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ABSTRACT 
Decentralized Detection (D.D.) is an interesting alter- 

native to  classical Centralized Detection (C.D.) when com- 
municationnal/computationnal constraints play an impor- 
tant role in the design of the decision system. In order t o  
promote this new technique, practical demonstration of its 
feasibility and performance, for realistic situations, has to 
be done. We present such an application of D.D., in the con- 
text of source localization and with Neyman-Pearson (N.P.) 
criterion, where relatively good performances of D.D. are 
shown. Of special interest seems to be the inherent robust- 
ness of D.D. architectures. 

1. INTRODUCTION 

Though it has aroused a considerable literature since the 
initiatory paper of Tenney and Sandell, [3], D.D. theory yet 
cannot be considered as an established technique for opera- 
tionnal distributed decision systems. Among others, usual 
arguments favouring the use of D.D. systems are the re- 
duction in communicationnal and (on line) computationnal 
requirements of large systems, especially those with a large 
number of geographically distributed sensors, but others in- 
teresting properties, as fault tolerance and robustness, are 
also potential abilities of decentralized architectures. 

The aim of this paper is, essentially, to investigate the 
feasabilityof decentralized techniques for realistic situations, 
and their relative performance with C.D., when N.-P. cri- 
terion is chosen. The  paper is organized as follows. Af- 
ter a (qualitative) description of a list of available results 
from general D.D. theory, we present a first localization 
model, which comes from the array processing localization 
field. This model has been extended to  its D.D. version. 
Simulation results are then presented. They confirm that 
D.D. performances are rather interesting, when compared 
to the C.D. alternative, in term of some communicationnal 
cost/detection performance compromise. Other interesting 
anticipated aspects of D.D. for array processing are its ca- 
pacity for rejecting local degradations/perturbations of the 
detection environment. Those have been modeled by a sec- 
ond perturbing source, with a distance-decreasing influence 
over each array. A second lot of simulations is presented, 
which confirms that D.D. is a challenging alternative to 
C.D. for this kind of situation. We finally give concluding 
remarks and propose future lines of investigation. 

This work w a s  supported by our friends of DCAN Toulon 

2. THE GENERAL DECENTRALIZED 
DETECTION PROBLEM 

Our statistical model is built upon the classical binary hy- 
potheses testing problem. We use the following notations. 
E = E1 x E2 is a measurable space ', Y = (YI, Yz) is a 
random variable (r.v.), where Y,, i = 1 , 2  is taking values 
in E,, a = 1,2.  Probability measures, PO and PI ', are 
respectively associated with two hypotheses, Ho and Hi, 
such that,  under HI, Y - ' P , ,  i = 0 , l .  Observation of 
y = Y ( w )  is the information gathering process by means of 
which some decision U E {0,1} has to  be made by the 
statistician concerning the true hypothesis. We assume 
(for reasons that will be invoked later on) that  P, sepa- 
rates, i.e. that  YI and YZ are conditionally independent 
given any hypothesis. A first caracterization of D.D. is de- 
picted on figure (1). Whereas C.D. elaborates its decision 
U = y ( Y )  under observation of the whole measurement Y ,  
D.D. imposes each observation Y,  to be locally processed 
and summarized (quantized), U, = y, (Y)  E { O , l } ,  before 
being sent to a central data fusion processor, whose output 
Uo = yo(U1, U z )  E (0, l}, is the final decision of the system. 
Thus D.D. essentially imposes functional constraints on the 
decision making process. In other words, (silent) cooper- 
ation is necessary between two decision makers, DM1 and 
D M z ,  who communicate local decisions to a fusion center, 
DMo. One important aspect of the problem formulation 
is the choice of some optimality criterion, which we next 
discuss. 

2.1. NEYMAN-PEARSON CRITERION AND 
RANDOMIZATION ISSUES 

As is usual for many radar/sonar problems, we have sup- 
posed that no a priori probabilistic knowledge was available 
concerning the occurence of the true hypothesis. Thus, 
choosing N.P. criterion, our optimization problem for the 
decentralized (respectively centralized) detection problem 
reduces to  finding some decision strategy, y = (yo, y1, yz), 
yi : Ei -L {0,1} ,  i = 1 , 2  and yo : {O,1} '  --* { O ,  1 )  (re- 
spectively some decision rule y : E + {0,1}) maximizing 
the probability of detection Pd = P([Uo = 1IIH1) when the 
probability of false alarm (f.a.), Pf = P([Uo = l]IHo), is 
constrained to  be no larger than some prefixed rate (Y E 
(0, l ) .  As recalled by N.P. fundamental lemma, [2], solving 

