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This paper describes a method to estimate parametric motion
models. Motivations for the use of such models are, on one hand,
their efficiency, which has been demonstrated in numerous
contexts such as estimation, segmentation, tracking, and inter-
pretation of motion, and on the other hand, their low computa-
tional cost compared to optical flow estimation. However, it is
important to have the best accuracy for the estimated parame-
ters, and to take into account the problem of multiple moticn.
We have therefore developed two robust estimators in a multi-
resolution framework. Numerical results support this approach,
as validated by the use of these algorithms on complex se-
quences.  © 1995 Academic Press, Tnc.

1. INTRODUCTION

One of the major areas in computer vision research is
dynamic scene analysis, which has motivation from numer-
ous applications |1, 28, 27]. Some of them (meteorology,
biomedical, . . .) are concerned with natural physical phe-
nomena, and therefore, deal with scenes including nonrigid
objects with fuzzy dynamical behavior. We can find com-
plex situations in other domains, such as autonomous Sys-
tem navigation in unknown environments or telesurveil-
lance, where human body motion is present. Achieving
motion analysis in such contexts is a difficult task which
requires a suitable and efficient formulation. In this paper,
we perform the motion analysis by identifying 2D paramet-
ric models of the optical flow field; in particular we use
polynomial models of the point coordinates (x, y) in the
image plane. Those models include constant flow (global
translation), affine flow (first-order polynomials in x and ¥),
and quadratic flow. This choice turned out to be judiciousin
many different situations such as segmentation of the im-
age into regions with homogeneous apparent motion [35,
9], extraction and coding of temporal information in a
motion-compensated coding scheme [16,30], apparent mo-
tion estimation [36], tracking [26], and recovery of useful
3D qualitative [9] or quantitative [29] motion information.
Similar models have been used with success for the match-
ing of stereo images [2]. There are two arguments for the
use of such an approach. The first one is that a small

number of parameters (six in the case of affine flow) are
enough to completely describe the flow vector at any point
in the region of validity, which can be large, and that those
flow vectors constitute a very good approximation of the
real optical flow, as the studies mentioned above show.
The second argument is the low computation cost.

However, obtaining reliable and accurate estimations
is crucial, for instance to separate more easily different
motions, or to make use of the numerical results in a second
stage (for example [29]), the efficiency of which usually
deeply depends on the accuracy of these resuits. In numer-
ous dynamic scene analysis issues, it is useful and often
even necessary to first recover the motion due to camera
movement, and then to perform detection and tracking of
moving objects in the scene. We present in this paper
two robust multiresolution algorithms for the estimation
of parametric motion models.

It is now well-known that the use of multiresolution
schemes improves considerably motion analysis estimation
using differential methods, i.e., using spatiotemporal gradi-
ents of intensity. This has been mainly studied and vali-
dated in dense optical flow field estimation [3, 13, 15, 23].
Accurate estimations can be recovered even with large
displacements or with an irregular intensity gradient distri-
bution in the image. More recently, [4] and [26] propose a
multiresolution “least-mean-squares” motion parameters
estimation technique. However, this technique is efficient
if the region which forms the estimation support is suffi-
ciently large. Thus, if no segmentation is available, the a
Dpriori region where the estimation is performed (e.g., the
whole image or blocks of reasonable size) may contain
several motions and the results will surely be affected. In
[4], it is postulated that the global motion results from
egomotion, and that the projections of moving objects oc-
cupy only a very small part of the image. There is less
constraint in [5], where transparent motion is under consid-
eration, but only constant models are used. In [26], the
regions involved in the estimation process are given by a
motion segmentation that ensures a single motion per
region.

The problem of the support region is therefore of great
importance, given that we want to deal with complex situa-
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tions or to get rid of a preliminary segmentation step, which
is usually a computationally heavy and difficult task. The
class of robust estimators [19, 32], which has become popu-
lar in image processing [25, 22], offers an appealing direc-
tion of investigation. Recent work has already dealt with
the robust estimation of dense optical flow field [6], or of
3D structure and motion of objects in the scene [24, 34].
Also, the robust estimation approach has been used in [12]
and [7] for a model-based motion estimation. In [12], only
a 3D translation with constant depth, i.e., a second-order
2D motion model with three parameters, at a single resolu-
tion, has been considered. The method proposed in [7] for
the robust estimation of affine motion models, which has
been developed in parallel to our work, utilizes a different
minimization technique. A robust estimator well-adapted
to the given problem must take into account three im-
portant features: the data are noisy, the models we use are
only approximations, and the computation cost should be
as low as possible.

This paper is organized as follows. In Section 2, we
describe our motion model and the objective function used
in the minimization. Section 3 presents the multiresolution
least-mean-squares estimation algorithm, to which our
original solutions will be compared. Section 4 makes a
brief review of robust estimators and describes the method
we have designed. We will show results obtained on se-
quences involving simulated and real motion in Section 5.
Finally, Section 6 contains concluding remarks.

2. MOTION MODEL AND OBJECTIVE FUNCTION

We consider the class of 2D polynomial motion models.
Using matrix notation, these models can always be stated
in the general way

u(Xy) — B(X)A,

Va(Xy) = o(X)

6y

which is linear with respect to the » motion parameters
A= (m,...,a,...,a,), and where X; = (x;, y;)
denotes the spatial image position of a point, V(X)) the
flow vector modeled at point X;; B is a matrix, the form
of which depends on the chosen model, but the coefficients
of which depend only on the point coordinates.

Every model of this class can be used—constant, affine,
or quadratic, complete or not—but here we will mainly
deal with the complete affine model defined as

M(AX:) = aq + a2 X; + a3y,-

@)

(X)) =as + asx; + 06)’1"

In this case we have
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X; Vi 0 0 0

B(X;) = .
() 0 0 0 1 X; Vi

This model is in fact a good tradeoff between complexity
and representativeness. It can take into account many
kinds of motion (translation, rotation, scaling, deforma-
tion), and even if a rigid 3D motion gives rise to a quadratic
model (at least) in the image plane, the affine flow recovers
the essential part [9, 29].

