlo runs have shown that this approximation 
is quite accurate. The SD of P is plotted on the y-axis 
versus N (on the abscissa). The minimal value of SD 
(P) is attained for N 21 60, note that this value is rather 

The effect of the temporal averaging on the 
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X I O '  

0 
50 100 150 200 250 

Fig. 7. Variance (sqrt) of the estimated range (in m, y-axis) versus 
N (number of snapshots, AT = 1 s) for a close moving source 

(0, = 2 ~ 1 3 ,  p = n/4, v = 10 m/s, ro = 10 km, p = -10 dB) and a 
short array (p = 50, d = X/2). 

Fig. 8. Variance (sqrt) of the estimated range (in m, y-axis) versus 
N (number of snapshots, AT = 1 s) for a close moving source 

(00 = n/4, p = n/4, v = 10 m/s, YO = 10 km, p = -10 dB) and a 
short array (p = 50, d = X/2). 

xi04 
2. 

1 8 -  

1 4 -  

1 2 -  

50 100 150 200 250 

Fig. 9. Vanance (sqrt) of the estimated range (in m, y-axis) versus 
N (number of snapshots, AT = 1 s) for a close moving source 

(00 = 2 ~ 1 3 ,  p = n/4, v = 10 m/s, ro = 10 km, p = 10 dB) and a 
short array (p = 50, d = X/2). 

important and that var(P) increases quickly with N (for 
N 5 150). 

of sources parameters (Figs. 8 and 9). For Fig. 8, the 
The behavior of SD (P) is similar for other choices 

0' I 
50 100 150 200 250 

Fig. 10. Variance (sqrt) of estimated range (in m, y-axis) versus 
N for a far moving source (60 = n/4, ,O = s/4, v = 10 m/s, 

1-0 = 100 km, p = -10 dB) and short array (p = 50, d = X/2). 

50 100 150 200 2.50 

Fig. 11. Variance (sqrt) of estimated range (in m, y-axis) versus 
N for close moving source (00 = 2a/3, p = n/4, v = 10 m/s, 

ro = 10 km, p = -10 dB) and large array (p = 500, d = X/2). 

I 
50 100 I50 200 250 

Fig. 12. Variance (sqrt) of estimated range (in m, y-axis) versus 
N for far moving source (00 = 2a/3, p = n/4, v = 10 m/s, 

ro = 10 km, p = -10 dB) and large array (p = 500, d = X/2). 

source parameters are 80 = w/4, andP = w/4, the other 
parameters are unchanged. Then, the values of SD (P) 
are modified but not its behavior (wrt N). The case of 
a strong source ( p  = 10 dB) is considered in Fig. 9, the 
source parameters are those of Fig. 7. The minimum 
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Fig. 13. Variance (sqrt) of estimated range (in m, y-axis) versus 
N for far and strong moving source (00 = 2ir/3, p = */4, 

v = 10 m/s, p = +10 dB) and large array ( p  = 500, d = X/2). 

of SD ( i )  is sharpened and the values (of SD (i)) are 
divided by a factor which is approximately equal to 
10. This factor agrees with the theoretical calculation 
of var(P) which asserts that var(P) depends on p as a 
factor of ( l / ~ ) ’ / ~  (exactly equation (1 + pp)ll2/pp) [4]. 

completely modified by the initial source distance ro. 
Thus, it is equal to 100 km for Fig. 10; the other source 
and array parameters are identical to those of Fig. 8. 
Then, the effect of the choice of N is less dramatic, 
but the values of SD ( i )  are rather important. These 
different behaviors of SD ( i )  (versus ro) can be easily 
explained by the size of the resolution cells i.e., 283 
and 213 which are much larger for a far source (see 
Fig. 18). 

Another important factor is p .  Its effects are 
illustrated on Figs. 11, 12, and 13. A low range source 
is considered for Fig. 11 as well as a very large sensor 
number ( p  = 500), and the source parameters are 
those of Fig. 7 (i.e., ro = 10 km, v = 10 m/s, p = 
-10 dB, 00 = 27r/3, ,B = 7r/4). Then, the optimum 
value of N is very little and the array performance in 
distance estimation is deeply, degraded by increasing 
N .  For a long range source (ro = 100 km), the 
behavior of SD ( i )  is illustrated by Figs. 12 and 13. 
They are quite similar to those obtained for p = 
50 and r-0 = 10 km, the behavior of SD ( i )  seems 
therefore very depending on the ratio ro/L ( L  = pd,  
array length). Note that the minimum value of SD ( i )  
for a strong source p = 10 dB and a distant source is 
rather low ( p  = 500) since it is approximately 500 m. 