'We assume, whenever not clearly made explicit, that usual 

2with probability density functions (p.d.f.) p o  and p l  w.r.t. 
measure-theoretic aspects of our definitions are understood. 

some dominating a-finite measure. 
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this problem should be done keeping in mind two charac- 
teristic properties which are held by optimal (centralized) 
N.P. tests: 

0 optimal rules are randomized tests, i.e. are defined by 
the conditional probability 4 of deciding HI when y 
is realised: 4(y) = P([U = l]lY = y), 

0 any Pd-maximizing test with size PI is reached among 
the family of likelihood-ratio tests, i.e. such that  

1 if P’(Y) > t . p o ( Y )  
d(Y)  “A’ 6 d p i ( Y )  = t . p o ( Y )  { 0 if m ( Y )  < t . p o ( Y )  

where t E (0, CO) and 6 E ( 0 , l )  are adjusted in order 
to reach the size a. 

For decentralized testing, closed form solutions analog to  
the C.D. test are generally unavailable3. Of particular im- 
portance is the above-mentioned conditional independence 
assumption, without which D.D. leads to  hard combina- 
torial problems, namely NP-complete problems, [4]. Still, 
making this assumption, person-by-person necessary condi- 
tions of optimality4 give structuralcaracterization of the set 
of optimal decision rules. In this context, particular atten- 
tion should be paid to  the problem of “team-randomization”, 
that is extension of the classical randomization mechanism 
to many decision makers. More precisely, one can show 
that, under certain configurations, i t  may be necessary for 
the different DMas t o  coordinate their hesitationin the de- 
cision making process. In order to present some useful re- 
sults, some definitions are needed. We first define deter- 
ministic strategies, which are those never using randomized 
decision rules, that  is those for which our former notation 
y = (yo,y1.72) is correct5. Second, we define the con- 
vex combination (p, q )  of the deterministic strategies y(’) 
and y(’) as the randomized strategy that consists in using 
y(’) and y(’) with respective probability p and q, where 
p , q  2 0 ,  p + q = 1. Then the following two results are 
available: 

1. When N.P. optimization problem is defined over the 
set of deterministic strategies, and when distribution 
of X ,  i = 1 , 2  contains no point masses, one can re- 
strict attention to (non randomized) likelihood-ratio 
strategies for D M I ,  DM’, 

2. every N.P. optimal strategy (when defined over the 
most general set of randomized strategies), can be 
defined (reached) as a convex combination of two de- 
terminis tic strategies. 

Though they may seem useless for some practical design of 
optimal strategies, the preceding two results can be com- 
bined in order to  construct decentralized ROC curves, as is 
shown in next section. 

We refer the reader to [5],[1] for a more comprehensiveformal 
treatment of D.D. theory. 

‘That is optimization of one decision maker when the rest of 
the team is fixed. 

5Note that for such a strategy a boolean fusion rule as to be 
chosen. We refer to [l] for the choice of this rule, which can be 
restricted to monotone rules 

Figure 1: D.D. and C.D. (dashed) architectures. 

2.2. PRACTICAL SEARCH OF N.P.-OPTIMAL 
STRATEGIES 

Before using the above results, we need to  show some tight 
connexion between N.P. and Bayes criteria. Using Bayes 
approach with the error probability criterion‘, and not- 
ing that  N.P. constrained maximization problem can be 
reformulated’ as the minimization (w.r.t. to  some random- 
ized strategy y) of A.Pj - Pd for some Lagrange multiplier 
X 2 0 ,  one easily sees that  any Bayes-optimal decentralized 
(deterministic) strategy with priors xi = P([H = H , ] ) ,  a = 
0 , l  such that  X = *O/xl is N.P.-optimal. For this reason, 
whenever needed, one disposes of a simple way for plot- 
ing deterministic decentralized ROC curves. Namely, that 
consisting in varying parameter X in [O,m] and solving all 
the associated Bayesian problems. For every such problem, 
knowing that  optimal D.D. Bayesian strategies are deter- 
ministic (which is another available result of D.D. theory), 
one is ensured, by point 1) above, that  only two thresh- 
olds, t l  and t 2 ,  and a fusion rule yo have to be found. We 
can now fully use the previous points. As all randomized 
optimal strategies are convex combinations of determinis- 
tic strategies, i t  follows that  the optimal decentralized ROC 
curve is simply the convex hull of the different deterministic 
ROC curves described in the previous reasonning. Apply- 
ing this yields the complete N.P. characterization of D.D. 
performances and, above all, is a method for avoiding the 
person-by-person principle which is unpractical in the N.P. 
context. We will discuss in the remaining of the paper the 
implications of our method for determining whether ran- 
domization is necesary. We now present the concrete de- 
centralized localization models. 

