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Abstract - The estimation of source motion parameters 
takes a considerable importance for many areas. Especially 
for underwater acoustic applications where a large amount 
of da ta  is available. This paper deals with the estimation of 
source motion parameters directly from the spatio-temporal 
data. A general frame for a separate estimation of the spa- 
tial frequencies and spatial freq-rate is presented, avoiding 
thus the dramatic interference problems. One basic idea 
consists in using basically the relative phase shifts without 
any consideration of source powers. The other consists in 
considering interpolation a s  a basic tool for spatia-temporal 
analysis. 

1 Introduction 

The performance of any array processing can be seriously 
affected by the source motions [l]. The integration time, 
which is a paramater of fundamental importance for the per- 
formance optimization of any system, is it.self limited by the 
basic unstationary nature of the received signals. However, 
for numerous applications (e.g. passive sonar) large integra- 
tion time are required especially for improving the detection 
of weak (moving) sources. It is then necessary to incorpo- 
rate the (unknown) source motion models into the source 
oner, and to define spatio-temporal analysis using basically 
this extended source model. 

('lassical array processing are based upon a short time 
(spatial) analysis itself followed by the classical steps of 
S O U I C ~  tracking, target motion analysis (TMA) and data 
association. All the array processing methods consider an 
inst,intaneous spatial contrast functional. However, a large 
amount of spatio-temporal data is available. It seems, then, 
possible to separate, detect. and track t,he sources by us- 
ing their respective trajectories. In this spatio-temporal ap- 
proach, the concept of source trajectory replaces the instan- 
tantous bearing's one. 

Thus, the estimation ,of source trajectory parameters plays 
the central role. As it will be shown, the spatio-temporal 
da ta  may be described by means of a 2D (multiscale) state- 
spacc: model. But actually, the mono-dimensional spatio- 
temporal data received on the array "sees" I.he same s p a h  

temporal process, but a t  vavrious scales. In order to sepa- 
rate the estimation of spatial frequencies and spatial freq. - 
rates, phaseonly multidimensional spatio-temporal analysis 
will he considered. For that purpose, the interpolation of 
rational function will be instrumental. 

2 A spatio-temporal model of the data 
and consequences 

The array is assumed to be Linear and constituted of p equi- 
spaced sensors. The angle 8 represents the bearing while the 
parameter X is the wavelength. Then, the spatial frequency 
k is defined by t = cos8/X. For a moving source (of inst. 
spatial freq. t t ) ,  the following temporal model o f  kt may be 
( onsidered : 

kt = ko + t k  
( A t  = 1 )  

The above linear model with constant parameter k is valid 
for a moving source evolving a t  medium or long range source. 
For close sources, it can be replaced by a local approxima- 
tion, i.e. : 

kt = kt-1 + kt-1 

The problem we are now dealing with is the foll!iwing : how 
t,o estimate (separately) the parameters t o  and k. Note that 
an answer to this question will allow us to separate and de- 
tect the sources by taking into account their whole respective 
trajectories. 

Assume now and for the rest of the paper that, the array is 
linear with equispaced sensors (d : intersensor distance). Let 
Vr be the consecutive array snapshots at  a certain frequency 
(omitted). Then the estimated CSM R, is defined as follows : 

( 1 )  

(2) 

R, 5 v,v: (3) 
( *  : transposition and complex conjugation) 

Obviously the rank pf 8, is one. Generally. this is not 
a Teplitz matrix so Rr is orthogonally pJojected on the 
'rceplitz subspace (this matrix is denoted R I , ~ ) .  Then, the 
following spatio-temporal data are defined : 

1"'- row ( k q )  e (i,it),".,i, - , ( t ) )  
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with : 

(4 )  
1 

i .(t j  = --ttr (Rtz') o 5 i 5 p - 1 
P - 1  

the symbol "tr" denoting the trace of a matrix and Z the 
shift matrix. 

At this point, it is worth noting the exact expression of 
~, .>(t)  which stands as : 

( 5 )  
r,-(t) = E:=, U: exp [Zirrdm (k , ,o  i- ti ,)] + b Z L  
O < m < p - - l  

(.s iincorrelated sources) 

By considering ( 5 ) ,  we see that the spatial freq-rate k 
plays the role of the frequency is classical time series analysis. 
The initial freq. k,,o can be considered as an initial phase. 
It is now worth to consider a temporal filtering applied to 
the data f,,,(t). Since the parameters k, are usually very 
little, the benefits of low-pass filtering are evident. Designing 
{ y ( t ,  m))  the filtered sequences (I.e. y ( t ,  m) = 3m (fm(t))), 
then the 2D array of spatio-temporal da ta  can be described 
bv the following 2D-state space model [2]. 