On the opposite, the behavior of SD ( i )  is 

IV. RANGE ESTIMATION BY USING A PARTITIONED 
ARRAY 

As previously, the array is assumed to be linear and 
constituted of p equispaced sensors. We now consider 
that the great array is partitioned into C subarrays, each 
of them corresponding to an array of p/C sensors. 

RZ A I n  
c------, 

L 

Fig. 14. Definition of triangulation parameters. 

Actually, this approach for range estimation can be 
seriously motivated as it will be seen. One reason is 
the computation cost of a focused beamforming (4), 
(20) for a large array which may become tremendous. 
Another one is perhaps even more fundamental, 
the optimal integration time (i.e., N A T )  for range 
estimation may be very low (as it has been seen 
previously in Section 111) and depend highly on the 
source trajectory parameters which are generally 
unknown. Other reasons are the wavefront spatial 
coherence [l] and the-effects of bias in estimating the 
cross-spectral matrix R [14]. Therefore, partitioning 
the array seems to be a good mean for “robustifying” 
the focused beamforming. Note that this partition 
can also be considered as an approximation of the 
circular wavefront by a regular polygon. This simple 
constatation is instrumental. The performance of a 
two-arrays system is well known [15, 161 but this is not 
true for a more general C-arrays system in the presence 
of moving sources. 

This is the major aim of the Section IV. Classical 
results for two arrays (triangulation) are briefly 
presented and then the performance analysis is 
extended to more general systems. 

A. Triangulation Performance 

The array is divided into two equal arrays (each 
of p / 2  sensors, p even). On each subarray, the 
plane wave assumption is made (even if it is not very 
realistic) and each subarray two bearings 191 and 02 are 
estimated as depicted in Fig. 14. With the notations of 
Fig. 14, one has 

m = rl sin(& - 62) = LsinO2 

(L is the distance between the acoustical centers of 
the two subarrays) and thus 

sin 82 
sin(81- 62) ’ 

q = L .  

Similarly, one has 

n = rl sin(&) = r2sin(&) 

and therefore 
sinel 

sin(81 - 62) ’ 
r2 = L 

(33) 

(34) 
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An estimator of r1 is obtained by replacing the 
exact bearings 81 and 82 into (33) or (34) by their 
respective estimates, i.e., 

P1 = L (35) 
sin& 

sin(& - 42) ' 

The term P1 defined by (35) is an estimator of rl 
(triangulation). The statistical performance of this 
estimator have been carefully studied for a fixed source 
[15, 161 leading thus to the following results: 

sin82 

sin83 
- X = L  - 

sineL 2~ 
MSE(P1) N U;- 

L2sin2 8 

rl sin(81 - 62) 

r2 sin(& - 83) 

(39) 

rt-1. sin(eL-l - eL).  

1 

X = L .  

where MSE is mean square error. 

the estimated bearing itself given by the Woodward 
formula, i.e., 

In the formula (22) U: represents the variance of 

sin 63 

sin it 

f i x  q - 1  1 2 e 3 = - -  -.- 
T L J q + l  sin8 

with 
L = qd, 

d: intersensor distance 
q = p / 2  

(37) 
, I  

p: signalhoise ratio 

0 deg: array axis. 

For the sake of clarity, a proof of the classical 
formulas (36) is briefly presented in Appendix B. In the case of a fixed source, then the calculation 

of the MSE bounds for the bearing and range 
estimates may be achieved easily. More precisely, 
consider the following approximations of the vector 
X components: 

sin& = -sin81 I1 

rk  

with 

Assuming that L/r l  << 1, the following approximation 
is finally obtained: 

'1 E 1 - (k  - 1)- L cos81 
r k  I1 
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FurtFermore the following assumption is made. The 
vector X is Gaussian i.e., 

X is N(M,r) 

with 
A M = X and r = L2cos28uiId =&d 

(44) 
(c,' given by (37)). 

to 81 and r l )  is then direct, leading to 
The calculation of the FIM components (relatively 

Referencing the array wrt its center, it comes: 

F12 = Fzl = 0. (4.6) 
Now using for instance the rough approximation 

r1/rk 21 1 - (k - l ) l / r c o s 8  (in (43)) the following 
approximations of the norms of the derivative vectors 
are obtained: 

leading finally to the following bound for MSE (i): 

In (48), U; is the variance of the estimated bearing 
for any subarray of the partitioned array. Note, that 
(48) extends (36). From this formula, it is obvious that 
using only a part of the (partitioned) array (e.g., the 
two extremities) for triangulation produces significant 
loss. It is also obvious from (36) and (48) that MSE(P) 
increases with e. Actually, the spherical wavefront 
is better approximated as 
parameters are indepently (I' diagonal) estimated on 
the subarrays. This effect is predominant. It is thus 
quite illusory to expect improved performance from 
partitioned processing in the ideal cases (fixed sources, 
coherent wavefront, etc.), even if the bound (48) may 
be pessimistic. They consist essentially in improved 
robustness and a reduced computation burden. 

