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ABSTRACT 
The basic problem of target motion analysis (TMA) is to 
estimate the trajectory of an object (Le. position and veloc- 
ity for a rectilinear movement) from noise corrupted sensor 
data. The problem is quite easy for a rectilinear movement 
of the source, but numerous problem arise when it maneu- 
vers. Our main goal is to apply hidden markov modelling 
to this, and to optimize the estimability of the source tra- 
jectory via the observer motion. 

1. INTRODUCTION. 

The basic problem of target motion analysis (TMA) is to 
estimate the trajectory of an object (i.e. position and veloc- 
ity for a rectilinear movement) from noise corrupted sensor 
data. The problem is not new and numerous approaches 
of the maneuvering target problem have appeared. Most of 
them use a prior information on the maneuver they want 
to detect. In general they use different kinematic models of 
the source’s motion and they switch from one to the other 
according to a likelihood ratio. These models are quite ef- 
ficient when the data have the right statistical properties, 
but their performances decrease dramatically when they try 
to process data coming from real scenarios. 

Recently solutions using hidden Markov model (HMM) 
appeared. The basic idea is to dicretize the state space 
(position and velocity) and to provide a Markov model of 
the source’s motion. This type of model is an elegant solu- 
tion to the maneuvering target tracking problem because it 
does not requires any prior information on the maneuvers, 
so that its performance does not depend on some acute cri- 
terion which hardly occurs in real scenarios. 

Our contribution to this work is to apply HMM to bear- 
ings only target motion analysis, and to analyse the statisti- 
cal performances of this type of model in these conditions. 
After that one can optimize the estimation of the trajec- 
tory of the target, by controlling the Markov chain via the 
observer motion. 

2. BEARINGS ONLY TMA: THEORY AND 
LIMITATION. 

Consider the source-observer encounter depicted in figure 
1. The source located at the coordinates (rzsr rys) moves 
with a constant velocity (vzd, vys).  The state vectors of the 
source and the observer are [ 3 ] :  

In terms of relative state vector X, defined by X = 
[rz, ry, U=, v y l t ,  the discrete time equation takes X .  - X ,  

the following form (uniform rectilinear motion): 

X ( t k )  = @ ( t k , t k - l ) X ( t k - l )  + U ( t k )  

where: 

and U(tk) accounts for the effects of the observer accel- 
erations. 

Y 

IF Observer trajectory 
--x 

Figure 1: Source-Observer encounter. 

Classicaly, the available measurements are the estimated 
angles Bt (bearings) from the observer’s platform to the 
source or, equivalently, the estimated value of the spatial 
frequencies kt ( k t  = sin&/& A: wavelength) , so that: 

kr = kt + ut 

where ut is an additive white gaussian noise with a vari- 
ance U: given by the classical Woodward’s formula, in the 
case of a linear array regularly sampled in space and for a 
unique source in the array broadside: 

with: 

p : signal to noise ratio 
p : number of sensors 
N : number of snapshots 
d : intersensor distance 
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This type of model is based on the assumption of a 
rectilinear motion of the source. This may be a crucial lim- 
itation when the source changes its velocity. In fact inter- 
esting sources are those which maneuver for tactical reason, 
so our attention must be focused on them. There exists al- 
gorithms to track maneuvering targets, but generally they 
got poor results for TMA applications because of their ap- 
proach of the problem. Some of them allow certain types 
of maneuver, and choose among them thanks to a likeli- 
hood ratio. Few others increase the dimension of the state 
vector (adding the acceleration) when the innovation is too 
important. None of them works correctly for real scenarios, 
wether the maneuver is not provided in the algorithm or 
the modification of the velocity is not adequate. 

That's why a probabilistic model of the source's motion 
must be considered and more precisely a Markov model. 

3. HIDDEN MARKOV MODEL. 

The advantage of the Markov model [4, 61 over the other 
approaches is that one do not have to define different types 
of maneuvers with the risk that the source doesn't follow 
any of them. One has just to assume that a source won't 
change its velocity radically between two instants. 