For each point X;, we can write, using vector notation,

O (X0 = S 1) = VX, 0. I, 1) + 10X, 1),

where V' = (dx/dt, dy/dty denotes the flow vector function
and VI = (I:, I,) and I, are, respectively, the spatial gradi-
ent and the temporal derivative of the intensity function
1. S(X;, t) represents the total derivative of I with respect
to time ¢, that is to say, the instantancous temporal varia-
tion of the intensity of the moving projected point along
its planar trajectory. The constant brightness assumption,
ie, S(X;, t) = 0 [18], leads to the well-known motion
constraint equation

VX, 1) - VI(X;, ) + I(X:, 1) = 0.

However, global illumination changes can occur, for in-
stance in outdoor scenes, or in satellite sequences (where,
for instance, the frame rate is two images per hour for
Meteosat) in both visible and infrared channels (in the
latter case, changes are due to the diurnal and interdiurnal
variability of the brightness temperatures [33]). Hence, to
deal with those changes, we choose § constant over the
given region, that is,

s =L x, - ¢ 3

Thus, we have one more parameter to estimate. Letting r;
be the expression (dropping the time variable ¢ when no
confusion is possible)

r = V(X)) - VI(X) + I(X) — S(X,) )
= L(X)u(X) + L(X)o(X) + L(X)) + & @

and considering now not any general function V but the

model function T/A, we finally get for r; (using matrix no-
tation)
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rl-=)(i®—cy,~, (5)

0'=(4%9
where { ¥; = —L(X;) and
X = x(X;, L(X), [(X))) = (VI(X,)'B(X)), 1).

In order to estimate the parameter ®, we can minimize
the quadratic error measure

E(®) = 2 = ng (x® — O'yi)z (6)

XEeW

with respect to @, where W denotes the region (called
the estimation support region) over which minimization is
performed (e.g., the whole image or a block). We obtain
the well-known solution

6-| 3 wx| 3 wm. @

XEW XEW

3. MULTIRESOLUTION LEAST-MEAN-SQUARES
ESTIMATION

When the displacements® between two frames are
too important with respect to the spatial frequency con-
tent of the image, the motion constraint equation (4)
is no longer valid. The use of a muitiresoiution aigorithm
allows us to deal with large motion. In this section, we
briefly recall the multiresolution least-mean-square estima-
tion scheme described in [4, 26], to which we have added
the estimation of the intensity parameter ¢ introduced in
the previous section. Let us now consider the following
expression corresponding to the model-based displaced
frame difference:

DEDo(X) = I(X; + BOXDA, 1+ 1) — I(X;,0) + & (8)

Considering again the assumption introduced in (3) and
approximating the total derivative of the intensity function
by a finite difference, we can state the problem of estimat-
ing the parameter O as the minimization of the following
cost function:

E(©) = > (DFDe(X))

XEW

©

! Let us note that the displacement of the point X; between two succes-
sive frames is 8X; = V4(X;) &, where &t is the time interval between two
frames. We will take 6¢ = 1 to simplify notation.

ODOBEZ AND BOUTHEMY

The use of an incremental scheme substitutes the minimiza-
tion of a series of successive approximations of the function
E(®), more easily handled, for the direct minimization of
the nonlinear function E(0).

3.1. Incremental Estimation

The following development concerns the incremental
estimation step at one resolution level as well as from one
level to the next. The principle of this incremental scheme
is presented in Fig. 1 in the monodimensional case. Let

= (A%, Ek) be the current estimate of 0. In this case,
we can write

~ A= Ak + AAk
O = O + ABy, or more precisely .
§=&+ A&,

and then
8X; = B(X))A = BA, + BAA, (with B; = B(X))).

A first-order expansion of / around point X; + Bi;l x at time
t + 1is performed in the expression DFDg( X)), leading to
the error variable r; given by

ri=I(X;+ BiAr, t+ 1) = I(X;,0) + &
+ VI(X; + By, t + )BAA, + A& (10)

where
V! = I(X;,0) —I(X; + B;Ar,t +1) — &
X! = xX(X;, L(X; + BA, t + 1), L(X; + B;Ag, t + 1)).
(11)

We can obtain an estimation of A@; by minimizing the
error function

EA®) = >, (r),

XEW

(12)

which represents an approximation of the error function
E(®) around @ = ®,. Since E, is linear with respect to
A®,, it can be minimized easily. In relation (11), values
of I, I.., and I, for points which are not on the image grid
are computed using bilinear interpolation.
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FIG. 1.

3.2. Coarse-to-Fine Estimation

The incremental estimation is embedded in a coarse-
to-fine refinement scheme. We build an L-level low-pass
Gaussian pyramid of each image as described in [10]. As
a result, a displacement (measured in pixels) at level I +

©L-1 «— Least mean squares (residual(5))
FOR [ =level L —1 to level 0 DO
iter «— 0
boO
A®! «— Least mean squares (E2)
0! «— Ol + A®! and iter «— iter +1
WHILE (iter < A and [|A©!|| > &)
IF1£0: AS — (A, f-1 &
END FOR

eest N @0

FIG. 2. Multiresolution least-mean-square algorithm (MRLS).

X; X;+ B; Ag

Geometric interpretation in one dimension of the incremental scheme.