3. TWO SIMPLE LOCALIZATION MODELS 

Our first array processing localization model is the follow- 
ing. We assume a far field situation, one point source S ,  
with mean power U (> 0), and two uniform linear arrays A, ,  
composed of A’,, i = 1 , 2  sensors. S is located a t  bearing 8, 
w.r.t. A,. A Gaussian spatially white ambient noise with 
mean power normalized to one is supposed, independent of 
S. With half-wavelength spatial sampling of the impinging 
plane waves, raw sensor outputs are transformed to their 

‘Between the final decision and the true hypothesis. 
7as the set of randomized strategies is convex. 
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equivalent discrete Fourier transform a t  frequency f ’, the 
usual snapshots, Xi,,, E cK8 ,  n = 1 ,... , Ni on array Ai. 
We assume that the snapshots are i.i.d. C N ( O , T i ) ,  with 
p.d.f. p i  and complex covariance (interspectral) matrix I?;, 
hermitian positive definite, such that’ 

p i ( z )  = X-Ki.lr,l-l.ezp{-z*rilZ), i = 1,2 .  

Recalling our previous definitions, we can state the binary 
hypotheses model as 

Hj Xi , , ,  N C N ( O , ~ , , ~ ) ,  j = O , l ; i = 1 , 2 ; n = l ,  ..., Ni (1) 

with 

(2) 
H~ : ri,o = ii 
H~ : ri,l = ri,o + a.did: 

and 

1 -incos( K-i)B, d:  = [I, e - - i - 4  ,..., e 

As indicated by classical C.D. theory, the locally optimal 
test on A, is 

where t i  is adjusted to satisfy the false alarm constraint. 
A,’s p.d.f. is obtained through computation of its char- 
acteristic function (c.f.), which appears to be the Fourier 
transform of some G(a ,  b) (Gamma) probability. More pre- 
cisely, one can show that, with the i.i.d. assumption, 

(4) 

with 

a; = K , / N ,  ( 5 )  
Pi = K , . ( l  + K , . a Z ) / N , .  (6) 

Concerning the optimal centralized test, we can easily de- 
rive the 1.r.t. 

where coefficients CI, CZ are given by 

The statistic of A, sum of two independant Gamma r.v.s, 
is approximated by a Gamma distribution. This approxi- 
mation confirmed to be very good when compared to the 
real one, which is a linear combination of Gamma r.v.s. 
Finally, the cumulative distribution function of a Gamma 
r.v. is needed, in order to compute the various probabilities 

‘Omitted in the sequel. 
’z’, z* are respectively the transpose and transpose-complex 

conjugate of x. 

of false alarm and detection. Those are obtained in closed 
form as 

N - I  
1 t  
z(--)~ 

m 

P f ( t )  = 1 p a ( 6 ) d 6  = 
n=O 

with an analogous formula holding for Pd(t) .  Note that AI’s 
p.d.f. is independent of 0,. In fact, our first model could 
have equivalently be written with a single bearing, which is 
more consistant with the far field hypothesis. This is due to 
the a priori knowledge of the bearing of the source, and to 
the special structure of our physical wave propagation and 
geometric model. 