X ( t + i , m )  = F;"X(t ,mj  

Y ( t ?  m)  = h'X( t ,  m )  + ul( t ,m) t o  5 t < t ,  
X ( t , m  + 1) = FoPjX( t ,m)  l < m < y - l  

uith : 

F1 

FO 
= 
= 

diag (exp ( 2 i n d k l )  , . . . ,exp (Zandis)) 
diag (cxp ( Z i r r d k l , ~ ) ,  . . . , exp (2 ixdk , ,o ) )  

h* ( i . i , . . - , i j  i Z = - 1  

and : 

R,"' $ Z - I R , , R ~ ~ Z  5 ( z ~ ' ) ' R ~  

Let Y be the matrix whose ( t ,  m) element is y(t, m )  then 
an equivalent description is (with the not,ations of [3]) 

Y = ( S , S 2 . .  . '  ,S,j  diag ( U ; )  ( T I , .  , '  ,TS)'  + I.Y 

with : W(t,m) = w ( t ,  ml 

Using the "vec" operator an equivalent form is also : 

Y =  v e c ( ~ ) = F S + ~ , c o v ( W = W )  

with : 
s =  (u:,...u:)L 

(@ : denotes the Kronecker product). 

As a direct consequence, the columns of the matrix F 
span the signal subspace. I t  is then straightforward to show 
that the maximum Likelihood estimation of t,lie parameters 
(ko, i) reverts to consider the following problem [3] : 

( L ~ , ~ , E , ) '  = arg maxt r  Y * W - ' F ( F * W - ~ F ) - I I . ' * W - '  

(9) 
,=1 

However, a direct approach of the associated maximiza- 
tion problem is hopeless since it requires the use of iterative 
algorithms. Then, Clark and Scharf [3] consider an invertible 
function ~p with domain E and range A such that if the set of 
tuples [ = { k , , o ,  k , } r = l  is an element of 6 and [a, b] = p(<), 
then : 

A (k,) = atJ.tIPp (k,) = 0 

and 
B (k,) = btJ,PP-i (k,) = k, (10) 

a = (UO, a ' ,  . . . ,a..)', b = ( b o ,  b l , .  . . , b..-.~)' 

Actually, the vectors a and b are the coefficient vectors of 
the two polynomial A ( z )  and B ( z )  with : 

A ( z )  = n ( 2 - k ' )  
, = I  

( B ( r )  is a Lagrange interpolating polynomial) 

Then [3], the inltial problem (9) reverts in considering the 
following one : 

min Y Y * ( N C V N * ) + N Y  
1a.b) 

with : 
N = (  I d @ A  

( i d l o )  m B - ( n l i d )  w i 

IV-450 

Authorized licensed use limited to: UR Rennes. Downloaded on July 17, 2009 at 11:50 from IEEE Xplore.  Restrictions apply.



( A  and B determined by a and b [3]). 

Even if (12)  represents a considerable and promising 
simldification, it still requires a heavy computation effort. 
Therefore, another approach will now be considered. 

3 Multi-dimensional estimation of the 
spatial freq-rates 

We shall now deal with a coherent<approarh to the multidi- 
tnrrisional rst.iinal.ion of rhe { k ,  The proposed meth- 
i x l s  rcly heavily on interpolation. 

I sing ( 6 )  the following interpolation formula holds for the 
state of the spatio-temporal sequence ( W S  for the srqnel) 
( y ( / .  v ~ ) } ~  ~nr fixed) : 

113) 

7 herefore. the intcrpolated da ta  i(t, m )  corresponding to 
the state-spacr model out,pul.s (6) without noise, satisfy : 

('onsequently, thank to  the Caylry llamdton theorem, 
their  exists coefficients a ,  ( f  mll)  s t .  

114) 

I < m < p - 1  

Stress that the above relation is v&d (neglecting in- 
terpolation errors) whatever the spatial index 7n with the 
unique set of coefficients {uI ( t .  ma)}. The interpolated da ta  
{ $ ( t , m ) }  (the interpolation factor is defined by (13) ,  (L4)) 
can be described by the following equation : 

y ( t ,  mo) = ht,,,At + w ( t ,  m o )  

~ ( f , n ~ a  + I) = h;,,,,,+IA( + G ( t , * o  + 1 )  

iir in a more condensed form : 

Yt = '%At + Wt 

(the definition of Y t . X t ,  W ,  is direct from (15)). 