1 is half the corresponding displacement at level [ The
estimation process is the following. At the coarsest level
L — 1, no prior estimation is available and we therefore
minimize the error measure E{(®) (relation (6)). At this
level, displacements are smali, and hence the motion con-
straint equation is usually valid. Hence, a first estimate of
©~~1is obtained and successive refinements by minimizing
(12) are performed at the same level until the incremental
estimate A@*~! is too small or a given number of iterations
is reached. Then, the estimated parameter @1 is pro-
jected to the finer level, where the refinement process starts
again. This is repeated until the finest level is processed.
The final estimate of ®, ©., is therefore the value ®°
obtained after the last iteration at level 0. This corresponds
to the multiresolution least-mean-square algorithm
(MRLS) summarized in Fig. 2.

Different expressions of the “norm” ||A®[| used in the
stopping test could be considered. To save computation,
we use a linear combination of the motion parameters Aa, ,

e ~ 13
K = 2 s; |Aaj, (13)

j=1

where #n is the number of motion parameters. Coefficients
s; are defined as /gollows If V denotes the flow field
supplied only by Ag;, setting the other parameters to zero,
we can write

1 = e 14
+ 3 Va0l = s/8a), a4
W XeW
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FIG. 3.

where Sy is the size of the estimation support region W.
Considering for instance an affine motion model, we obtain

1
§2 =855 = o z |xi_xW|7 §3 =S¢

s1=s54=1, 3
WXieW

(15)

Z Iyi —J’W],

SW XEewW

1

C «— Maz(|I7 )
@L-1 « IRLS (residual (5),C)
FOR 1 =level L —1 to level 0 DO
iter «+— 0
DO
C «— f(C)
A®! —— IRLS ( residual(10), C )
O «— Ol + A® and iter «+— iter +1
WHILE (iter < ) and [|A@!]| > £ )
if1#£0: /IE1<—P(ZI),§T:1 <—§
END FOR

6;t(—(:)\0

FIG. 4. Robust multiresolution algorithm (RMR).
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'b -10 L L ) t L 1
-4 -3 -2 -1 c 1 2 3 4

Tukey’s “biweight™ estimator. (a) function p. (b) Influence function #. (C = 2).

where (xy, yw) is the gravity center of the region W. Thus,
coefficient s; can be directly related to the size of the sup-
port region, which depends on the resolution level. There-
fore, the stopping criterion used in the MRLS algorithm
(i.e., |A@ > d/2') tests if the estimated values of the incre-
mental parameters bring a significant modification of the
model flow field. The quantity d can be assimilated to a
displacement (we take d = 0.1), and the denominator 2
makes the test homogeneous with respect to the scale.

Of course, elements in (12) (ie., I, X;, W, . . .) are
considered at current level /. The projection operator P
introduced in Fig. 1 performs the transformation of the
motion parameters from a given level to the next finer
level, that is,

1
. -1 I -1 i -1 l
P: Aconst € 2aconst s @in < jn, aquad <~ 5 aquad . (16)

4. ROBUST MULTIRESOLUTION ESTIMATION

In statistical analysis, the goal of robust estimation is to
find the parameter vector © which best fits a model M X,
®) to the observations y;, when data X, deviate from the
statistical error distribution, i.e., when some data behave
like outliers.

4.1. Review of Robust Estimators

Three measures are usually used to characterize robust
estimators, efficiency, i.e., the ability to reach optimal esti-
mates given a certain noise distribution, the breakdown
point, roughly defined as the highest percentage of outliers
that an estimator can tolerate, and computational complex-
ity. We now briefly present the two mainly used classes of
robust estimators [19, 32].

¢ M-estimator. It is defined as

6= argénin E p(y: — M(0, X)), o), 17
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w; «—1.0, k«——0 and ® 0
DO
6, —6 .
0 «— MRLS(w;)
#DFD-(x:),0)

. wu- eidd).v)
w; — DFDg(X;) and k—— k41

WHILE [|® — &,] > d and k< A,

eesi — é

FIG. 5. Pseudo-M-estimator algorithm (PSM).

where o is a scale factor. The function p is called an M-
estimator since this minimization corresponds to the maxi-
mum-likelihood estimation, if p is interpreted as the oppo-
site of the conditional log-likelihood of the observations.
The influence function, introduced in [14], is a tool to
analyze the robustness of M-estimators. The influence
function characterizes the bias that a particular error is
likely to induce on the solution. In the continuous case, it
corresponds to the derivative, ¢, of the p function. For
example, we have for the least-mean-squares estimator
p(x) = x?, and then ¢(x) = 2x. In this case, the influence
of outliers increases linearily without bounds. If we replace
the quadratic norm by the absolute norm, p(x) = |x|, then
#(x) = sign(x). The influence of gross errors is reduced,
but the asymptotic breakdown point remains 0, which
means that one single datum is likely to completely disturb

a.
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the estimation. Since we want to eliminate the contribution
of outliers, a hard redescending norm is appropriate. This
is the case for Tukey’s biweight estimator [17]. This func-
tion is plotted along with its associated influence function
in Fig. 3, where the ¢ function is given by

x(C*—x?)? if|x|<C,

¥lx, C) = 0 (18)

otherwise.

Hard redescending estimators can have a breakdown point
strictly greater than 0, but it can be equal at most to 1/
(p + 1), where p is the total number of parameters of
the model.

* The least-median-of-squares estimator (LMedS). The
parameters are estimated by solving the nonlinear minimi-
zation problem

A

6= argin Med(y; — M(©, X))~ (19)

Its main advantage lies in its theoretical high robustness,
since it remains reliable up to 50% of the data as outliers.
However, it has several drawbacks, more precisely:

— the computation cost is very high, increasing rapidly
with the amount of data, even if a Monte-Carlo-like speed-
up technique is used [25];

— its efficiency, in the case of Gaussian noise, is very
low, since at each iteration, a number of observations equal
to the number of parameters is employed to compute a
possible estimate. Nevertheless, this efficiency can be im-
proved by performing a least-square estimation after the
removal of outlier data [25]. Besides, this way of computing
parameters is also quite questionable when dealing with
inexact models. The case of a nonlinear model is also not
straightforward, but solutions have been proposed, e.g., in
[24] for the estimation of 3D camera location and attitude.