The targets are characterized by their position (zt,yt) 
and their velocity (u2t, wyt )  in Cartesian coordinates. These 
variables can take any value in a finite denombrable set. A 
part of the 2D position space and velocity space are taken 
and sampled regularly or not. 

In order to define the state transition matrix, direct 
probability calculations give: 

Et = [zt, yt ,  V z t ,  wyt] = [Xt, Vt] 
Pr(Ett1)Et) = Pr(Xt+l,VttllXt, Vt) 

= Pr(Xt+1lXt, vt)Pr(vtt1IXtt1,Xt, vt). 
If, besides this, the transition over the velocities is supposed 
independent from the transition over the positions, one can 
define a transition on the position space (centered on the 
estimated position) and a transition on the velocity space. 
All the possibilities are described on figure 2 for the position 
transitions and on figure 3 for the transitions in the velocity 
space. 

Y 
Position grid t 

Figure 2: Position transitions. 

The conventional beamforming gives the energy density 
on all directions, so it can be used to compute the obser- 
vation which is proportional to the probability for each cell 
to contain a source. 

vy Speedgrid 

m 
Speed at instant t 

Possible speed at b m e  t+1 

Figure 3: Speed transitions. 

In figure 4 there is the result of the process via the 
Viterbi algorithm of a source evolving along a circular path. 
The source executes a U-turn, classical trackers would fail 
but the Viterbi algorithm, is able to track and localize it. 

Source trajectory 

Trajectory estimation 

Observer trajectory 

X .IO" 

Observer speed 

Speed estimation 

Source speed 

Figure 4: Source along a circular path. 

4. OPTIMAL TRANSITION MATRIX. 

First of all one can try to find the transition matrices which 
satisfy a criterion over a set of trajectories. In order to 
simplify the computation, our main hypothesis is that the 
innovation is gaussian: 

Given 0% and U,, one can compute the corresponding 
transition matrices. To compute the transition probability 
one integrate the density function on the state square and 
normalizes. The covariance matrices have the form cId so 
the surface integrals become the product of two integrals, 
transition matrices become dyadic product D,Db with D, 
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and D, centrosymmetric vectors (symmetry of the gauss 
function). For example a 3 by 3 transition matrix will be 
given by: 

D,  = [ € ~ , a , b ~ ] ~  

T ( s )  = D,D: = 

with : a, = erf(s)/erf(3s) 

b: asbs  b: 

6: asbs b: 
a: asbs ] 

b, = (erf(3s) - erf(s))/2erf(3s) 

s is related to o and to the size of the square which rep- 
resents the state (s = size/2u), and erf(c) is the standard 
error function. 

In order to find the optimal matrices, multiple trajecto- 
ries are generated from a starting point, an initial heding, 
a speed (constant in modulus) and a curvature. These tra- 
jectories are translated into a series of transitions (we have 
to set the size of the state-square) that are counted. After 
the normalization one obtain the optimal matrix (T) for the 
set of trajectories that have been generated. One look for 
the normalized dyadic matrix (T(s ) )  so that: 

s* = arg min C(T, (3) - Tij)' 
8 

I .I 

This is done by looking for the zero of the derivative of 
the square error function. Once s is obtained, U is deduced 
and one can compute the transition matrix for a different 
size of state. 

The algorithm has been conducted for the following set 
of trajectories: 

0 10 different starting point randomly chosen. 

0 10 speeds regularly spaced between 0 and 30m/s. 
0 20 initial headings (random). 

0 31 different curvature linearly spaced between 

The algorithm found a zero of the derivative for: 

and 

oz = 560 
U" = 4.37 

These variances induce a vector which is the eigen vec- 
tor corresponding to the highest eigen value of the optimal 
transition matrix. 

5. OPTIMAL CONTROL. 

In order to estimate the trajectory of the source the observer 
has to maneuver. Different maneuvers will yield different 
quality of trajectory estimation. This section deals with 
the optimal maneuver of the observer platform when the 
observations consist of the exact state of the source and for 
bearings-only source tracking [ l ] .  