Actually, the true problem incomes with moving 
sources. Then the principle of the calculation of the 
MSE relies on  the first order expansion of the gradient 
vector of the function f :  

increases but the source 

Of(X,O) Vf(8 ,R)  + H(a,&)  ' (6 - a) 

with 
6 
Of(&, 6): gradient vector of wrt R calculated 

H(a,%)  : Hessian matrix off  relative to R. 

The elements of Of and H are directly calculated 
from (39) and (41). Now, the following equality holds 
by definition of (a, 2): 

: estimate of R associated with 2 

(49) at the point 6 for X = & 

Of(B,s2) = 0 

6 - a 2L -H- ' (R,x)Vf(X,n)  

therefore 

so that finally 

MSE(~Z)  = E[@ - n)(6 - a)'] 
= H-'(~,X)E(Vf(X,R)V'f(X,a)) 

x H-'(R,X). (50) 

Now, one has from (41): 

V n f ( X ,  R) 5 Vf(X,  Q )  = 

ax 
2(X - 8)' - 

ar l  
ax 

2(X - X)' ~ a cos el 
( X  X(R)) 

but 
E[(X - X)(X - &)'I N L2Cos28a,'ldl 

yielding, finally, 
ax' 

The vectors ax/arl and aX/dcos81 are 
straightforwardly calculated (see Appendix C). 

The study of the performance is illustrated by the 
three following tables. A moving source is considered 
with the following kinematic parameters: v = 10 m/s, 
ro = 100 km, 80 = s/4,  and = n/4. Then the values 
of the approximation of var(P) given by (51) are 
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p = - 10 dB 

Nap, = 10 

s.d. (+) 

mean (F) 

I s.d. ( b )  

TABLE I1 
Statistical Performance of Range and Bearing Estimation With a 

Partitioned Array 

1 787 m 

calculated estimated 

nq. 51 10 000 runs 

3 321 m 3 333 m 

100 165 m 

1.7 x rad 1.7 x rad 

~ 

Note: e = 2, q = 500. 

s.d. (8) 

TABLE I11 
Statistical Performance of Range and Bearing Estimation With a 

Partitioned Array 

3 267 m 

5.3 x lo-' rad 2.5 x lo-' rad 

I mean ( i)  I 100 727 ni I 100 228 m I 
Note: I = U), q = 50. 

compared with empirical estimation obtained by loo00 
Monte-Carlo runs. The results are summarized in 
Thbles I, 11, and 111. 

R is estimated by maximizing the least-square 
functional defined by (49) and (51). This a nonlinear 
problem which is solved by using a standard MATLAB 
routine (Nelder-Meade algorithm). 

range estimation instead of the whole array processing 
degrades slightly the performance in range estimation 
as seen on n b l e s  1-111. However, a reduction of 
the computation burden and, overall, an enhanced 
robustness is expected. 

can seriously improve the robustness in range 
estimation for the following reasons. 

These tables need some comments. The parameter 

The use of a partitioned array processing for 

Actually, the use of a partitioned array processing 

1) The choice of the number of temporal 
integration (or snapshots) N is much less critical. 

2) The effects of physical factors like the spatial 
coherence of the wavefront, the array shape, etc. are 
generally less important for a shortAarray. 

3) The estimation of the CSM R for a large array 
suffers from major drawbacks (e.g., bias decoherence 
[141). 

For all these reasons, the partitioned processing 
appears promising for large array. It is often 
referenced in the literature under the name 
"decentralized processing" (see e.g., [17-21]), but 
it represents only a very specific (and restrictive) 
approach to the general problem of distributed 
processings [22-241. 

There are some variants of the partitioned 
processings. One of them is the Stansfield algorithm 
[20, 251 whose performance has been analyzed by 
M. Gavish and A. J. Weiss [26]. The interest of the 
Stansfield algorithm relies on the linearization of 
the X vector [%I. It is then possible to use standard 
least-squares algorithms, i.e., with the notations of [%I 
consider the following (Stansfield) functional: 

&(6,X) = ;(AX- b)'R-'(AX- b) (52) 

where 

/sine1 -cose1\ 

I xs, sine, - ys, cose, 

(X,i,ysi) are the Cartesian coodinates of the ith sensor 
(here the center of the ith subarray) 

R = A diag(r:, . . . , r:) 

where X = (xt,yt)', the Cartesian coordinates vector. 
The minimization of (48) with respect to X leads to 

X ~ T  = (A'R-'A)-'A'R-'b (53) 

provided that R is known. Actually, even R is not 
perfectly known, rough estimates of R can be used. 

way, but it replaces the first-order expansion of the 
gradient Of(%, 6) by a second-order one. 