FIG. 6. (a) Example of ambiguous problem: the dominant object translates upward (flow vectors are plotted where significant intensity
gradients are supposed to be located) and the second object translates downward. (b) The resulting estimated field could be a rotational

field at the cost of only a slight distortion.
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In our case, data in the support region W are numerous,
data noise may be important (due to image acquisition
noise, interpolation step, computation of intensity deriva-
tives, . . .). In addition, the model, whichever we choose
(linear or quadratic), is still only an approximation of the
real motion. Those considerations, and early experiments
performed with real images and motions using the L. MedS
estimator, have led us to prefer the M-estimator method
with Tukey’s biweight function.

4.2.  Proposed Robust Multiresolution
Estimation Methods

Tteratively reweighted least squares (IRLS) is a well-
known method to solve the M-estimation problem [17].
It converts this M-estimation problem into an equivalent
weighted least-squares problem,

14
1
09 > :\ MRLS
08 A g —
' A\ . RMR
07 RMRmod -+—
. 08
LY
04
03
02 B,
01 bt _\\\
0 L

0 01 02 03 04 05 06 07 08 09
t

a)

ODOBEZ AND BOUTHEMY

.........

........

. e

.....

N
B e Sy
B I N,

,,,,,,,,,,

1
¥
.
- -

e . T

N ————

P r e e e .

~ e i

e

....

.
t
t
!
\
\
\
\
\

NNt i
A it P P A

e e

AR RN

INONNARSSANN N AN .-

N N

I N
NN N
R S NURO N N N N

N N N N N N N S S S S S e e w
N e N T N N N N T e e S e e e % e e e = o m o
e
N N N N

R N N N )
A AN I I

(a) Experimental framework; (b) example of synthetic motion field used.

S o) =S 3w withr, =y, ~ M(0,X). (20)

A necessary condition for minimization is that the deri-
vates of the error measure with respect to each component
0, of the parameter vector ® are null. We get

ari_ 8rl-_ _
Etﬂ(ri)a@)j—z ,rl-a@ 0, j=1,...,p, (21

where p is the number of parameters. Thus, the weights
w; at each point X; are given by

- 22)

w; =

1.1 y
1
08 MRL
PSM —+—
0.8 SMmod .=
AMR ~*—
07 MRmod -+
o 08
s
04
03
02
o
0.1 L
Ny
0 g Big o
0 01 02 03 04 05 08 07 08 09 1
b) 2

FIG. 8. (a) and (b) Average errors err, obtained for each of the five algorithms as a function of the percentage ¢, of window W occupied

byarea Z,: (a)n = 1;(b)n = 2.
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FIG. 9. (a)-(e) Average error err; and standard deviation Oerr, as a function of #;, obtained considering algorithm: (a) MRLS, (b) PSM,

(c) PSMmod, (d) RMR, and (¢) RMRmod.

For a given initial value of ®, IRLS first consists in evaluat-
ing the residuals 7;, and, consequently, the weights w;.
Then, a new estimate of ® is computed using the weighted
least-squares technique. The weights are updated, and the
process is repeated until convergence. When no initial
value is provided, the initial weights are set to 1. In our
case, this method will be embedded in a multiresolution
scheme that we now describe.

The error measure E we have considered in Section 3
(see (9)) is simply reformulated here as

E(©) = ng p(DFDe(X;), C), (23)

where p is Tukey’s biweight function and DFDg(X)) is
given in (8). The minimization of this error is performed
using the same incremental and multiresolution scheme as
in the MRLS algorithm described in Section 3.2. Thus,
at each step, the increment value A®, is estimated by
minimizing the error function

ES(A@k) = Z p(rl{ ’ C)’

XEW

(24)

where r; is given by (10). Since this residual is linear with
respect to A®,, the IRLS procedure can be applied in a
straightforward manner. As a matter of fact, ®, can be
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FIG. 10. (a) Average error err; obtained for each of the five algorithms as a function of the percentage # of the support window W
occupied by area Z;, with a zero-mean Gaussian white noise of standard deviation o = 11 added to the constructed images. (b)—(d)
Average error err; as a function of ¢ for different values of the standard deviation o of the Gaussian noise, for, respectively, the algorithm

(b) PSM, (c) RMR, and (d) RMRmod.

supposed to be not too far from the optimal solution; thus,
0 is taken as the initial value for A®;, and is used to
compute the initial weights in the IRLS procedure.
However, the introduction of the robust estimator in-
creases the number of local minima of the error function.
To alleviate this problem, we have adopted a scheme simi-
lar to GNC (Graduated Nonconvexity) [8]. When comput-
ing the first estimation of @ at the coarsest level (where
in fact the residual of Eq. (5) is used), all the weights are
set to 1 in the IRLS. Then, outliers are gradually eliminated
by controlling the value of C, which characterizes the shape
of the robust function. At the beginning of the process,
the estimator must be rather tolerant to outliers; thus, C
is chosen quite large (typically, equal to the largest absolute
temporal intensity difference). Then, as the accuracy of
the dominant motion estimate improves, outliers are better

identified and should be rejected. Therefore, C is lowered
at each computation of a new increment A®,, using the
following schedule: C, = 0.9 X Cj,_;, until it reaches a
preset value C,, or a robustly estimated value C,.

Since the residual 7; can be assimilated to a displaced
frame difference, C can be viewed as equivalent to an
intensity variation. Usually, an error of two to five gray
levels is considered as acceptable in a matching issue or
in a motion-compensated coding scheme, for instance.
Since Crepresents the value beyond which the contribution
of the point to the estimation process becomes null, we
will consider values of C, ranging from 5 to 20. In fact,
the choice of this parameter value mainly depends on the
suitability of the motion model to the real motion: if the
model fits closely to the true motion, C, can be small;
otherwise, it is preferable to set C, to a rather large value.
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FIG. 11. Average error err, obtained for the particular experiment corresponding to the flow field of Fig. 7b, when area Z, is located,
respectively: (a) in the center of the first image of the “car” sequence; (b) on the projections of the cars in the left of this image.

