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Abstract

This paper deals with the recovery of 3D informa-
tion using a single mobile camera in the context of
active vision. We propose a general revisited formu-
lation of the structure-from-motion issue, and we de-
termine adequate camera configurations and motions
which lead to a robust and accurate estimation of the
3D structure parameters. We apply the visual servoing
approach to perform these camera motions. Real-time
experiments dealing with the 3D structure estimation
of points and cylinders are reported, and demonstrate
that this active vision strategy can very significantly
improve the estimation accuracy.

1 Introduction
Recovering 3D structure from images is one of the
main issue in computer vision. Among others, an ap-
pealing way of solving this problem is to use 2D motion
computed in image sequences acquired by a monocu-
lar camera. Basically, two main approaches have been
investigated to solve the problem of structure from
known motion: long range motion-based and short
range motion-based ones. In the former approach, im-
ages are considered at distant time instants. This ap-
proach is based on the extraction of a set of relatively
sparse, distinguishable two-dimensional features in the
successive images [9], [16], [17] . Inter-frame corre-
spondence is first established between these features.
Then, the 3D structure is determined. In the latter
approach, images are considered at video rate [12],
[15]. In this case, the emphasis is placed on the esti-
mation of the optic flow field in the image. A usually
dense flow field is computed and used in conjunction
with a measure of camera motion to determine the 3D
structure of the scene.

However, to correctly compute correspondence (or
optic flow) is a difficult problem requiring the devel-
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opment of sophisticated algorithms. Furthermore, the
optic flow field is generally corrupted by noise and
partially incorrect especially near occlusion or motion
boundaries.

To alleviate these problems, hybrid approaches
have been proposed like in [8]. Such methods are
based on a formulation in terms of continuous veloci-
ties (i.e., use of the instantaneous kinematic screw) in
the 3D reconstruction process, while relying on the
tracking of 2D sparse image features. These algo-
rithms avoid the intermediate stage of optic flow com-
putation and involve simple matching process. But,
they still suffer from several shortcomings: their sen-
sitivity to noise, their numerical unstability and their
unsatisfactory accuracy. An attractive way to cope
with these problems is to follow an active vision ap-
proach, which can be defined as an intelligent data
acquisition process [1-3]. Our concern is to deal with
the problem of recovering 3D spatial structure using
a single mobile camera by means of an active vision
scheme, and to show that 3D reconstruction can thus
be solved in a much more efficient way compared to an
usual dynamic vision approach. This issue has already
motivated some investigations [2] [14], but only for the
case of 3D points. Furthermore, effective comparison
between dynamic and active vision has not yet been
performed through real experiments. In this paper,
the problem of the 3D reconstruction of geometrical
primitives is handled at two levels:

e modeling aspect: we propose a general revis-
ited formulation of the structure-from-motion issue.
The same framework can handle various kinds of 3D
geometrical primitives, i.e., points, lines, cylinders,
spheres, ...

e optimization aspect: we derive sufficient condi-
tions to minimize the effects of the different measure-
ment errors which may occur in this process. More
precisely, we determine the adequate camera locations
and motions which provide a robust and accurate es-
timation of the 3D structure. We apply the visual



servoing approach to perform these motions using a
control law in closed-loop with respect to visual data.

Finally, we demonstrate with real-time experiments
that our active vision scheme significantly improves
the accuracy of the structure estimation.

2 Structure from motion using
dynamic vision

Let us consider an usual perspective projection
model (see Figure 1). Without loss of generality, the
focal length is assumed to be equal to 1. The relation
between the 3D point z = (2 yz) and its projection
X = (X Y1) on the image plane is given by:

X=-z (1)
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Figure 1: Camera model.

The velocity screw of the camera frame (O, Z, ¥, 7)
with respect to the scene is denoted by 7' = (V(0), Q)
where V(0) = (V. V, V)T and Q = (Q, Q, Q)7 are
respectively the translational and rotational velocities.
If point z is static, we get:

i=-V(0)-Qxz (2)

Differentiating (1) and using (2) lead to the well known

relations [10]:
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From these two equations, we can easily derive the
expression of the unknown depth z; we obtain [11]:

az(XV: = Vo) + ay(YV. — V)

Ve T S V- W

with ap = XY Qp — (14 X3)Q, +YQ, — X and a, =
(1+Y2)Q, — XYQ, — XQ, — Y. Let us note that
no information on the depth z can be retrieved if the
camera motion is such that V; = XV, and V, = YV,.

We will now adopt in the remainder of this section
the same approach in order to estimate the parameters
describing more complex primitives such as straight
line, circle, sphere, cylinder.