The bias of 6 (46) may be calculated in the same 

V. DETECTION PERFORMANCE FOR MOVING 
SOURCES 

This section deals with the study of the detection 
performance of the classical (quadratic) [l, 27-30] 
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receiver (21) in the case of a moving source. An 
exact calculation of the detection performance can be 
achieved at the expense of rather tedious calculations. 
They are presented in Appendix D and summarized 
below (with the notations of Appendix D): 

07 

0 6 -  

2 0 5 -  

0 4  

0 3  

02 

0 1 -  

with 

- 

- 

N=79 p a s 2  pr500 SO 001 b=l  
- 

A D =DnM ( N  even). 

Since the calculation of Pf, is not affected by the 
source motion, it takes the classical form [l, 31, 321: 

(55) 
f =o  

with /3 = bp. 

approximation of the quadratic receiver even if it 
is a rather rough approximation. More precisely, 
the following approximation is considered (with the 
notations of Section 111). 

It may be enlightening to consider the Gaussian 

& O M )  - N(m,a2)  

with 
1 

N 
m = E(P(RM)) = - CL;' tr(Dh,D;iMRt) 

1 
02 = var(P(QM)) = - ~ z j '  t r [ ( ~ n , ~ ; , ~ ~ ) ~ ] .  

N2 

With this approximation in mind, the probability of 
(56) 

detection takes the following form: 

The probability of false alarm takes a similar 
form. Examinating (56) and (57) it is not hard to 
see that, for a given threshold p ,  the probability P d  

increases at first (as N increases) since the variance 
is decreasing and then decreases as the mean m (and 
the variance) decreases and finally tends towards zero 
[7]. The optimal choice of N would be the value of 
N maximizing P d  but it is quite a simplistic approach 
since, on another hand, a larger N allows us to choose 
a lower threshold p. 

for moving sources must be considered in terms 
Therefore, the study of the detection performance 

0.7 

0.6 

0.5 

N =  nuriihrr of snapshots 

- : N = l O  
... * : N = 3 0  

moving source : -25 dB , p=64, 

N =  nuriihrr of snapshots 

- : N = l O  
* : N = 3 0  

0.3 

0.2 

o : N = 4 0  
. : N = 5 0  
+:N=M) 

'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Pfa 

Fig. 15. Typical behavior of ROC curves for given source +array 
scenario and various values of N (NI  < Nopt < Nz). 

Fig. 16. ROC curve for a far moving source (00 = ~ / 4 ,  p = s/4, 
v = 10 m/s, ro = 10 km, p = -30 de)  and a large array ( p  = 500, 

d = X/2). 

of receiver operating characteristic (ROC) curves. 
Actually, for fixed source and array parameters, 
the ROC curves begin to increase with N (i.e., 
ROC(Nl) > ROC(N2) for each couple P d ,  Pf, and 
NI > Nz), attain a maximum value for a given value 
of N (named NOPI for the rest), and then decrease. 
This behavior is illustrated by Fig. 15. Obviously, the 
value of No,, depends upon the physical parameters 
of the source + array system, i.e., the kinematic 
parameters of the source, the number of sensors, and 
the signal-to-noise ratio. 

surprising. For Figs. 16 and 17, the array is constitued 
of 500 equispaced sensors (d  = X/2), the source speed 
is v = 10 m/s and its heading /3 and its initial bearing 
are both equal to a/4, its signal-to-noise ratio. p is 

For the first figure (Fig. 16) the initial source 
distance is ro = 100 km, while this distance is reduced 
to TO = 10 km for the second experiment (Fig. 17). 
Then, for the long-range scenario (Fig. 16) the 
optimum value of N is Nopl = 79, while for the close 
scenario (Fig. 17) it takes a very low value, i.e., N = 9. 
This fact may be easily explained by considering the 

In this spirit, the following result is rather 

-30 dB. 
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Fig. 17. ROC curve for a close moving source (80 = 7r/4, 
p = n/4, v = 10 m/s, ro = 10 km, p = -30 dB) and a large array 

( p  = 500, d = X/2). 

respective values of the elementary cells (in bearing 
and distance), i.e., for instance the values of the 
parameters 283 and 213 presented and calculated in 
Section I1 (see Fig. 18). 

degrade the detection performance thus reducing 
drastically the interest of a direct processing of a 
very large array. Consider for instance the following 
problem. A far source is moving with the following 
kinematic parameters: ro = 100 km, v = 10 m/s, 00 = 
2 ~ j 3 ,  /3 = n/4. 