On the other hand, we could also estimate on-line the
variance of the noise (for the data conform with the esti-
mated model). Since our data contain outliers, the median
absolute deviation (MAD) [25] should be used to estimate
the standard deviation of the noise. It is given by

& = 1.48 X Med(|r; — Med;(r))|). (25)
This quantity can in fact be related to the constant C. For
instance, in [17}, it is recommended to use & proportionality
factor of 4.7 between C and 5 to ensure a better efficiency
in case of Gaussian noise. Estimating & at each incremental
step would be too costly. Thus, in order to evaluate C,,
we have used the following technique. After the last incre-
mental estimation step performed at the coarsest level,
expression (25) is used to compute &. Then, C, is set to
4.7¢. Experiments carried out with a given preset C, value

equal to 8 or the robustly estimated value C, (varying from
4 to 15 depending on the experiments) gave similar results,
but obviously at a higher computation cost in the second
case. Moreover, these experiments have shown that the
final value of C is not really a critical matter.

The algorithm we have described is summarized in Fig.
4. It will be called the robust multiresolution -algorithm
(RMR) in the following. The threshold A appearing in the
stopping test is usually set to a small value (equal to 4 or
5), and few iterations are needed to reach convergence at
each IRLS step.

We have established an alternative version of this
method. It relies on the direct application of the IRLS
procedure to the function E, (relation (23)). Here, contrary
to the RMR algorithm where IRLS procedures are succes-
sively applied within the multiresolution framework, the
minimization of E, is first reconverted into an equivalent

FIG. 12.

“Cars sequence”: (a) first image; (b) temporal difference between the two considered images.
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FIG. 13. Compensated images DFD ., case of a velocity field estimated with: (a) MRLS (A = 5, d = 0.1); (b) modified PSM (C =

9,A=5,d=01,1 =12).

weighted least-squares problem, and then the latter is
solved using a multiresolution scheme. More precisely,
we have

X.ew

(26)
= > w;DFDe(X))?,

XEW

where DFDg(X;) 1s given in (8). At the beginning, no esti-
mate is available. Thus, all weights are set to 1, and E{(®)
can be minimized using the MRLS procedure. We get an
estimate @, which allows us to compute the weights w; (at
the finest resolution level) according to relation (22), in
which the residual is the quantity DFDg(X;). Those weights
are then “propagated” throughout the pyramid. To this
end, we use the same Gaussian filtering and subsampling
technique as the one used to build the image pyramid.
With those precomputed weights, a new coarse-to-fine
multiresolution estimation is performed; however, instead
of using least squares at each incremental estimation step
like in MRLS, we utilize weighted least squares. This ver-
sion (see Fig. 5) avoids the computation of weights at each
incremental estimation, but several passes through the pyr-
amid are required. We will call this second method the
pseudo-M-estimator (PSM) algorithm in the subsequent.

4.3. Complementary Stages

Let us point out undesirable behaviors of the robust
estimation algorithms described in the preceding section,
which may sometimes happen. They originate from three
general problems related to the considered modeling:

1. the real motion that we aim to recover could be de-
scribed by fewer parameters than those corresponding to
the chosen model to be estimated; equivalently, it may

happen that the real underlying motion and the spatial
distribution of intensity gradients do not sufficiently con-
strain the parameters of the considered model.

2. the initial minimization step of our algorithms are
based on least squares (this step is more significant in the
PSM than in the RMR); therefore, the secondary objects
and their motion could be absorbed in the minimization
to sufficiently constrain the degrees of freedom left indeter-
minate (if any) by the observations corresponding to the
dominant motion. This is further facilitated when the domi-
nant motion areas are poorly textured.

3. since our algorithms are iterative, they depend on the
initial guess; if those initial estimates are quite far from
the true parameter values, the estimation process may fall
in an unsatisfactory local minimum.

A typical example is given in Fig. 6. Figure 6a displays
the true flow vectors, and Fig. 6b shows the flow vectors
corresponding to the estimated model that we suppose to
have obtained (vectors are plotted only at positions where
the intensity gradient is supposed to be important enough).
The velocity vectors are roughly well estimated, although
the two independent translations are blended by the esti-
mation process into a single rotational motion that has
nothing to do with the real motions. One way of alleviating
these difficulties could be to use another estimator, like
the least median of squares, at least for the first iteration.
However, this solution suffers from other shortcomings,
as pointed out in Section 4.1. In fact, an easier and efficient
answer to this problem is to add the following stage to the
RMR algorithm described in the previous section. We start
the estimation process by considering a constant motion
model from the coarsest resolution level L — 1 to the level
Lc (included). Then, from level Lc (also included) to the
finest resolution, we continue the estimation with the more
complex considered model (e.g., an affine one). This modi-
fied algorithm is called RMRmod.
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FIG. 14. Velocity field corresponding to the model estimated with: (a) MRLS; (b) modified PSM (C = 9). (For display convenience,

velocity fields are subsampled by a factor of 9).

Usually, the value of Lc is 2, whereas the value of L is
3 or 4. Let us note that in a sequence, it could be possible
to use former estimates of the parameter vector ® obtained
in the previous frames to set an adequate value of Lc. The
main advantage of this method is that the incremental
estimation algorithm is very efficient when a constant
modelis used, as explained in [11]. Then, it helps to discrim-
inate between several objects or between the background
and objects.

