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Abstract

This paper deals with temporal integration for array pro-
cessing in the passive array context. Its main objective is to
improve the detection of weak and slowly varying sources,
in a first time by optimization of classical methods and in
a second one by developing new array processing methods.

1 Introduction

The fundamental aims of passive array processing (especially in
the sonar context) consist in detection, localization and tracking
of (weak) moving sources. The problem is complicated by the
presence of strong sources, propagation effects, etc. ’

Classical array processing (beamforming and others) are based
upon a short time analysis, itself followed by a post-processing in-
cluding source tracking and T.M.A. (target motion analysis). This
kind of methods present some advantages ; however, it is funda-
mentally irrelevant to the detection of (slowly) varying sources.
The recent developments of array processing methods, e.g. high
resolution methods [1], have demonstrated the benefits of temporal
integration. Nevertheless, these benefits are limited by the intrin-
sic non-stationary nature of the received signals, mainly due to
source motion and propagation effects. Thus, a too large integra-
tion time can even produce dramatic effects in terms of detection,
angular resolution, etc.

Despite its considerable practical importance, this problem has not
been the subject of an extensive literature [2). Roughly speaking,
the source motion spreads its spatial spectrum, which induces two
major effects : lower performances in detection and angular resolu-
tion. This spatial spreading can be easily quantified under simple
hypotheses ; it is then possible to determine the optimal integra-

tion time. Despite the very restrictive hypotheses needed for the -

calculation, an analytical expression of the array performances is
of a great practical interest. A comparison with simulation results
proves their validity.

A simplified model for source in motion has been developed, in-
volving only a restricted number of parameters (initial bearing,
spatial frequency speed). Using this model, the calculation of the
Fisher information matrix (FIM) reveals interesting conclusions.
This model is one of the basic tools.

The more difficult task consists in the development of array pro-

cessing methods including the motion model to the source model:

itself. The modelling of the sensor outputs by a linear (non-
This work is supported by GERDSM (Dir. Const.Navales)

stationary) system appears to be a powerful tool and allows us;
to take advantages of the basic hypotheses relative to source mo-/
tion. !
Finally, this problem fully justifies the use of parametric methods
in the array processing area and lead to develop a new class of

methods.

2 A simplified model of source motion

Consider a source in motion (linear and uniform) and denote v
the constant speed of the source 8,, and L, respectively the bear-
ing and distance w.r.t. the array at instant ¢, ; then by using
elementary calculations the following approximation is obtained :

08 O, ~ cos0,_1 + [cos B — cos Oy cOs (01 — B)] - ;Atl (1)
. n—

B is the source heading)
The previous equation may be changed in order to obtain a first
order approximation at t = o, let :

vATn =ko+ /;:on
Lo

(2)
The factor ko is, in eq.2, a constant. Denoting k, (spatial fre-
quency) the terms cosf, in eq.1 and (2), they are rewritten in a

simpler form as :

¢os 0, & cosfy + (cos B — cos b cos (6o ~ )

kn = knet ko - (1) and kn = Ko+ n- ko (2)

Eq. 2’ is valid only for far sources but lead to simple models of the
received signals while eq.1’ is valid even for short, medium range
sources but needs more complicated analysis.

3 Effects of source motion for classical ar-
ray processing
For the sake of simplicity, the analysis is achieved after Fourier

transformation. Let T' the empirical estimated covariance matrix
of the sensor outputs after DFT, ie. :
. 1 Na
= -
=33 X X;
k=0
Then :
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Denote now P(f,6): the asymptotic spatial density of the received
signals at the frequency f (omitted for the sequel), i.e P(f,8) =
Dj-T'- Dy, then classical calculations yield the following result for
a unique source in motion (eq.2") =

p~1

P(f.8)

ﬁl——(z’-ll
in (=)

T ()
c[f

@

with :
e d : intersensor distance ; p : sensor number
« b noise power ; N : number of averaged snapshots

Eq.4 exhibits a. special kernel which shows. two consequences of
source motion :

L. enlarged main lobe induced by source motion

2. averaged spatial frequency kys defined by :

(5)

The practical effects of qu are degraded perfomances in terms of
source detection, angular resolution (eq.4) and bias (eq.5). These
effects, furthermore, are increasing as the sensor number becomes
greater. Thus, the choice of the integration time (N ) is much more
crucial when p is great.