In a first time, a very large array is considered 
( p  = 1000) as well as a very low signal-to-noise 
ratio (p  = -30 dB). In this case, ATopt = 43 and the 
corresponding ROC curve is recorded. 

considered since p = 50. Then, a similar ROC curve 
is obtained for the following source and processing 
parameters: p = 0.0035 and No,, = 731. Therefore, 
the detection gain of the large array is approximately 
equal to 5 dB (exactly 5.44 dB) while it should be 
equal to 13 dB (i.e., 1 0 l o g , o ( ~ ) ,  [ l ,  30)). This 

More generally, the Source motions may seriously 

In a second time, a much shorter array is 

,I range-k ing  resolution cc11 ,I 

/ 
/ 

/ 
/ 

/ 
/ 

b 
X o shon array 

value is rather low and is easily explained by the 
respective values of Nopt. The reduction of the array 
length is balanced by the increased value of No,,. This 
conclusion is even reinforced by the source closeness. 
More philosophically, the array processing relies upon 
the spatio-temporal diversity [19] and, generally, these 
two diversities are antagonist. Therefore a compromise 
is necessary. 

However, it is worth noting that this (classical) 
analysis is too simplistic. Actually, many informations 
from a large array may be used, especially for close 
sources (e.g., differential Doppler, Doppler rate [33, 
341, etc.). It seems that the direct processing of the 
whole array outputs can suffer from serious problems 
and this pleads for the use of partitioned processings. 

This partitioned processings may include the use 
of dynamic informations relative to sources (Doppler, 
Doppler rate, etc.). But if a rather classical analysis 
of partitioned processings for source localization can 
provide a satisfying analysis of the performance for 
source localization, this is not true for the detection 
problem. Actually, the true detection problem does 
not correspond to the scholar study: a fixed source 
and a stationary array. The true problem we deal with 
is much more complex. In fact, the notion of point 
source must be replaced by the notion of source track. 
The analysis of the associated detection problems 
lead to complex and difficult problems involving data 
association, track-to-track associations, tracking and 
multiple hypotheses [35-381. 

a brief introduction to vast and difficult problems. 
Therefore, the next section is simply considered as 

VI. ON THE BEARING ASSOCIATION 
PERFORMANCE 

The general frame of this section is completely 
similar to Section I n .  The array has been divided 

range-bearing resolution cell 
/ / / 

souccuaj&ry I '  
0 1  large array X 

Fig. 18. Comparison of range-bearing resolution cells for short and large array (array center at origin 0). 
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not candida 

u b k a y  I subai 

Fig. 19. Bearings association: general scheme. 

into .t subarrays. As previously, the plane wave 
assumption is made on each subarray and, for this 

of .t estimated bearings {&,&, ..., O f } .  

P: is it possible to fit the observation sequence 
{&,42, ,. . ,&} to a model (01,&, . . . ,el) with 

82 = f2((9l,Il),...,& = fi(hr1) 

leading to the following association test: 

section, the observation is. censtituted of a sequence 116 - 0112 3 -2 (+ - +) -l log ( p  (2) p ,  = p’. 
Ho 

The general association problem stands as follows. (59) 
Therefore under the Gaussian hypotheses (for both 

HI and Ho) the likelihood ratio simply results in (59). 
The association performance are then directly deduced, 
i.e., 

(the functions fi, . , . , fi being defined by (38)). 

defined by with 
Let 6 and 0, the observation and model vectors be 

.-A 0 =(& ,&, . . . ,8J 
A o =(el, e2,. . . , ef)’ 

and define the association procedure as below [17]: 
HI 

Ho 
116 - 0112 5 d .  (58) 

In (58), the scalar d is the association threshold. 
The association performance may be easily 

calculated under the Gaussian hypotheses. Let us 
consider, on a first time, the following likelihood ratio: 

P ( 6  I Ho) kp 
P(6 I HI) 

with 

1096 

and similarly 

Pf, = 1“ PX2,ui(x)dx. (60) 

Obviously, the probability of association Pad (59) k 
directly related with the value of the threshold d (the 
validation gate). The calculation of the ROC curves 
for the association test is straightforwardly deduced 
from (56) and it is easily seen that the association 
performance is simply depending on the ratio UI/(TO. 
Actually, this analysis is quite (and too) simplistic. SO, 
this problem must be analyzed by using the general 
frame of probalktic data association (PDA for the 
sequel) as developed in [36, 39, 401. More precisely, 
the following structure is considered (and depicted in 
Fig. 19). 
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a, : m e  detection 
exact SOUKC location 

Y 

falx alarm 

0 
subarray I subarray I 

Fig. 20. 