The PSM algorithm can also be modified in that way,
by estimating a constant model at the very beginning with
the MRLS algorithm. This algorithm (named PSMmod)
appears then similar to the scheme presented in [20]. How-
ever, in [20], after each multiresolution estimation step, an
explicit detection algorithm (more complex than a simple
weighting procedure) is used. It discards points for which
the computed motion is not satisfactory, and attributes a
weight equal to one to all other points. This might be too
“hard” of a decision rule if there is no relevant explicit
detection map. Besides, after the constant motion model
estimation stage, this decision rule can also lead to the
selection of only a limited set of points, which may form
a region which is likely to really undergo a translational
motion. Subsequent estimations with an affine motion
model will then be confined to recover the nearly constant
motion of that small region. Thus, it could be not so easy
to cope with situations involving more complex motions.
In our case, the computation of the weights after the esti-
mation of the constant motion model is performed with a
constant C in the i function twice as large as the one used
in the subsequent steps.? This is to take into account the

2More generally, in the PSM algorithm, modified or not, we could
have changed the C value according to a scheme similar to the one used
in the RMR. However, some experiments performed with such a strategy
showed that the impact on the results was far less significant, and even
led sometimes to less satisfactory results than those obtained with the
described algorithm.

fact that the model we have used may be too simple. Thus,
we will keep more points in order to adequately perform
the estimation of all the affine parameters in the subse-
quent multiresolution estimations.

Finally, let us note that in the two methods, a point
with a null weight at a given iteration is not definitively
discarded, and can get a nonzero weight in subsequent
iterations. Therefore, the two methods do not prevent us
from estimating motions which are far from being constant,
as shown in the next section.

5. RESULTS

We have tested our algorithms on real images with syn-
thetic motions, to quantitatively evaluate the results and
to assess the performance of the algorithms. We have also
carried out experiments with several real image sequences
of quite different natures, including outdoor and indoor
scenes and meteorological image sequences, as well as
underwater video sequences [21]. However, for lack of
space, we will only report results obtained with two repre-
sentative outdoor image sequences.

5.1.  Experiments with Real Images
and Synthetic Motion

The quantitative evaluation of our aigorithms has been
conducted on a set of Ny, experiments. For each experi-
ment, we have applied a synthetic motion field to the real
image of Fig. 12a in order to construct a second image (a
bilinear interpolation is used to determine the intensity
values when the flow vector does not point to an element
of the image grid). This motion field is composed of two
different affine models. The first one is applied to a square
window situated just below the middle of the image (area
denoted Z,, see Fig. 7a), the second one is applied to the
rest of the image (area Z,). The experiments differ from
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c)

15 16

FIG.15. (left) Three images out of sequence “roundabout” at time (a) s, (b) %7, (€) £7,. (right) Images at time fe,, f, and £, compensated

with the motion computed with the MRLS algorithm.

each other according to the affine models involved, which
are in fact randomly selected. More precisely, the constant
and linear coefficients are chosen at random using a uni-
form law in the intervals [ -3, 3] and [—0.053, 0.05], respec-
tively (the length unit is the pixel). The reference point of
the models is the center of the square Z;. Figure 7b displays
one of the synthetic fields generated in that way. In prac-
tice, displacement magnitudes range from 0 to about 15
pixels.

Each experiment consists of studying the behavior of
the estimators while varying the proportion of each area
(Z; and Z,) in the estimation support window. We proceed
as follows. We estimate the six parameters of an affine
motion model in a square window W of varying size Sy

(see Fig. 7a). We consider as error measurements the ex-
pression

Sxeanzy IVa(X) — Va (X0l
— —¥ n
ixemnz, [V a,(X) — Va (XD

err,(t,) = =12, 27

where A; (respectively, A,) represents the first (respec-
tively, the second) motion model, A represents the esti-
mated model, and ¢, is the proportion of the surface of the
computation window W covered by area Z,, that is,

_#WnZ,)

TR (28)
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17

18

FIG. 16. - (left) Images at time fg,, %57, and t;, compensated with the motion computed with the modified PSM algorithm. (right) Images
at time fg,, 77 and 17, compensated with the motion computed with the modified RMR algorithm.

where # stands for the number of points in the considered
region. Thus, when the estimated motion A corresponds
to A, the value of the error err, will be close to 0. The
denominator term in the error expression has been intro-
duced in order that the error would be near 1 when the
estimated motion corresponds to the other model. Indeed,
we have a bounded normalized error measurement. Other-
wise, its value would have depended on the window size
and on the rate of similarity between the two fields gener-
ated by the two affine models. Hence, it would not have
been possible to compare the different experiments. The
parameters used in each algorithm are given in Table 1.
Results are plotted in Fig. 8. We have drawn for each
considered ratio ¢, the average error value err,(z,) derived
from the N, experiments. Let us note first that, because

of the particular expression of the error function, curves
err(t;) (Fig. 8a) and err,(,) (Fig. 8b) are nearly symmetri-
cal with respect to the first bisecting line. From now on,
we will consider only erri(#;). As expected, the MRLS
estimator averages the two motions (Fig. 9a), whereas the
robust estimators provide correct estimations (Figs. 9b—
9e). In Fig. 8a, we can observe that the RMR performs
better than the PSM, especially when area Z; remains
predominant in the estimation support. Let us consider that
the estimated affine motion model does not correspond to
any of the two motions A; or A, when the average error
value lies between 0.1 and 0.9, and let us call “transition
gap” I, the length of the interval of corresponding values
of 4 (i.e., such that erry(#) € [0.1, 0.9]). This gap length
is 0.6 for the MRLS, 0.41 for the modified PSM, 0.33 for
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TABLE 1
Values of the Parameters for the Different Algorithms
Number of
Algorithms L x d C, iterationsinIRLS Lc A
MRLS 4 6 01 — — — —
RMR and RMRmod . 4 6 0.1 8.0 4 2 —
PSM and PSMmod 4 6 01 80 — — 4

Note. The number N, of experiments is 150.