In a second approach, our first model has been extended 
to a two-sources version, as is now described. We simply 
add a second perturbing source, now denoted as SI, whose 
power is modeled as range-decreasing (with transmission 
loss in 20.log(t)), in order to essentially radiate its energy 
to one of the two arrays. Equations (1),(2) now become 

~ 1 , i  and d1,. are respectively the power of SI received at  A, 
and the stearing vector of Si when viewed from A,,  dz is 
the (single) stearing vector associated with S2. See [l] for 
a geometric description of this model. Algebraic computa- 
tions yield, in a way cbmparable to the one source case, new 
expressions for A,, i = 1 , 2  and their c.f.s under hypotheses 
H l , H 2 .  Those lead to conclude that the Gamma-character 
of the p.d.f.s is conserved, but with new parameters, which 
are now dependent of the bearings with which Si is per- 
ceived by A,, denoted &,,. The local structure of 1.r.t. is 
slithly modified, so that (1) rewrites 

with 

Equations (2)-(8) find corresponding versions for the two- 
sources case, described in ([I]). We now describe some siin- 
ulation results corresponding to those models. 

d;,, = I’Ltd2,; 

4. SIMULATION RESULTS 

As a first result, using the procedure of section (2.2), we 
have compared R.O.C. curves of C.D. and D.D. for vari- 
ous signal/noise environments. Figure (1) illustrates the 
behaviour of D.D. with a specific setlement of the vari- 
ous parameters defining our first localization model. I t  
appears that ,  for almost every configurations, the deter- 
ministic R.O.C. curve (defined as the upper envelope of the 
two candidate “OR” and “AND” fusion rules) is already 
almost concave (except for very low f.a. rate), so that ran- 
domization could be neglected without important loss. If 
necessary, randomization could be realised, but we remind 
that this would amount to coordinate different local random 
mechanisms. In short, randomization could be carried out 
by letting every DM,, a = 0, 1 , 2  flip a same coin for each 
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Figure 2: C.D. (dashed) and D.D. with a single source 
model. 

decision, and decide to choose “OR” or “AND” rule lo. We 
have observed that D.D. offers R.O.C. that  are relatively 
interesting when compared to the communicationnal reduc- 
tion. For instance, if the distance between C.D. and D.D. 
curves is measured in Signal to Noise Ratio (S.N.R.) dBs, 
it was approximately of .5dB for figure (2). Also interesting 
is the fact that  this difference seems quite insensitive to the 
S.N.R. itself. Others simulations with three arrays provide 
the same kind of results. 

As a second result, we have also computed the respec- 
tive performances of D.D. and C.D. when the correct two- 
sources model is taken into account in the detection proce- 
dure. Analogous results (i.e. small loss) to the one source 
model have been observed. It is interesting to note (though 
not surprising) that  both C.D. and D.D. behave relatively 
well as long as the two interfering sources have sufficiently 
different bearings, independently from S1 power. 

As a final result, we have experimented the ability of 
D.D. to reject local perturbations. Those where modeled 
by our second localization model, when the decision system 
is unaware of this model mismatch. Note that this situation 
can either be interpreted as a bad modelization, or as faulty 
operation of the system. Figure (3) confirms that D.D. is ro- 
bust when faced to such problems, as it yields performances 
that become better than C.D. for small perturbations”. In 
our example, local S.N.R. of A2 was lowered by IdB with 
noisy source SI, whereas it was almost unchanged on Al.  
What should be also precised here, is that  degrading the 
situation by model mismatch leads the decision system to 
work with real f.a. rates that  are different from the one 
expected. It is also anticipated here that D.D. behaves bet- 
ter than C.D. w.r.t. this aspect, that  is degrades less the 
actual Pi than does C.D.. This would necessitate further 
investigation. 

“See[1]. Notethat thismeans,forDM,, i = 1,2, tochoosehis 
threslhold t i  between a pair ( t , , o ~ ,   ti,^^^) of two thresholds. 

”Note that “AND” rule becomes better (more robust) than 
“OR” in this case. In fact this rule could be chosen, as it is 
comparable to the “OR” rule in the correct model case. 

I , .  . . . . . . 
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Figure 3: C.D. (dashed) and D.D. with model mismatch by 
a two sources model. 

5. CONCLUSION AND PROSPECTIVE 
REMARKS 

Concrete results concerning the use of D.D. for an array 
processing situation have been obtained. Though certainly 
specific to the particular problem investigated, simulation 
results show that 

0 Some (important) communicationnal complexity re- 
duction is obtained at the cost of some (moderate) 
performance loss, 

0 this matter of fact remains apparently true for a large 
class of (S.N.R.) configurations, 

0 above all, D.D. seems offering a challenging alterna- 
tive to C.D. when robustness is an important design 
criterion. 

Further studies would investigate those properties for more 
than two arrays, and, in general for more complex detection 
contexts. Special interest to the feasibility of D.D. when a 
large number of local decision-makers are to cooperate is 
our present domain of interest. 
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