In the unique source case, the exact expression of Py and Pj,
(resp. probability of detection and false alarni) have been cal-
culated [3] ; furthermore, it has been shown that the following
gaussian approximation is valid for ¥ > 10 :

Nt Ht
A= G(GM)’—'—ZBoMXkaBaM S oK
k~0 Ho
and |
N-1
EfA)= nETT [Dors DygpyTzp) = m
k=0

(6)

/‘ E[A%)-EAP =4 ET’ [(DﬂMDeMszﬂi =¢?
| & =N (m,o?) =

specra.l be,hamor since it begms by increasing Qas in Bhe stamonary
ca.se} and then decreases fastly. This behavior is more dramatic
as p is great. The examination of the ROC curves of the classical
quadratic receiver A (eq.6) shows that the degradation induced by
source motion amounts to decrease the signal to noise ratio up to
20dB: (for a large array and great values of N').
The study of the variance of the estimated averazed bearing is
treated in a similar way, giving the following expression of var Ee

“‘kGME 3

13

Z (p— {}exp C L%T‘ﬂ (cﬂs@ — cos fg. — k?-l—?—-—

M-t L [Nt %
ETr {(Ar‘m)?»)} + [ETr(A‘I‘,,J]
var (éM - ) P 3 | n=0: g
ST N R, (Vi R Do) + Ugpg RUsn]”
with :
P
cC = g}gMH;M B = 1 f{r . (7)
) U = & R

The curve representing var (ﬂm) as a.function of the parameter N
(integration time) exhibits the: same behavior that the Pp curves.
It begins by decreasing and then fastly increase.

The analytical expressions of Py, Py (eq.6) and var (GM) (eq.7)
allow us to determine the optimal integration time ¥ for a source
whose parameters are known (ko and k for instance). For a small
value of p(p = 8) it may be rather important, one obtains typically
N = 400 ; but for larger values of p(p = 100}, ¥ must be chosen
rather low (typically N' = 30}.

The effects of source motion for H.R. methods can be investigated
by the same analysis but. the calculations are much more compli-
cated. Very roughly speaking, the source motion induces an higher
rank of the source covariance matrix. The consequences for H.R.

methods of this phenomenon are source splitting, non-detection of

weak sources, etc.

The caleulation of the: FIM reveals interesting conclusions for the
estimation of the parameters ko and k, it is given by the following
formula :

e o | PLE)] _ NpMIEdp (B - 1)

FIM(1,1) = -E[ FE }_ 6t 72)

- - FLE)] _ pPalPd (pP = 1) N(N + 1)(2N + 1}
PGS = E{ 8k ] 36(1 + pp)

RT3 L) _ o’ (0 - AIPEN(N + 1) 8y
Frme.2) = Ef@koak} 12(1 + pp) -®

The above expression of the FIM shows that var (k) is propor-
tional to N~ whereas var (kJa N~'. However, this result must
be compared with the value of £ which is usually very small (for
instance 10~%rd /s for medium range sources}).

4 Simultaneous estimation of the parame-
ters kg and k

The most elassical and natural approach consists in focused beam-
forming or equivalently to define the density P {k,_ Ic) by =

- I N‘t 1 2
P{k,,k) =% Z‘, X2 - Dy
W,—-
where the source steering vector D) ; fn is the vector D, . ;.
The method consists then in computation of the density P {E@, ls)

. (9)

and in seeking the values of Qbmk) maximizing the density. De-
spite its conceptual simplicity, the above method suffers of severe
drawbacks wich are : computation cost and, overall, numerous
spurious peaks. This last drawback is actually induced by the si-
multaneous analysis in k and k. In order to remedy this problem,
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we shall develop a separated state space model.