PSM, and 0.24 for both versions of the RMR algorithm.
If we consider now the standard deviation of the errors in
the set of experiments, we can notice that those corre-
sponding to the RMR algorithm are higher in the transition
gap than the PSM ones. The RMR and modified RMR
algorithms show a higher variability in their behavior. In
fact, within the transition gap and for a given value of 7,
they do not always estimate the same model depending
on the experiment.

Besides, in our experiments, in which the linear part of
the motion models is quite important, we can observe that
the modification that we have added to the initial version
of both RMR and PSM algorithms does not provide a
real noticeable improvement. We can even see that the
modified PSM algorithm gives rather bad results when area

ODOBEZ AND BOUTHEMY

the size of each region, but the number of points really
conveying perceptible motion information. Since the mo-
tion computation relies on the motion constraint equation,
where the spatial gradient of the intensity plays a crucial
role, uniform areas (which may occupy a nonnegligible
area in the example we deal with) deliver in fact no motion
information. Thus, the transition point where we skip from
the estimation of the motion of area Z;, to that of area
Z;, would better correspond to a. window W such that

S VIxl= S VIO

X, EWnz, XEeWnz,

(29)

Figure 11a and 11b show results obtained for two different
locations of the estimation window W in the image of Fig.
12a. In both cases, the synthetic flow field is still the one
shown in Fig. 7b. In the first experiment, the window W
is taken in the middle of the image. In the second one, the
window W is placed on the projections of the cars in the
left part of the image. In the first case, area Z; contains a
region of leaves of low contrast compared to the projec-
tions of the other objects in the foreground (i.e., cars, sign).
The transition point corresponding to equilibrium (29) and
computed at level O of the pyramid is reached for a value
of #; equal to 0.58. In the second case, the spatial intensity

Z, is dominant in the estimation support W. This can be
explained by looking at the synihetic fiow fieid shown in
Fig. 7b, which corresponds to one of the experiments. The
motion field in the area Z, is not translational at all. Thus,
taking into account a constant motion model until the finest
resolution level allows the estimator to retain only one
part of the flow field, even after the introduction of the
affine model in the subsequent iterations. On the contrary,
this effect does not exist for the modified RMR algorithm,
where the constant model is introduced only at the lowest
resolution level.

We have also studied the performance of our algorithms
in the presence of noise on the intensity values. To this
end, we have added to the constructed image in each exper-
iment a zero-mean Gaussian white noise of standard devia-
tion og. Figure 10a presents the obtained results for a
significant noise level (o = 11). While PSM and modified
PSM algorithms do not really provide better estimates than
MRLS (see Figs. 10a and 10b) RMR and modified RMR
algorithms remain rather insensitive to noise (Figs. 10c and
10d). This can be explained in part by the fact that the
identification of the dominant motion and the rejection of
outliers starts at the lowest resolution, where the noise is
filtered. This is obviously not the case for the PSM algo-
rithm.

Let us point out that it can be not so easy to foretell,
for a given estimation window, which is or which should
be the dominant motion. In fact, what counts is not merely

gradientsin area Z; are much niore iinportant. The motion
of area Z; should remain dominant up to f; = 0.42, consid-
ering again the relation (29) computed at the finest resolu-
tion level (level 0). As we can see from the curves plotted
in Fig. 11, the location of the transition point for the PSM
algorithm agrees with those values, while this is not the
case with the RMR algorithm (in the second experiment
especially). Let us point out, however, that in the latter
case, the transition profiles are sharp. The different behav-
ior of the RMR algorithms (with respect to PSM) can be
partially explained by the fact, that the single least-square
minimization performed initially occurs at the lowest reso-
lution level. Therefore, this is the only time when the image
gradients are all considered equivalently.

Finally, it is worth noticing that the points where the
error erry(?;) falls below 0.9 (and conversely, raises above
0.1) in the results reported above may be surprising. In-

TABLE 2
Values of the Parameters in the Different Algorithms

Number of

Algorithms L A d C, iterations inIRLS Lc A

MRLS 4 5 01 — — —  —
RMRmod 4 5 01 80 8 2 —

PSMimod 4 7 01 80 — — 8

Note. Heal sequence “roundabout.”
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TABLE 3
Average cpu Time (in Seconds) of the Estimation
Algorithm MRLS RMRmod PSMmod
Sparc 2 1333 13.55 43.66
Sparc 10 4.63 4.63 14.40

Note. The ten 256 X 256 images from the “‘roundabout” sequence are
considered. The number of incremental calculations at one level is always
limited to 8; the number of iterations in IRLS is limited to 6, and the
number of coarse-to-fine estimations is limited to 6 for PSM.

deed, the theoretical breakdown point of the M-estimator
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the value of DFDg is then computed using the estimated
motion. We use four levels in the estimation pyramid (three
might be enough with respect to the motion magnitude;
in fact, we use a simple criterion based on the size of the
support region to choose the number of levels).

Figures 13 and 14 report results obtained with the MRLS
and modified PSM algorithms. In the two upper blocks
of the image, the motion of the leaves is globally rather
incoherent and more like a Brownian motion. Therefore,
the dominant motion is clearly the panning, and both
MRLS and modified PSM algorithms successfully estimate
it, as shown by the flow field displayed in Fig. 14 (displace-
ment vectors are plotted only at points where the dominant

is B = 1/(n + 1), where n is the number of parameters to
be estimated. Hence, the length of the transition gap should
be greater than 1 — 28, that is, in our case, approximately
0.7. However, the Monte Carlo study that we have carried
out leads to quite different values. Even the MRLS algo-
rithm (based on the least-squares estimator with a 3 value
of 0) supplies a better value than 0.7. We believe that the
following points partially explain this difference:

« first, as it is explained in the previous paragraph, the
observations at each point do not provide the same quan-
tity of information;

« second, it is important to point out that the value 8
of the breakdown point is usually obtained by considering
the specific distributions of outliers (those which lead to
the worse estimation results for a given percentage of data
contamination), with probabilities of occurrence in real
experimental data sets that are likely to be very low;

« third, the multiresolution and incremental estimation
scheme helps the discrimination between motions, as the
spectral analysis performed in [11] explains it.