Let us consider the geometrical primitive P, of the
scene; its configuration is specified by an equation of
the type:

h(z,p) =0, Vz P (5)

where h expresses the type of the considered primitive
and the value of parameters p defines its correspond-
ing configuration. The representation p, of dimension
n, is chosen complete and minimal in order that any
position of the primitive can be represented by only
one value of p.

Using (1), equation (5) becomes:

h'(X,1/z,p) =0 (6)

Under the trivial condition %—ZI # 0 which is satisfied
in all the non-degenerated cases (a degenerated case
occurs for example when a line is projected onto the
image plane as a point, or a circle as a segment), the
implicit function theorem ensures the existence of a
unique function p such that:

1/Z = /L(X’BO) (7)

where the representation p_, function of p, is chosen
complete and minimal (its dimension is denoted ny).

Let us denote P; the projection in the image plane
of P,. Substituting (7) for 1/z in (6), the configuration
of P; can be written as follows:

where ¢ defines the type of the image primitive and
the value of P, function of p, its configuration. Once
again, the representation P, of dimension m, is chosen
complete and minimal in order that any position in the
image of P; can be represented by only one value of

P.

e Remark: For a planar primitive, the function
u represents the plane in which the primitive lies.
For a tri-dimensional primitive (sphere, cylinder,
torus,...), the function ¢g(X, P) is the limb equa-
tion (we only consider the contour of P;). Match-
ing between 3D points and 2D contour points pro-
vides us with the function u(X, Bo) which is thus
called the limb surface.

The time variation of parameters P, which links the
motion of the primitive in the image to the camera
motion 7', can be explicitly derived [7], and we get:

P=L%(P,po) T (9)



where LE | called the interaction matrix related to P,
fully characterizes the interaction between the camera
and the considered primitive.

We are now able to present a general method to
reconstruct a 3D geometrical primitive using dynamic
vision (i.e. to compute the value of p using the mea-
sure, along an image sequence, of the camera velocity
T and of the image parameters P and E)

Let us denote H(P, P, po, T) the following function
derived from (9): o

.. 'H . . .
Under the condition — (of dimension m X ng) is
Do

full rank ng, the implicit function theorem allows us
to express pg with respect to the other parameters

involved in (10). Thus, we obtain:

po=po (T, P, P) (11)

More precisely, for all the primitives that we have
studied (lines, circles, spheres and cylinders), the pa-
rameters pg are simply determined from the resolution
of a linear system derived from (10).

Furthermore, let us note that it is possible to find
the camera motions which do not provide any infor-
mation on the spatial configuration of the primitive:

3}
they are such that il is not of full rank.
o
Finally, knowing ¢(X,P) and u(X, Bo)’ we can
solve for the parameters p which completely define the

configuration of the considered primitive:

(12)

Let us note that our method is based on a continu-
ous approach since it uses the measure of the camera
velocity. It is basically different from the discrete ones
[16], [17] which consider a camera displacement (de-
scribed by a translation and a rotation matrix) instead
of camera velocity.

From a geometrical point of view (see Figure 2),
our method consists in determining the intersection
between a generalized cone (defined by its vertex O
and the function g(X, P)) and the limb surface (de-
rived as explained above). On the other hand, the dis-
crete approach, equivalent to a stereovision paradigm,
is based on the intersection between two generalized
cones (corresponding to each camera position). Inter-
secting two volumes, instead of a volume and a sur-
face, seems more complicated to derive closed-formed
expressions (and therefore robust estimations) in the
case of complex primitives. For a circle for example,

p=p (£, po)
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the discrete method proposed in [13] is based on the
resolution of a complex non linear system, whereas our
method is based on the simple resolution of two linear
systems.

Limb surface

Image

Cone

Figure 2: Difference between continuous (on the top)
and discrete (on the bottom) approaches.

The estimation of the depth z of a point, which
has been described at the beginning of this section,
can of course be obtained using this formalism (it is
the simplest case). The proposed formalism has been
successfully used for the 3D structure estimation of
lines, circles, spheres and cylinders [6]. For all of these
primitives, the closed-formed expressions of the 3D pa-
rameters to be estimated are simply determined from
the resolution of two linear systems (the first one to
determine the parameters of the limb surface using
the interaction matrix, the second one to determine
the parameters p). Furthermore, this approach can
probably be used for more complex primitives, such
as torus for example.