X 

Definition of true detection and false alarms. 

1) The measures and the models are indexed by 
the time (current index t). 

2) U, is a domain of W2 e.g., [xI,x~] x Lyl,y2]. 
The choice of the bounds of the domain results from 
performance analysis, operations analysis, etc. 

3) The array is partitioned. There is a first 
elementary detection step for each subarray. 

4) mt estimated measures are candidate, an 
elementary measure is an (uncertainty) ellipsoid 
containing at least one intersection of lines issued from 
the subarrays. It is worth centering the ellipsoid on the 
barycenters of the line intersections (Fig. 20). 

mf correspond, respectively, to true detections and 
false alarms. 

5) Among the m, measures falling in U,, mf and 

Based on the ideas of C. Jauffret [a, 391, the 
following statistical model of the observations is 
considered. 

1) A I :  there is at most one true detection on the 
domain U, (however this hypothesis may be easily 
extended), 

j(Hj,,) the density of a barycenter gj,t is Gaussian, 
i.e., 

2) A2: conditionally to a true detection in the cell 

1 
p(gj,t I Hi,,) = - ( 2 ~ ) - ~ / ~ ( d e t C ) - ’ / ~  

PlJ! 

x exp{-$IIgj,t -hj,f(X)II;-1} (61) 

where in the simpler case d = 2, X is a state 
vector characterizing the source trajectory, C is 
the uncertainty ellipsoid, and represents the 
hypothesis: gj,, is a true detection (i.e., the exact 
source location is situated in ellipsoid associated 
with g j ) .  

Finally: 

x exp{-~IIg-hj,t(X>II2c-1}dg- (62) 

3) A3: the false alarms are uniformly distributed in 
U,, i.e., 

1 
p(gj,f I = U ( j  # 0 

and the number of false alarms is Poisson distributed, 
i.e., 

+U 

k!  
P(mf  = k ) i ( X u ) k -  i ,u , (k )  

(the parameter X is fixed by statistical considerations). 
Then, if the observation at time t is constituted of 

m, barycenters gl,,,. . . , g,,,, (represented by the vector 
G,), a general expression of the likelihood stands as 
follows: 

x exp{-iIIgj,t - hj,t(x>I121. (63) 

For the sake of completness, an elementary proof 
(based on [a]) is presented in Appendix E. 

This data association approach may be directly 
extended to dynamic data association. More precisely, 
consider a source in rectilinear and uniform motion, 
then its trajectory is characterized by a state vector X 
[41] (e.g., initial location and velocity vector). Assuming 
the various observations G, statistically independent 
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(the collection of these vectors is denoted G ) ,  then the 
likelihood takes the following form: 

P(G I X) = rI P(Gt I XI. (64) 
I 

It is then possible to estimate the vector X 
maximizing the functional p(G I X) (in (60)) by using 
a numerical (gradient's like or Newton) algorithm. The 
generalized likelihood ratio takes then the following 
form [40]: 

where X denotes the X vector maximizing the 
likelihood function (64). 

(by increasing the dimension of X). Another view of 
the problem is track-to-track association [37, 381. 

This approach may be extended to multiple sources 

VII. CONCLUSION 

The performance of wavefront curvature methods 
for range estimation has been investigated along with 
associated detection problems. The main originality 
of this paper relies on the consideration of the source 
motions. However, this simple (and quite natural) 
hypothesis has important practical consequences. In 
particular, the benefits of a direct processing of the 
whole array of sensors (detection gain, variance of 
the range estimates) are seriously mitigated by the 
lack of robustness for moving sources, which is the 
general case. Furthermore, the performance analysis 
presented in this paper (for large array) is certainly 
quite optimistic since it does not take into account 
physical perturbations like wavefront coherence, array 
calibration, bias decoherence, etc. 

For all these reasons, a direct processing is quite 
questionable and can be advantageously replaced by 
a partitioned array processing. The performances of 
such partitioned processing have been studied and 
compared with the direct processing one. It seems, 
therefore, that it represents a promising way for the 
processing of large arrays. 

