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Abstract 
This paper deals with temporal integration for array pro- 

cessing in the passive array context. Its main objective is to 
improve the detection of weak and slowly varying sources, 
in a first time by optimization of classical methods and in 
a second one by developing new array processing methods. 

1 Introduction 

The fundamental aims of passive array processing (especially in 
the sonar context) consist in detection, localization and tracking 
of (weak) moving sources. The problem is complicated by the 
presence of strong sources, propagation effects, etc. 
Classical array processing (beamforming and others) are based 
upon a short time analysis, itself followed by a post-processing in- 
cluding source tracking and T.M.A. (target motion analysis). This 
kind of methods present some advantages ; however, it is funda 
mentally irrelevant to the detection of (slowly) varying sources. 
The recent developments of array processing methods, e.g. high 
resolution methods [l], have demonstrated the benefits of temporal 
integration. Nevertheless, these benefits are limited by the intrin- 
sic non-stationary nature of the received signals, mainly due to 
source motion and propagation effects. Thus, a too large integra 
tion time can even produce dramatic effects in terms of detection, 
angular resolution, etc. 
Despite its considerable practical importance, this problem has not 
been the subject of an extensive literature [2]. Roughly speaking, 
the source motion spreads its spatial spectrum, which induces two 
major effects : lower performances in detection and angular resoh- 
tion. This spatial spreading can be easily quantified under simple 
hypotheses ; it is then possible to determine the optimal integra- 
tion time. Despite the very restrictive hypotheses needed for the 
calculation, an analytical expression of the array performances is 
of a great practical interest. A comparison with simulation results 
proves their validity. 
A simplified model for source in motion has been developed, in- 
volving only a restricted number of parameters (initial bearing, 
spatial frequency speed). Using this model, the calculation of the 
Fisher information matrix (FIM) reveals interesting conclusions. 
This model is one of the basic tools. 
The more difficult task consists in the development of array pro- 
cessing methods including the motion model to  the source model 
itself. The modelling of the sensor outputs by a linear (non- 
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stationary) system appears to be a powerful tool and allows us, 
to take advantages of the basic hypotheses relative to source mo-1 
tion. 
Finally, this problem fully justifies the use of parametric methods 
in the array processing area and lead to  develop a new class of 
methods. 

2 A simplified model of source motion 

Consider a source in motion (linear and uniform) and denote v 
the constant speed of the source 0, and L,  respectively the bear- 
ing and distance w.r.t. the array at instant t ,  ; then by using 
elementary calculations the following approximation is obtained : 

p is the source heading) 
The previous equation may be changed in order to obtain a first 
order approximation a t  t = t o ,  let : 

vATn 
Lo 

COS e,, O.L COS e, t (COS p - COS eo COS (eo - p) )  - = ko t ion 

. (2) 
The factor LO is, in eq.2, a constant. Denoting k, (spatial fre- 
quency) the terms cos0, in eq.1 and (2), they are rewritten in a 
simpler form as : 

k,, = kn-l t k, (1’) and k, = ko + n . ko (2’) 

Eq. 2’ is valid only for far sources but lead to simple models of the 
received signals while eq.1’ is valid even for short, medium range 
sources but needs more complicated analysis. 

3 Effects of source motion for classical ar- 
ray processing 

For the sake of simplicity, the analysis is achieved after Fourier 
transformation. Let r the empirical estimated covariance matrix 
of the sensor outputs after DFT, i.e. : 

Then : 
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we shall develop a separated state space model. 

5 State-space model of the data 

The data (correlations) are in a 2D-array and indexed by the time 
t and the space m . Then, the data y(t, m) may be represented by 
a 2D-state model, i.e. : 

X(t  + 1,m) = Fi"X(t,m) 1 l m l P  
X ( t , m +  1) = F&X(t,m) i y(t,m) = h'X(t ,m) +w(t ,m)  

with : 

F1 = diag (ezp (2irdhl) , . . ,ezp (2 ird6 . ) )  

Fo = diag (ezp(2irdtl,o), . . . , ezp(2irdk8,0)) 
, (10) 

h' = (l,l,...,l) 

Thanks to the classical properties of Fourier transforms the noise 
w ( t ,  m)  is uncorrelated in time, its covariance may be calculated 
[4] and is given by the following formula : 

T r  ( r z t l m l r z t f m z )  

(P - m1) (P - m2) E [U ( t ,  m1) U* ( t ,  7 7 4 1  = * (11) 

with : r i !  is the matrix r x ,  translated m times down. 
This model can be extended to multidimensional analysis, consider 
then the vector Y ( t )  defined by : 

Y ( t )  = ( Y ( t , l ) , Y ( t , 2 ) , . . . , Y ( t , p ) ) i  

then the model (10) can be extended to : 

X ( t  t 1) = F . X ( t )  

with : 

h' 0 
T = diag[PII . . . ,Fr]  ;R = [ h' ... h * ]  . (12) 

W ( t )  = (W,l),...,W(t,P))' 

Obviously, other models can be considered, ; another state space 
model will be used for non-stationary analysis. 

6 SVD-based algorithms 

We are now dealing with the estimation of the matrices FO and 
4. The general scheme consists in a separated estimation of the 
matrices F1 and Fo, followed by an association procedure of the 
estimated parameters. 
The basic method uses the following decomposition of the Hankel 
matrix 1-1, = Hank ( y ( t ,  m)) [4] : 

'H, = e,. X, 
where 8, is the observability matrix and X, the state matrix, 
i.e. : 

et, = (h*,vF;.,...,h*F;I') * (13) 

X; = (X( 1, m),  . . . , X(c, m ) )  

Actually, an observability matrix 8, is deduced from fi, by a 
SVD procedure and an estimated 4 is then obtained. This anal- 
ysis can be extended to the multidimensionnal model (12) without 
difficulty. The variance of the parameters k have been estimated 
[4] and are approximated by : 

. (14) 
Where the variance of the estimation noise &(m) have been cal- 
culated by eq.11, the other factor of the right term of (14) is 
calculated by a classical SVD-perturbation analysis [4]. 
Roughly, the term u i ( m )  grows as (p - m)' whereas the geometric 

term 11$jl1' decreases as m'. Thus, there is an optimum choice 
of m and, more generally, it is possible to  optimize the spatio- 
temporal configuration [4]. 

7 AR-model approaches 

For a fixed spatial indice m, eq.10 leads to  an AR modelling. This 
model is estimated, in a first time, by classical methods. Then 
it is followed by an interpolation procedure, i.e. we define the 
interpolated polynomial (from mk t o  m l )  by : 

and, then, an interpolated polynomial : 

A mi 
P,,(z)  = zNs - &::(l)zN"-'... - &::(A's) . (16) 

These polynomials are then "fusionned" by a least square method. 
More specifically, the covariance matrices pzi are deduced from 
(15) thanks to  Gohberg's formula, i.e. : 

The covariance matrices provide then a unique AR model by means 
of a least square procedure. This model resumes all the spatio- 
temporal data, it can itself reduced to a lower rank by an optimal 
approximation. 
This method present good performances [4] for far sources whose 
trajectories (seen by the array) can be correctly modelled by a 
straight line (eq.2'). Unfortunately, the performances are affected 
by medium and low range sources. 

8 Non stationary AR-models 

In order to  avoid the problems induced by near sources, a non 
stationary AR-model [5] is considered, i.e. : 

' (18) 
= F . X t + W t  { :+I = h; Xt + ni 

with : 
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