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Abstract 

The estimation of source motion parameters takes a con- 
siderable importance for many areas of array processing. 
Especially for underwater acoustic applications where a 
large amount of data is available. The optimization of 
spatio-temporal analysis is considered, then original meth- 
ods for source motion analysis are derived. 

1 Introduction 

The classical array processings rely upon short time anal- 
ysis. Whatever the considered processing (e.g. classical 
beamforming or high-resolution method), they try to opti- 
mize a spatial contrast at a given instant. The integration 
time is itself limited by the basic unstationarity of the re- 
ceived signals (source motion, propagation effects,...). The 
optimal integration time is then a compromise between the 
accuracy of the observations (e.g. intersensor correlation 
estimates) and the effects of source motions. This point 
has been previously studied, revealing that the optimal 
integration time decreases as the sensor number increases 

However, in the general context of passive array pro- 
cessing (e.g. underwater acoustic) a very large amount of 
data is available. In order to use them, the following steps 
must be considered : 

0 derivation of a simplified model of a moving source, 

0 inclusion of the motion model in the source one, 

0 spatio-temporal analysis (source motion analysis). 

Ill. 

The last point is also the more difficult and important 
one. It is then possible not only to consider very large 
integration times (for detection of weak sources) but also 
to discriminate the sources by their whole respective tra- 
jectories. 

The spatio-temporal data are described by using a 2D 
state-space model, eventually with time-varying parame 
ters (close sources). In this case, the instantaneous values 
of the parameters are estimated by using Kalman filters 
conditioned by the hyperparameters describing the tem- 
poral variations of the local model. 

As we shall see later, the estimation of source mo- 
tion paramters are basically defined for multiscale anal- 
ysis. This leads us to consider the following fundamental 
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problems 

0 study of the statistical properties of the spatio-temporal 
data, 

0 statistical analysis of the source motion estimates, 

0 optimization of the spatio-temporal analysis, 

0 multiscale state-space analysis. 

The study of the first two questions relies on statistical 
perturbation analysis, whereas the two last involve heavily 
interpolation procedures. 

2 A simplified model of source motion 

For array processing, the relevant parameter is the spatial 
frequency k t .  Let kt  the spatial frequency associated with 
one source at time 1, then the following model of kt will 
be considered for the sequel : 

kt = Lo + t i  (1) 

The model (1) is a global linear approximation. For close 
sources it can be replaced by a local approximation, i.e. : 

kt+l  = kt + k t  (2) 

For the first model, the soufce trajectory is defined by two 
parameters (resp. ko and k). The problem-we shall now 
consist in the estimation of the parameters k (and ]CO) for 
each source. 

3 Statistical properties of the data 

Let { X , }  the array snapshots, classical analysis rely on 
the use of a spatial contrast at a given time. Instead of 
this, we shall consider the whole sequence of { X t } .  At a 
given frequency (omitted), the data are represented by the 
spatio-temporal estimated covariances i ( t ,  m) (1 : time, 
m : spatial index). For a linear array, these-data are de- 
duced from the empirical covariance matrix Rt (estimated 
on N snapshots) by using the classical formula [2] : 

Z : shift matrix [2], t r  : the trace and p : sensor number. 
Invoking some classical results, the statistical proper- 
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ties of the data i ( t ,  m) are derived [2]. The following for- 
mula is a basic one : 

IE (i' ( t ,  m) ? ( t ,  n)) = 1 t z  (ZmRtZ"'Rt) 
(P - "P - n) . n 

with : 

t : transposition, * : transposition-conjugation. 

formula (4) yields directly : 

(4) 
P 

?(t ,  m) = i ( t ,  m) - IE ( i ( t ,  m)) 

For a unique source (of signal to noise ratio p )  the 

Thus the variance of the estimation noise of the data i ( 2 ,  m) 
(i.e. E (lf(t, m ) l z ) )  increase with the spatial index m, the 
dependance upon m being given by (4) ,  (5). In particular, 
this variance can be much more important than the de- 
terministic contribution of a weak source. This is a major 
limitation. 

E ( f ( t ,  m) . f* ( t ,  n)) yields directly : 
In the two-source case, the calculation of 

lim E [?(t ,  m ) i ( t ,  n)] = p: exp (-2i7rd(m - n ) t l , t )  

+d exp ( -2i*d(m - n)t2,@) 
( p 1  and p2 s/n ratios of the two sources, d : intersensor' 
distance, N = 1). 

The eq. 6 is fundamental for the rest. It proves that 
the estimation noise is highly spatially correlated, its cor- 
relation matrix being proportional to the strong sources 
CSM. It will be then possible to cancel the effects of the 
noise estimation by means of a spatial analysis (e.g. beam- 
forming, see section 7). 