For those reasons, the theoretical value of the breakdown
point may not always reflect the robustness of a given
algorithm to real “‘usual” situations encountered in a
given application.

5.2 Experiments with Real Sequences

“Cars” sequence. Figure 12a presents the first image
of the sequence “Cars”. Figure 12b shows the temporal
image difference between the two considered images (to
which an offset of 128 was added; a grey value of 128
therefore corresponds to a null difference, and the more
black or white a point is, according to the sign of the
difference, the greater the magnitude of the difference).
Motion is composed of four main components, the panning
of the camera from the right to the left (producing as a
first-order approximation an opposite apparent translation
in the image), the sway of the foliage, especially in the
middie, and the displacements of the two cars. To illustrate
several typical cases, the image was divided into four
blocks. In each one, the dominant motion is estimated and

motion is considered appropriate according to the value
of weight w;). However, in the lower blocks, the rigid mo-
tions of the two cars are coherent. Figure 13a as well as
the estimated velocity field (Fig. 14a) clearly confirm the
averaging effect of the MRLS algorithm: the DFD is nei-
ther correct in the static part of the scene nor on the
projections of the cars; the motions are also badly esti-
mated. On the contrary, the modified PSM algorithm per-
fectly computes the panning motion as shown in Fig. 13b
and Fig. 14b. Not only is the panning motion well compen-
sated for but also the moving areas are more accentuated
than when the MRLS is used. This is of particular interest
if a subsequent detection stage is considered to delineate
moving objects in the scene. Of course, it is possible to
consider a second step, in which we estimate the second
dominant motion for the points considered as not belong-
ing to the first dominant motion, and so on.

“Roundabout” sequence. The left-hand side of Fig. 15
contains three images from the sequence “roundabout”
used in the second real experiment reported in this paper.
Here, the camera is mounted on the left side of a car
approaching a roundabout and is pointing laterally. The
dominant motion in the sequence is therefore due to its
movement, but, since significant differences in depth occur
in the scene, the 2 D dominant motion model corresponds
to the motion of the background only (i.e., houses mainly).

In this experiment, we have estimated an affine motion
model between each pair of consecutive frames, using
MRLS, modified PSM and modified RMR algorithms. The
values of the different parameters involved in each algo-
rithm are given in Table 2. These computed motion models
serve to produce the motion-compensated image se-
quences in the right-hand side of Fig. 15 and in Fig. 16. If
a region is well compensated for using the estimated mo-
tion, it should stay at the same location in successive im-
ages. Once more, the right-hand side of Fig. 15 clearly
indicates the averaging effect of the MRLS algorithm, since
the whole image loses its shape over time. The modified
PSM algorithm delivers the background motion until frame
63, but averages both background and sign motions from
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frame 63 to frame 67 (see left-hand side of Fig. 16, the
houses no longer appear fixed and are translating to the
right; the sign moves to the left). Finally, the modified
PSM algorithm “‘sticks” on the sign motion (although the
sign is not completely well registered). On the contrary,
the right-hand side of Fig. 16 shows that the modified RMR
algorithm coherently estimates the background apparent
motion along the entire sequence; the houses in the back-
ground clearly remain static in the motion-compensated
sequence. The differences in the performances of the two
robust algorithms will be commented upon in the next
section from a more general point of view.

5.3, Comparison between the Modified RMR and
Modified PSM Algorithms

As presented above, these two algorithms often yield
similar results, especially when there is an obviously domi-
nant area where the considered motion model can fit the
underlying optical flow. However, several differences ex-
plaining the results obtained in the synthetic experiments
as well as with the “roundabout” sequence can be iden-
tified:

1. assuming a constant model at the coarsest level only
is a weaker hypothesis than assuming a constant model
for a first complete multiresolution estimation step; this
implies that the modified RMR algorithm can recover a
broader class of affine motion than the modified PSM algo-
rithm.

2. in the PSM algorithm, all points are used equivalently
in the first multiresolution estimation step, which tends to
produce an averaged initial solution. On the contrary, the
RMR algorithm discards significant outliers from the very
beginning in the multiresolution estimation.

Let us consider now the computational aspect. The PSM
algorithm requires several passes through the pyramid. Its
time complexity is about the time complexity of the MRLS
algorithm times the number of passes. In the RMR algo-
rithm, there is only one coarse-to-fine estimation step, but
the estimation of each increment A®, induces a minimiza-
tion based on the IRLS procedure. In fact, Table 3 shows
(for our implementation) that the RMR and MRLS time
complexities are equivalent. This can be explained as fol-
lows. On one hand, IRLS usually converges very rapidly,
and thus the IRLS procedure in fact does not consume too
much time; on the other hand, the number of increments to
be computed at one given level to reach stability is less
important for the RMR algorithm than for the MRLS and
PSM algorithms because of the IRLS performance (i.e.,
the increments are better estimated). Then, since each
incremental computation implies intensity interpolations
for every point (here, we perform bilinear interpolation),
the RMR algorithm saves cpu time here compared to the
two other algorithms. ’

ODOBEZ AND BOUTHEMY

6. CONCLUSION

We have described in this paper two robust multiresolu-
tion algorithms to estimate parametric motion models.
They have been favorably compared to a multiresolution
least-mean-squares method. This has been validated on
synthetic as well as real motion examples and on images
depicting complex scenes. Such algorithms are of great
importance, since they can evaluate the global motion in
the image or over a region without being affected by sec-
ondary motions, and without requiring an explicit segmen-
tation step. Indeed, they can be seen as an efficient first
stage for the detection of moving objects in a sequence
acquired by a mobile camera, as demonstrated in [31].
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