APPENDIX A 

The matrix dg/dR presents the general following 
form (8) and (9): 

G S  

" "=(s  dR E )  

therefore 

l E -  

( % ) - l =  (-s :) 

Now numeral considerations assert that S2 is little in 
regard to GE, therefore 

providing thus the following approximation: 

1 aP 
f~ - r M  N -(1- S / G ) -  

E ar 

so that finally (assuming the bias null): 

var(fM) N 
a r / r  = r M  

Now, the following equalities hold from (21)-(26) 

g ( r M , k )  = 2Re(U;, RD,,) 

Furthermore, classical calculations [7] provide: 

E([Re(U& 8Dabf)12> 

N-1 

(67) 

The above equality relies on the following classical 
formula: 

E [ (X* AX)(X* S X ) ]  

= tr(BRAR) + tr(AR)tr(BR) (68) 

A R =cov(X); X :  N(0,R) 

itself resulting from the expression of the characteristic 
function @ of the quadratic form X * A X ,  i.e., 

@(U) = (det(Zd - iuAR))-'. (69) 

As is seen later, this formula is instrumental for 
the calculation of the detection performance (see 
Appendix D). 

easily calculated, yielding: 
Using (65), the expectation of g 2 ( r M , k )  may be 
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with or, equivalently, 

1 1 
62. 

(72) 

(with : A = Dn,U& + U,, DAM) 

Assuming the estimation noises 61 and 62 
1 = - 

N2 

N-l 

{tr[(ARt )2] + tr2(ARt )) 
t =o uncorrelated and of the same variances, a first-order 

approximation of the MSE is directly deduced: 
N - 1  N-1 

(73) 

1 
MSE(P2) f rg [ (- - 

+ 
@ 

tr(ARt)tr(ARt,) 
t=o t '=O,t '#f  tanel tan& - 82) 

+ Iff;. 
tan(& - 82) 

N-1 
= - t r [ ( ~ ~ ~ > ~ ]  + 

A further step of approximation is the long distance t =o N2 

(70) 

The expression (28) of var(PM) results directly from 

hypothesis [15, 161 (i.e., tan81 >> tan(& - 82)) which 

(74) 
2r2a,2 

tan2(81 - 82) ' 

in 
MSE(P2) 21 (27), (S), (70). 

APPENDIX B 

A simple proof of the formula (36) is now 
presented. Since the range estimation P2 given by 
(35) is aAdifferentiable function of the observation 
vector (81,&)', in order to calculate the term 
E(P2 - r ~ ) ~  = MSE(P2) a first-order expansion of i 2  is 
considered. 

of the observation vector: 

A 

For this purpose, consider the first order expansion 

el = el + b1 1̂  82 = 82  + 62 (61 = de,, 62 = Se,) 

then, it comes: 

Another approximation is usually made: 

sin(& - 8,) = - sin81 N - sin8 
L L 
r2 r 

(for far sources r1 N r2 = r ,  81 N 02 = 8) and 
2 cos(e2 -el) = (1 -sin (e2 - 

1 L2 2 
211- --sin 8 

2 r2 

yielding the following classical [15, 161 approximation: 

r4 1 
MSE(P2) N 2 - L2 - sin-28ff:* 

An approximation of the bias is obtained in the 
same way but a second-order expansion must, this 
time, be considered: 

(75) 

so that 

1 L  
P2= . sin(& - 81) and similarly: 

1 
tan(82 - 81) 

2 sin(O1- &) = sin(81- 8,) 

--I 2 
(71) 

1 sin 
sin81 + 61 cost91 - (62 - 61) 

tan(& - 81) . 

A Denoting 6r2 the range error (612 = P2 - r2), direct 
so, that: calculations yield: 

tan2(81 - 82) 

(tan(81 - 82) << tan&, 61 and 62 uncorrelated). Finally, 
the following approximation of the bias is obtained 

sin81 
6r2 = sin(81- ' 8,) [61 cosel- (62 - 61) tan(82 - 0,) 

and, thus 

1 
bias(P2) N 2 r p ;  

tan2(& - e2) 
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but: tan(& - 02) 1: Lsinelr ,  and, consequently: 

r3 
E(P1) N 2a;- 

L2sin2e' 

APPENDIX C 

A X =(sinOz, . . . , ~ i n O l ) ~  

then 
A 

xk = L sin(&). 

(77) 

APPENDIX D 

This Appendix is devoted to the calculation of Pd 
and Pf, in the unique source case [7, 7'1. The quadratic 
receiver (21) takes the following form for a moving 
source (21)-(23): 

1 N - l  P(OM,rM) = - X:DD*X, 
I =o N 

We are mainIy concerned with the calculation 
of the probability density of P under 231 (source 
present). The calculation of the characteristic function 
constitutes the basic tool. 

A, (A, k X ; D D * X , )  under H I ,  then 
Let @I,, (U) be the characteristic function of 

= (det(ld - iuDD* Rt))- ' ,  i2 = 1 

with 
A R, = ODtD; + bld  (Dl =D@,,r,) 

so, that 

@l, f (u)  = (det[ld - iubDD* -iuolD*D,12])-'.  

(79) 

Now, the following first-order (exact) expansion of 
det(A + AB) holds (rank B = 1): 

det(A + AB) = detA + AdetAtr(A-'B). 