For the sequel, the data will be constituted of the se- 
quences {y(t, m ) } ,  (y(t, m) f i ( t ,  m ) ) .  for a fixed m, the 
temporal sequence { y ( t ,  m ) } ,  will be simply named "file 
m". The organization of the data is presented below (fig- 
ure 1). 
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Figure 1 

Under a gaussian assumption for the file m, the follow- 
ing Cramer-Rao bounds for the estimation of the param- 
eters ko and k (denoted and km) on the file m are 
given by : 

6 var ( i ( t ,  m)) 

(2N - 1) var ( i ( t ,m))  
4(*dp)'mZN(N + 1) 

var (k , )  2 

var ( i o , m )  2 

4 ( ~ d p ) ~ m '  ( N 2  - 1) N 

(7) 

The expression (7) of var (km) is valid at low s/n ratios, 
by using (5) it leads to the following result : 

6 
var ( E , )  = 4(*dp)' ( N 2  - 1) * N . f*(P) 

with : 

Examinating f m ( p ) ,  we see that its unique minimum is at- 
tained for a value of the spatial index m comprised between 
2p/3 and p - 1. 

4 Spatio-temporal representations of 
the data y(t,m) 

Assuming that the model (1) of kt is valid, then the 2D- 
array of data { y ( t ,  m)} can be represented by the following 
2D-state space model : 

X ( t  + 1, m) = F;"X(t, m )  

X ( t ,  m + 1) = FoF:x(t ,  m) 1 5 m 5 p - 1 

y ( t , m )  = h * X ( t , m )  + w ( t , m )  t o  5 t 5 t ,  

with (3 sources) : 

F1 = diag (exp (2 i rdk )  , . . . , exp (2i7rdk8)) 

FO = diag (exp (2 ixdk l  (o)) ,  . . . , exp (2i*kd(0))) 

h' = ( l , l , .  . . ,1) 

(9) 

(var ( w ( t ,  m ) )  given by (4)). 
For a time varying model of kt (eq. 2) the file m can 

be modelled as the output of an unstationary AR-model, 
let ( m  omitted : 

Xt+i = Ft . X t  + Wt 

yt = h;Xt + R t  

with : 

Yt ( y ( t , m ) ) ;  h; = ( y ( t - l , m ) , . . . , y ( t - - , m ) ) ;  

Xt = ( a l ( t ) , - . . , a q ( t ) ) t  
(10) 

In the eq. 10, the vector X t  represents the (time-varying) 
AR coefficients. The transition matrix F of eq. 10 is 
deduced from a difference equation relative to the k,,  let 
(e.g.) : 

. .  
V2kt = W t  k t + l  = 2kt - t t - 1  + Wt ; wt : JV (0, T ' )  

(11) 
The parameter r2 is called an hyperparameter [3] and cor- 
responds to a smoothness prior relative to the source tra- 
jectory. A state equation is deduced from (ll), let : 
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X ( t  + 1) = F ( t ) X ( t )  + G(t)W(t) 

with : 

I d  + JtJ;r', -JtJ;--i ) ( ; ) ; G ( t )  = 
0 

F(t )  = 

W is n/(O, B) with B = diag (r:, . . . , rz) 
The problem we shall now deal.with, is to perform separate 
estimations of the parameters k and ko (or k t ) .  The funda- 
mental reason of these separate estimations is the crucial 
problem of interferences between moving sources [I]. In a 
first time, the monodimensional (on a unique file y(t, m ) )  
methods for estimating k, will be briefly presented. Then, 
the multidimensional estimation will be considered with 
some care. 

5 Monodimensional methods 

A now classical method for estimating F1 (eq. 9) consists 
in considering the Hankel matrix 'K, : 

f i m  Hank (~(2, m)),  

then, the eq. 9 yields : 
'K, = 8, . Xm,Om : observability matrix and thus : 

e;. F;" = e i  with ef, = ze,, e; = z'e, (13) 

Practically, the estimated observability matrix 8, is de- 
duced from %, by means of a SVD analysis. 

Another way consists in estimating an AR model di- 
rectly fitted to the data y(t,m). A classical performance 

analysis [a] leads to the following expression of var ( im) : 

with : 
(14) 

- &  
h = ( ~ ( 1 ,  m), ... , y(N,  m))' 

The calculation of (14) is rather tedious [2], [4] but leads 
to an interesting result. For low s / n  ratios, one has : 

var ( im)  = cst . fm(p) , fm(p) defined by ( 8 )  

leading to the same conclusions for the choice of the "op 
timal" spatial index m. This choice amounts to optimize 
the comprofnise betweenathe dilatation factor of the anal- 
ysis scale ( I F  becomes mk (eq. 9) on the file m )  resulting 
in the "geometric" factor l/mz and the estimation noise 

However, the proposed algorithm treats separately each 
file m. It is possible to define numeroys methods in order 
to achieve a fusion of the estimates k, [2] ; however a 

power on { y ( t , m ) } , .  

coherent approach seems more promissing. 