A least-square solution of (15) is (121 : 

Since the interpolation of the spatio-temporal data y ( t ,  711) 

represents an instrumental tool, we shall now consider a view 
of  the interpolation problem. 

4 Interpolation and identification 

For this section, the notations are those of [4]. More pre- 
&ely, let C,, be the space of essentially bounded functions 
o n  the unit circle and for y E C- define 

l l ~ l ~ ,  = esssup { l f ( z ) /  : ( z )  = 1)  

Furthermore, let 7-1, C L, denote t,he Hardy space of 
A bounded set of hounded analytic functions in D(0,I) .  

'H, is B,, M defined by : 

Bo,&! = { S E  H, = f : 

jScz,I 5 M,V: E Do} 
analytic in DP and 

The problem of idcntification in X,, assumes that the true 
unknown system to be identified is a stable, linear system 
with transfer function h E U,,M [4], and that experimental 
(lata is given by a fiuite number of noisy ineasiirements. 

Let us recall now the Pick's interpolation theorem [4]. 

Theorem : 

Let {z,}:ll and {w;} :=]  be two sequences of complex nun-  
hers. There exists f E U s.t. f ( z , )  = w ,  = ( i  := 1 , 2 . .  . . , n )  
11' f the hermitian (Pick) matrix : 

of size z x n is non-negative definite. I f  P,, is opn-negative 
definite, a rational interpolating function with degree a t  
most n will exist. 

Further, the following error bound is true [4]. 

Lemma : 
" I  

Suppose h and hid are both in R,,,v and sat,isfy the interpo- 
lation condition 

( i t d  ( z k )  = h (a), z k  = exp ( 2 2 7 r h r / n ) )  
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then : 
1IR - R,dl l  5 4 M p - "  

The interpolation procedure is then based on Pick's algo- 
rithm [5 ] .  

Pick's algorithm : Let ( z l , ~ ~ , .  . . , z,) be distinct points 
and ( w 1 ,  wz,. .. , w,) be complex numbers s.t. Pick's matrix 
is non-negative definite. 

Step 1 : 

C!ompute the complex numbers w , , i  = k,. . . , n and k = 
2 . .  . . , n defined by : 

Wk.8 = (1 - Zk-lz,) ( W k - l , i  -- W k - 1 , k - 1 )  

(2% - z k - 1 )  (1 - *k-l,k-lWk-l,z) 

by using initial values U)*,, = w, 1 = 1 , .  . . , n 

Step : 2 

(:ompute : 

f k ( z )  = wn-k,n-k (1 - Z n - k Z )  + (2 - Zn-k) fk-l(Z) 

(1  - %-&a)  + % - k , n - k  (2 - t n - k )  f k - l ( % )  

for k = 1 ,  . ' , n - 1 by using the initial function : 

fo(z) W,,," 

Finally, set f (z)  =: fn-1(z). Then f ( z )  is a required func- 
tion in HF ( B I , ~ ) .  

5 An extension to spatial temporal 
analysis 

'The main limitation of the previous methods comes from 
the estimation noise w(t,m) whose covariances are given in 
eq. 6. For the two source case, direct calculation yield [2] 

limp-- (:ov ( w a  (1 ,  m l ) ,  W ~ I  ( t ,  mz)) = 
p:exp(-2ind(mz - m ~ ) k ~ , r )  
+pz exp ( -2 iad  (mz - m i )  k z , t )  

(pi = 6 / b Z , p z  = $ / b 2 )  

Consequently, this is t.he estimation noise which mainly 
affect the performance and it is highly spatially correlated. 
ln order to reduce its effects, consider now a linear combi- 
nation of the interpolated data Y ( t , m )  (eq. 15), then the 
following equation is directly deduced from (15) : 

with : 

Yt f (Y (1,mo) , y ( t , m o  + 1)  , . . . , y  ( t ,  m))' 
Dka : steering associated with t o  

Wt = D;,Wt, Wt = (w( t ,ma)  ;. . , t i~(( t ,m)) '  

In order to detect a weak moving source, it is worthwhile 
to consider a set of beams (ko, t i ,  . . kt) whose spatial fre- 
quencies k, are chosen in order to "isolate" a spatio-temporal 
sector. Then, the beam outputs can he modelled by using a 
unique AR model, i.e. : 

D&Yr = Ea,( t )D; ,Yt- ,  + Wo,t 
, = I  

D;<Yt = Ea,(t)D;,Yt-,  + Wt,t 
,=1 

6 Conclusion 

A general frame for a separate estimation of the spatial freq. 
and spatial freq. rates has been presented. Instrumental 
tools are the use of relative (temporal) phase shifts and in- 
terpolation 
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