Thus, denoting: 

I A = Id  - iubDD* 
I 

B = OD: 
A = -iuo 

it comes: 

detA = 1 - iubp 

A-' = I d  +a!DD* 

with 
a! = iub(1- iubp)-' 

yielding finally: 

@;:(U) = 1 - iu(bp + olD;DI2). (80) 

The characteristic function of N p ( O M , r M )  is 
then directly deduced, i.e., 

with 
a!, = bp + olD;DI2. (81) 

Thanks to the source motion model, the following 
equality trivially holds 

a!, = a!(N - 1 - t) .  

Therefore, two cases must be considered for the 

1) N is even, then: 

calculation of Pd. 

2) N is odd, then: 

( N -  l ) / Z -  1 
1 

= 1 - i(b, + op2)u 

(82) 
Consider now, for instance, the case N even. Let 

!€'I the auxiliary function defined by 

@ l ( U )  = !€'?(U) 
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then 
N/2-1 

Af 
Nf2 -1  

*1(u) = n (1 - iau)-' = 
f =o f =o 

with 
N / 2 -  1 

j = O , j # f  

Now, the function !&(U) is the Fourier transform 
of the function Pl(x), i.e., 

where Y ( x )  is the Heaviside function. 
This simple remark constitutes the trick of the 

calculation of the probability of detection Pd. Actually 
one has now 

TT 
@1(u)= P?)(X) il Pl(X) 8 Pl(X) 

(the symbol 18 means convolution) so, that: 

(85) 
The calculation of the integral in the above formula 

is direct yielding 

N/2-1  2 
A.  P ~ ) ( x )  = -y(x)xe-x/ai 
a? i = O  

Now, one has 

Pj f&)  = NP,(2)(Nx), 

so, using the previous resu!ts, Pd is obtained, i.e., 

A 
pd = p j  f HI ( x )  > 

with 

a; = bp  + alDfDI2 

Ai (ai)Nf2-1 n N / 2  - l(o; - oP)-'. (87) 
p=O,p#i 

This formula provides an exact expression of Pd 
for a moving source and the quadratic receiver. The 
calculation of Pd for N odd is achieved by using the 
same method, yielding a slightly more complicated 
expression [7, 7'1. 

The calculation of the Ph is quite classical since 
it is not changed by the source motion. A direct 
application of the method of the characteristic function 
yields 

(U) E[exp(iu&) I Ho] 
= (1 - iup1-l 

with p = bp  and whatever t. Now 

~ N ~ N - l ~ - N x f p  
P f i ~ , y ~ ( ~ )  = NPo(Nx) = p N ( N  - l)! . (88) 

The probability of false alarm can be directly 
deduced from the preceding calculations since one has 

pfa = lm pjl Ho ( x )  d x  

/3 = bp. 

It is worth comparing this expression of Ph with 
the expression of Pd in the case of a fixed source which 
stands as follows: 

APPENDIX E 

This Appendix deals with the calculation of the 
likelihood functional (63) for bearings association. The 
proof is essentially reproduced from [MI. 
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Let us consider p(Gt ,mt  I X ) ,  then: 

p(Gt,mt I X )  = p(Gt I x,mt)p(mt 1 X )  

(using the “lemma”: p(A ,B  I C) = p ( A  I B , C ) p ( B  I C ) )  

= [ p p t  I x,mt ,m;  = l)p(mli = 1 I X,m,) 

+ p P t  I X”:’ = O)p(m;i I x,mf) lP(mf  I X I .  
(91) 

Now, the following equalities hold (see “lemma”) 

p(m:’ = 6,mt I X )  = p ( m f  = 6 I X,mt)p(mt I X )  

(6 = 0 or 1) 

so, that 

- p ( m f = d , m ; f  - = m t - 6 1 x )  

- p(mf = 6 1 x>p(m{  = m, - 6 1 X )  

(independence of the true detection and false alarms) 

p(mt I XI 

- 
P(mf I X )  

(Pd denoting the probability of detection). 
Furthermore, one has: 

mt 

p(Gt I X,mt,m;i = 1) = C p ( g j , t  I x,m;i = 1,Hi,j> 
j=1 

(93) 
(HI,, represents the event: the true detection is 

situated in the uncertainty cell associated with gj,,) 
since the events H1.j are exclusive (there is at most one 
true detection in U,. 

Collecting (61) and (93), it comes: 

p(Gt I x,mt,mp = 1) 

x exp{-:IIgj,l- hj,r(X)I121- (94) 

(95) 

Furthermore, one has from (4): 
p(Gt I X,mf,mfi = 0) = U-“. 

Finally, collecting (91)-(93) and (95) yields (63). 
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