6 Multiscale estimation of the 
parameters k 

We shall now deal with a coherent multidimensional of 
the { iJ}:=l. The proposed method relies heavily on an 
interpolation procedure, presented below. 

By using eq. 9, the following interpolation formulas 
are valid for the state of the file m : 

X ( t + m o / m , m )  = F T o X ( t , m )  m z m o  (15) 

According to (9) and ( 1 5 ) ,  the'interpolated data j ( t ,  m) 
(noise free), satisfied to : 

Consequently, thanks to the Cayley-Hamilton theorem, 
there exist coefficients a j  ( t ,  mo) s.t. : 

Note that the above relation is valid whatever m and with 
the same coefficients {a j  ( t ,mo)} .  Now, the interpolated 
data i ( s , m )  on the file m are defined as : 

(18) 1 ,  

@ : interpolated noise. 
So that finally, according to (17) and (18 ) ,  the inter- 

polated data $( t ,  m) can be modelled by AR-models with 
a unique set of coefficients, i.e. : 

with : mo 5 m I m l .  

following interpolated multidimensional system : 
The 2D-array of data (figure 1 )  is thus modelled by the 

mo I m I ml I 
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I :  
(20 )  The interpolated data ?(t ,  m) defined by the previous eqs 

may be represented by the following figure (for the case of 
an AR (2)). 

I y (t - 2.m0) y (t - 1.mo) Y (t *mol .... We" m 

".?.?7ile- ,,,, + worth to consider a set of beams (LO, k l , .  . . ,-la) whole spa- 
tial frequencies Ll are choosen (3dB covering) in order to 

. , , , rile' + pisolate a spatial sector as described below : 

a fixed spatial frequency ko. The noise Wt is deduced from 
the interpolated noises G ( t , m )  as : 

Wt = D;, Wt 

with ; 

wt = ( w  ( t ,  mo) , G ( t ,  mo + 1) , . . . , G(t ,  m))' (22) 
Thanks to the noise covariance structure (eq. 6 ) ,  the con- 
tribution of the strong sources, which are not in the beam 
of reference (i.e. ko) can be greatly reduced. 

In order to detect-track a weak moving source. it is 

Figure 2 
On the figure 2, the initial data y ( t ,  m) are represented 

by the intersection of horizontal- and vertical lines, the in- 
terpolated ones by the symbol Y .  

The factor mo/ml represents the maximum value of 
the interpolation factor. It is worth to choose a conve- 
nient value of mo/ml by using the performance analysis 
of section 3. The interpolation procedure of figure 2 is re- 
produced at t + 1 (or t + D : D decimation factor). This 
scheme can be extended to the time varying modelling 
[4] of the eqs. 10, 11, 12. by using a multidimensional 
Kalman filter. Otherwise, the vector X t  is estimated ei- 
ther by a generalized least square method or by SVD. The 
interpolation of data is achieved by means of classical in- 
terpolation methods (spline, etc.) since a large amount of 
data is available on each file m. 

7 On the use of the array gain 

The main limitation of the previous approach comes from 
the estimation noise. Fortunately, this noise has a partic- 
ular and useful structure (eq. 6). 

We are now trying to combine the advantages of the 
previous multiscale analysis with the array gain in order 
to cancel the estimation noise. 

Consider now a linear combination of the ?( t ,m) ,  as 
defined by (19) and ( 2 0 ) ,  then the following equation is 

deduced from (20) : 

with 

yt (Y ( t ,  mo) , Y ( t ,  mo + 1) , . . ., y ( t ,  m))' 

I D ~ C ,  e (exp (-2ixdmO~o), . . . , exp ( -2 ixdm~o) ) t  

The steering vector Dko defined in (21) is associated with 
(21) 

.- E 
c 

spatial freq. 

Figure 3 

(and common) AR model, let : 
Then, the beamoutputs can be modelled by a unique 

(23) 

Obviously, the choice of the spatial frequencies ko, k1 , - . . , LI 
is of a fundamental importance. This part is under cur- 
rent investigation. This formalism may also be extended 
to time varying analysis. 

Due to the lack of space, the simulation results are not 
included here however they seem quite promising [4]. 

Remarking that k is equal to (cost?/A), one can de- 
rive a double interpolation scheme in order to perform a 
multifrequency analysis. 
The aim of this strudy is not to add an extraneous method 
to the long list of array processing methods but to con- 
sider the general problem of spatio-temporal analysis for 
source motion analysis. In that meaning, it may constitute 
a bridge between "classical" array processing and target 
motion analysis. 
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