5 State-space model of the data

The data (correlations) are in a 2D-array and indexed by the time
t and the space m . Then, the data y(t,m) may be represented by
a 2D-state model, i.e. :

X(t+1L,m) = FX(t,m) 1&m<p
X(t,m+1) = FRFX(tm)
y(t,m) = h*X({,m) +w(t,m)
with :
F, = diag (ezp (2irdk1) yrer,€ZD (2(1rdic,)) ,(10)

Fo
h‘

diag (ezp(2irdkip),---,exp(2indk,0))
(1,1,---,1)

Thanks to the classical properties of Fourier transforms the noise
w(t,m) is uncorrelated in time, its covariance may be calculated
[4] and is given by the following formula :

Tr (thlmlI‘zﬂ"")

Efw(t,m)w” (8,ms)} = -m)(p-m2)

.(11)
with : I‘gz:' is the matrix T'x, translated m times down.

This model can be extended to multidimensional analysis, consider
then the vector Y(t) defined by :

y(t) = (y(t! 1)’y(tv2)a"‘yy(t1p))'

then the model (10) can be extended to :

{x(:+1) = F.X(t)
() = H-X(t)+W()
with :
he 0
F o= disg[R, - F|;n= i . (12)
0 h*
w(t) = (w(t1),--,w(,p)

Obviously, other models can be considered, ; another state space
model will be used for non-stationary analysis.

6 SVD-based algorithms

We are now dealing with the estimation of the matrices Fo and
F,. The general scheme consists in a separated estimation of the
matrices Fy and Fp, followed by an association procedure of the

estimated parameters. -
The basic method uses the following decomposition of the Hankel

matrix Hm = Hank (y(t, m)) [4] :
Hm =0m - Xm

where 8, is the observability matrix and Am the state matrix,

ie. :

br . (13)

X

(h‘,h‘F{",“',h‘EMI)
(X(1,m),---, X(c,m))

Actually, an observability matrix §,, is deduced from H,, by a
SVD procedure and an estimated Fy is then obtained. This anal-
ysis can be extended to the multidimensionnal model (12) without
difficulty. The variance of the parameters & have been estimated
(4] and are approximated by :

: 2
ok

var (i) = o2 m)| 25 . (14)

Where the variance of the estimation noise o2 (m) have been cal-
culated by eq.11, the other factor of the right term of (14) is
calculated by a classical SVD-perturbation analysis [4].

Roughly, the ;,erm o2 (m) grows as (p — m)? whereas the geometric

term

g—ahl'cj” decreases as m?. Thus, there is an optimum choice

of m and, more generally, it is possible to optimize the spatio-
temporal configuration [4].

7 AR-model approaches

For a fixed spatial indice m, eq.10 leads to an AR modelling. This
model is estimated, in a first time, by classical methods. Then
it is followed by an interpolation procedure, i.e. we define the
interpolated polynomial (from my to my) by :

Ns

z2my . =L
B =11 (z - 2(],m,,)"‘k) . (15)
i=1
and, then, an interpolated polynomial :
g™ 2 5— am
Pm(z)=zN'—a::(1)zN loeim @ (Ns) . (16)

These polynomials are then "fusionned” by a least square method.
More specifically, the covariance matrices Tt are deduced from
(15) thanks to Gohberg’s formula, i.e. :

- 2/~ - = = -1
Im = (om) (Amam - BriBmy) . (7)
AZ’L = Z‘ml(i) -Z'B = Z&’,:;(i) . 2P~ Z: shifting matrix

The covariance matrices provide then a unique AR model by means
of a least square procedure. This model resumes all the spatio-
temporal data, it can itself reduced to a lower rank by an optimal
approximation. .
This method present good performances [4] for far sources whose
trajectories (seen by the array) can be correctly modelled by a
straight line (eq.2’). Unfortunately, the performances are affected
by medium and low range sources.