3 Structure from motion using
active vision

It has been observed that the 3D reconstruction
from monocular image sequence is very sensitive to
the nature of the successive camera motions [8]. The
experimental results reported in the next section con-
firm that important errors on the structure estima-
tion appear when no particular strategy concerning
the camera motion is defined. Besides, we have seen
that some given motions are not able to provide any



3D-information. Therefore, one of the goal of an ac-
tive vision scheme is to find an optimal camera motion
which could lead to a robust and non biased estima-
tion of the 3D spatial structure. In this section, we
state the problem in terms of the minimization of the
errors occurring in the process. Two kinds of errors
are of particular concern: the first one is due to the
discretization step that affects the continuous method
that we have proposed in the previous section, the sec-
ond one is due to the unavoidable measurement errors
on the image data and on the camera motion.

3.1 Suppression of the discretization
error

The main error encountered in the recovery of
structure from known motion using dynamic vision
Indeed, our
method is based on the measure of E, i.e., the time

comes from the discretization error.

variation of the parameters representing the consid-
ered image primitive. The exact value of P is gen-
erally unreachable and the image measurements only
supplies AP, the “displacement” of P during the time
interval At between two successive images. If we use
AP/At instead of P in the derivation described above,
this induces discretization errors which can be impor-
tant as it will be seen in the experimental results. On
the other hand, if we can ensure that P= AP/AL Vt,
the discretization step will have no effect. Such a con-
dition is satisfied if and only if:

P=...=prl =0 w (13)

From (9), we have P= (B, po,T). Thus:
f’+————po+-———i‘ (14)

If we consider that the camera velocity is constant
between two image acquisitions, then T = 0, and a
sufficient and general condition to verify (13), is to
constrain the camera motions to be such that:

P =py=0,Vt (15)

In other words, a solution to suppress the discretiza-
tion error is that the equation of the limb surface re-
mains the same, and that the primitive constantly ap-
pears at the same position in the image while the cam-
era is moving.

We can show that, except for points and lines, the
first condition P = 0 implies the second one pg = 0,
which reduces the problem to a fixation situation.

We will see in Section 3.3 that the visual servoing ap-
proach is perfectly appropriate to generate such cam-
era motions.

Let us note that the condition that we have ex-
hibited is only sufficient, and not necessary. Indeed,
camera motion exists such that P = 0 with P # 0 or
po #Z 0. For a point for example, we can easily show by

differentiating (4) that P = 0 when the camera mo-
tion is a pure translation parallel to the image plane,
e, V, =Q; =Q, =Q, = 0. More generally, these
motions are such that (see relation (14)):

of ., 9of
=0 16
8£_+ ampo (16)

Determining all the solutions of such a non linear sys-
tem is a very difficult task. Moreover, they deeply
depend on the considered primitive since they require
the knowledge of % and %. On the other hand, the

condition (15) is valid for any kind of primitives. It
has the supplementary advantage that the primitive
will remain in the field of view of the camera during
the estimation process.

3.2 Minimizing the effects of the
measurement errors

An other important point in an active vision con-
text is to select configurations of the camera with re-
spect to the primitive of interest, likely to provide an
estimation as robust as possible. More precisely, we
show in this section that the effect of the measure-
ments errors on the estimation of the 3D spatial struc-
ture of the primitive depends on the position of the
projection of the primitive in the image. Therefore,
we propose to constrain the camera motion in order
to focus on the primitive in order that the primitive
to be reconstructed is located at the position in the
image that minimizes the effect of the measurement
errors.

Let us denote a parameter of the 3D primitive by
p. Recall that p depends on information extracted
from the image (P, B) and on the measured camera
velocity T'. If we suppose that the measurement errors
on P, P and 7' are not correlated, the uncertainty o,
on the estimation of p can be written in the form:

(o) =32 y(o +E

i=1

+3 (g

UP )? (17)



Minimizing op is equivalent to minimizing each term
= (ap )2 where a; denotes any of the variables
B, B and T'. We thus have to find the value of P such

that %p}‘,‘j’ = 0,Va; andVj = 1 tom. To find all

the solutions of this non linear system in an analytical
way seems unreachable. However, we have derived the
following particular solutions of interest:

e for a point, the effect of the measurement er-
rors are minimized (i.e., % ag;’ = 0,Va;) if the
point constantly appears at the center of the image
(X =X =Y =Y =0,t) during the estimation time
interval, and if we also have V, = Q, = 0. The camera
must therefore be displaced on a sphere the center of
which is the point to be reconstructed. It is interest-
ing to notice that we get conclusions similar as those
obtained in [4] and [14] where the interest of locating
the fixation point of an active binocular head in the
center of the image is demonstrated.

e for a sphere, the effect of the measurement errors
are minimized if the image of the sphere constantly
remains a circle centered on the image center and if
Q, = 0. The optimal trajectory of the camera is thus
the same as in the previous case.

e for a straight line, the effect of the measurement
errors are minimized if the line always appears cen-
tered in the image (p = p = 0), vertical (§ = § = 0),
and if V, V, Q; = 0 (or horizontal with
Vo=V, =Q, = 0).

e for a cylinder, similarly, the effect of the measure-
ment errors are minimized if the projections of its two
limbs lie astride the image center in a symmetric man-
ner (p1 = —p2), vertically (6, =6, =0), and if V, =0
(or horizontally with V; = 0). Therefore, the camera
must be displaced on a circle around the cylinder (see
Figure 3).