5.1. EXACT STATE OBSERVATIONS. 

The state ( S )  and control (C) space are finite. The state 
of the markov chain consist of the relative position and ve- 
locity vector between the source and the observer: xk = 
(rz(k),ru(k),vz(k), vu(k)) ' .  The control space is the set of 
all possible evolutions of the position and velocity of the 
observer: u k  = xo(k + 1 )  - Xo(k) .  The transition matrix 
( { P , J ( d ) } l , J ~ s  d E C) depends on the control state (firgure 
5) and the cost of source transition which depends also on 
the relative position and velocity between the source and 
the observer and thus is a function of the control ({C,,] ( ~ ) } , , , E s  d E 
C). 

Observer with 
two different 
speed vectors 

target and 
its speed vector 

One transition matrix 
whatever the observer motion 

Relative coordinates 

Fix observer 

target with two 
different relative 

speed vector 

I I I I I I I I I I  
One transition matrix 

for each observer motion 

Figure 5: Transition matrices and control. 

This cost function has to be relevant of the estimability 
of the target trajectory. One can choose the inverse of the 
determinant of the Fisher information matrix computed on 
the data received between i = k6T and t = (k + 1)bT. At 
the initial instant k = 0 the system is in a given initial state 
X O .  If a decision VO is taken at that time-instant the state 
is transferred to XI according to the transition probability 
Px,,,xl (.YO). Associated with this transition probability we 
have the cost Cx,,x,(Uo).  At instant k = 1 the process is 
transferred to XZ while a new decision is taken U1 and so on. 
The problem is to find the control policy 9 = ( 9 0 , .  . . , 9 ~ - 1 )  
such that u k  = q k ( X k ,  U k - 1 )  k = 0, .. . , N - 1 so that: 

is minimized. 
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The dynamic programming equation is: 

i E S,  k = N - 1 , . ' . , 0  

The value of the control which gives the minimum is the 
optimal decision rule at time k if one is in state i at that 
moment. One has to solve this equation backward in time 
with the terminal condition: 

J'(N,  i )  = 0, i E S 

5.2. PARTIAL OBSERVATIONS 
(BEARINGS-ONLY). 

The state and the control space are identical as in the pre- 
vious subsection, but the exact state can no longer be ob- 
served. In fact one can measure the bearing between the 
south-north axis and the source-observer direction: 

The transition and cost matrices still depend on the 
control and one has the same cost function to minimize. As 
the exact state of the markov chain cannot be measured, 
one can construct the vector of all informations available at 
time k: 

Zk e (Yk ,  U"-') = (Zk - ' ,  Yk, Uk-1) 

The dynamic programming equation takes the form: 

J ' ( k , z k )  = min [E { C x k , x k + , ( d ) l Z k  = z k }  
d € C  

+ E { J'(k + 1, Zkt l ) lZk  = z k ,  Uk = d}] 

with the terminal condition: 

J * ( N ,  zN) = 0 

These equations are very difficult to solve, so one should 
try to find a simplification of this problem via a sufficient 
statistics. The information state vector must be replaced 
by a much smaller dimensionality vector which will enable 
the computation. Define [l]: 

where: 

- 1 = ( l , l , - * , l ) t  

D ( Yk+l)  = diag { exp (Yk+l h( ; ) / U ' )  exp( -h( i)' /2u2)} , G s .  

nklk(Zk) is a sufficient statistics of that problem be- 
cause nklk(Zk) is a function of u k - 1  and E, and because 
&+llk+l(Zk+')  can be determined from nklk(Zk), u k  and 
yk + 1. The dynamic programming equation takes now the 
following form: 

6. CONCLUSION. 

After a brief review on bearings-only target tracking, hidden 
markov model has been introduced as an answer to maneu- 
vering target tracking. The gaussian assumption for the 
innovation, enabled the computation of the covariance ma- 
trices (position and velocity) associated with the transition 
matrix. Finally, the problem of observer's trajectory opti- 
mization has been considered via the estimation and control 
of partially observed markov chain. Simulation results show 
that this type of probabilistic model for the source motion is 
adapted to highly and slowly maneuvering target tracking. 
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