8 Non stationary AR-models

In order to avoid the problems induced by near sources, a non
stationary AR-model [5] is considered, i.e. :
Xep1 F.- X+ W,
Y:

Rt - X+ m - (18)

with :
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Yo = ylt.mpihy = (y(t - Lm)-y(t - em)} . (19
Xe = (ax(m,t),---,84(m, 1)) . (20)
I<m<p

In the eq.18, the matrices F and Q; = cov (W,) are deduced from:
€q. 1" by using the Leverrier’s algorithm or hypotheses about source:
motion. The estimation of the state vector X, (AR model} is itself
estinfated by means of a Kalman filter, the poles of the associated
AR model yield the estimated parameters k The method can
be extended to spatio-temporal analysis by means of the following,
state space model -

F-X¢+ W,
iy - Xo £ raft)
hiy - XF(t) + na(t)

with

- (21}

omom

X, mterpolﬁted fmm 2 ﬁo 1 by eq.15

The above model is itself followed by a Kalman filter and smooth-
ing. This is only a partial model for the 2D- -array ; extensions of
this kind of methods are under investigation.
The first line of Eq. 18 (state eq.} plays a crucial role for source
tracking and must be carefully considered. Actually, the following
model of source motion (spatial frequency) is quite acceptable :

wy tAM(O,6%)  (22)

Eq. 22 corresponds to a slowly varying source and for most of
the cases o must be chosen very little (typically o?a10~1%),

Eq. 18 is classicaly modelled by a n.times differentiation [5},
for instance if = = 2 (as in eq. 2) then Fis:

Fegr = 2k — By + wy,

. -

The value of v must be itself chosen very little w.r.t. the
value of the observation noise. As suggested in [5], the adequate
value of 7% may be estimated by a maximum likelood procedure,,
fortunately the choice of 72 is not too critical.

By using eq. 22 it is possible to specialize eq. 23 to the case
of slowly varying sources. This task may be investigated in two
major ways :

1. First order linearization of AR coefficients :

Z —-—-atﬁt Yoetk

r:‘l

daift) = (24}
In eq.. 24, the term a—a.(t} is itself calculated by means of
the l%zvemer algonthm Obviously, eq. 24 may be extended

to a second order expansion.. The: terms dk; are themselves
calculated by using eq. 22.

2. Use of a symmetric function of the roots :

The AR coefficients {ax} may be expressed as symmetric
functions of the roots, i.e.:-

] ‘ «) T? @ “;
0 ) with W, = M(@( . ) |
r :” z’ “ 3 4 /. ‘3)

a = (-1)* .‘Z\Zgﬂuﬁ ek
with
%y = exp €—~ r‘iwl‘é’; x) .»(325:);

A recnrsmn Wx t. the ak{t) may then be derived from eq. 22
assuming i di ts wy for each source, more
specifically one ahtams for instance for the first order :

Gt +1) = axlt) + (n— kpwr  (26)

9 Simulation results

Numerous simulations have been performed, the results are
available in the reports [3] and [4). As an example consider the
following simultation. : two sourees with rectilinear and constant
speed motion, one source (the greater) is very close to the array
whereas the second is far. Their respective evolution laws in terms
of spatial frequency are illustrated by fig. 1.

a0t

source L.

oo

. source 2 —3

® spatial frequency

W W0 80 WM [0 w0 180 T800
" o time (seconds) ¢ source trapcnones

The exact value of £y is —5.0875.10~%. The respective levels
of the sources are : 0 dB (close source) and —20, —30dB for the
far source. The array processing is described in §2,5,7, it assumes
validity of eq. (2} for the far source.

The results are (one trial) : 16 sensors

ky = ~5.24.10-5(~20dB) : k; = ~3.4.10-5(~304B)

Conclusion

The effects of source motion have been studied ; ﬁ}"xgn we h'a‘{e de-
veloped array processing methods including these (unknown) mo-
tions in the source models. The great variety of source trajectories
lead to model them by a markovian model. This last way, associ-
ated with interpolation-fusion procedures, seems quite promising
and feasible. It can lead to a new class of array processing.
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