N 4,

Figure 3: Optimal camera motion in the cylinder case.

Unfortunately due to the complexity of the stated
problem, we have not been able to prove that these
solutions are unique. On the other hand, we have
checked that numerous configurations really do not
minimize all the p,, terms and thus are not likely to
provide a robust estimation (for example, let us just
consider X = 1,Y = 0 in the case of the point).
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We now describe how it is possible to automatically
compute the camera motion satisfying the constraints
described above.

3.3 Image-based closed-loop control

Active vision aims at improving the knowledge of
the environment by means of adequate camera mo-
tions. A control law in closed-loop with respect to
visual data is perfectly suitable to generate such mo-
tions. This visual servoing approach is based on the
regulation to zero of a task function e which can be
written as follows [7]:

e=WtWC (P - P )+ (Is — WtW)e, (18)
where:

e P is the value of the 2D parameters describing the
projection in the image of the primitive on which the
camera is fixing or focusing. P is measured at each
iteration of the control law.

e P* is the target value of P to be obtained. To
suppress the discretization error, we have to satisfy
P = 0; in this fixation task, P* is therefore set to the
initial measured value of P. In the focusing task, P
has to reach a given value to obtain a robust estima-
tion (X = Y = 0 for a point for example); in that
case, P* must then be equal to this particular value.

e (' is a matrix which represents the inverse jaco-
bian of the vision-based task. Ideally, this matrix is
chosen as the pseudo-inverse of the interaction matrix
related to P: C = LT+ (P, po). But, since the real

value of p is unknown we choose C = LT+ (P, po)
where p 1s the current estimation of the parameters
of the limb surface obtained by the method described
in Section 2.

® ¢, is a secondary task which allows us to move
the camera along a desired trajectory (on a sphere or

a circle for example). e, also permits to satisfy the

additional constraint po = 0 for the point and line
cases.
o WTW and s — WTW are two projection opera-

tors which guarantee that the camera motion due to
the secondary task is compatible with the regulation
of P to P* (Is is the 6 x 6 identity matrix and W is
a full rank matrix such that Ker W = Ker L%. More
details are given in [7]). B

Once the task function e is defined, a simple con-
trol law, which computes the camera velocity 7" and

ensures an exponential decrease of ¢, is given by [7]:

Oe,y

T:—)\Q—(]IG ot

Wtw)—2 (19)



where A (> 0) is the factor that controls the speed of
the decay, and where the term (I — W+ VV)E%2 is tied
to the generation of a non zero camera motion when
the vision-based task is realized (i.e. when P = P*).

3.4 Experimental results

We present in this section the experimental results
obtained for the 3D structure estimation of a point and
a cylinder. More detailed experiments are described
in [6]. For each of these primitives, we compare the
results supplied by a dynamic vision approach (i.e.,
general camera motion) with those given by the active
vision approach in order to demonstrate the improve-
ment brought by the latter.

Our experimental system is composed of a camera
mounted on the end effector of a six d.o.f. robot arm.
The image processing part is realized on a commercial
board. Each iteration of our algorithm is realized in
100 milliseconds.

3.5 Case of the 3D point reconstruction

The first image acquired by the camera is depicted
in Figure 4.a. The point that we consider is the cen-
ter of gravity of the white ball which is in the field
of view of the camera. The image processing step
simply consists in extracting and tracking along the
image sequence the center of gravity of the ellipse cor-
responding to the projection of the ball in the im-
age. From the initial position, the camera moves
with constant velocity (in the reported experiment,
Ve =V, =V, =50 mm/s, Qg =Q, =9, =3 dg/s)
and the results obtained are shown in Figure 5.a. The
plots represent the 3D coordinates (z,y, z) of the con-
sidered point, estimated at each iteration of our algo-
rithm. The position (z,y, z) of the point is expressed
in a world reference frame (corresponding to the first
camera position); the plots should then correspond to
constant values over time. Important errors can be ob-
served in that experiment, where no particular strat-
egy, as far as camera motion is concerned, has been
used (errors can reach 10 cm). Let us note that sim-
ilar results were obtained with other general camera
motion.

As proposed in Section 3.1 to improve these results,
we first constrain the camera movement in order to
suppress the discretization error. Consequently, the
point projection remains static in the image, and the
distance between the camera and the point is main-
tained constant. To perform that task, we use the
control law described in Section 3.3. The results are
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shown in Figure 5.b. During the first iterations, er-
rors are still large. This is due to the fact that several
iterations are required to perfectly achieve the fixa-
tion task by the control law. After the short transient
period, the results become stable and errors on the
estimated depth z are less than 1 cm. By comparing
these results with the previous ones, we can observe
the important improvement brought by the first part
of the active vision strategy.

As explained in Section 3.2, results can be improved
further by positioning the camera in such a way that
the point constantly appears in the center of the im-
age (see Figure 4.b). Indeed, the effects of the mea-
surement errors are minimized for that position. The
estimated 3D point coordinates obtained after the re-
alization of the focusing task are shown in Figure 5.c.
These values are particularly stable and accurate. Er-
rors on the depth z are only about 2 mm (that is

2.5%).
3.6 Case of the cylinder reconstruction
Let us now apply this approach to the 3D recon-

struction of a cylinder, the equation of which is given

by:

h(z,p) = (z —20)*+ (y— w0)” + (2 — 20)” (20)
— (az+by+c2)? —r?=0
with @+ 5%+ ¢?> = 1 and azg + byo +czg =0

where 7 is the radius of the cylinder, (a, b, ¢) represents
the direction of its axis and (2o, yo, z0) is the point of
the cylinder axis the nearest to the camera. These are
the parameters to be estimated.

The initial image acquired by the camera is shown
in Figure 6.a (note the superimposed two white lines
corresponding to the two selected limbs of the cylin-
der). The image processing step now consists in track-
ing theses two limbs along the image sequence and in
determining the (p, f/) parameters describing their po-
sition in the image. The extraction, maintenance and
tracking of the contour segment (in fact a list of edge
points) are achieved in 80 ms. The method we have
used is described in [5]. It is based on a local and ro-
bust matching of the moving edge-points constituting
the selected line.

Results obtained using a not constrained camera
motion are plotted in Figure 7.a, and results obtained
once the focusing task has been achieved (see Fig-
ure 6.b) are plotted in Figure 7.b. Once again, we
can point out the very significant improvement result-
ing from our estimation scheme using active vision.
Let us note that, after the first iterations, the error



between the real value of the cylinder radius (40 mm)
and the estimated one is lower than 1 mm and gener-
ally around 0.2 mm, which demonstrates the robust-
ness and the validity of the proposed method.

4 Conclusion

We have described an original formulation of the
problem of reconstructing 3D parametric geometrical
primitives using a mobile monocular camera. The in-
troduction of the so-called interaction matrix related
to the primitive under concern allows us to define a
general and attractive framework which can be applied
to usual primitives such as points and straight lines,
but also to more complex primitives such as cylin-
ders, spheres, ..., without additional complexity in the
derivation of the solution.

Since the nature of the camera motion affects the
accuracy of the results, we have focused on this crit-
ical aspect of dynamic vision. We have mathemati-
cally and experimentally shown that very noticeable
improvements can be obtained in the 3D recovery of
a large class of geometrical primitives, if the camera
is properly positioned, and if optimal camera motions
are generated. Owur approach consists in particular
in fixing and focusing on the 3D primitive to be de-
termined. This confirms the point of view of previ-
ous works on the promising strength of active vision
paradigms [2], [3], [4], [14]. We have stressed that this
active vision approach can be adequately performed
using a control law in closed loop with respect to vi-
sual data. A real-time version of this visual servoing
scheme has been implemented on an experimental sys-
tem, and it turns out to be powerful and efficient. Fu-
ture work will be devoted to the development of global
perceptual strategies able to appropriately combine a
succession of such optimal individual primitive recon-
struction to recover the complete spatial structure of
complex scenes.
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Figure 4: Images acquired at the initial camera position (a) and after the realization of the focusing task (b).
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Figure 5: Successive values of the 3D point coordinates zg, yg, zo (expressed in mm) estimated using a dynamic
vision approach (a), obtained with camera motion allowing to suppress the discretization error (b) and using the
active vision scheme (c)

(a)

Figure 6: Images acquired at the initial camera position (a) and after the realization of the focusing task (b).
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Figure 7: Successive values of the 3D cylinder parameters zg, yo, zo and r estimated using dynamic vision (a) and
using the active vision scheme (b).
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