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ABSTRACT 
The aim of this paper is to extend exact model reduction 

methods to wideband analysis. After a review of the realization 
methods in the underwater acoustic context, it is shown that the 
Optimal Realization Method is very well suited to the wideband 
analysis, thanks to the rational modelling. The basic steps of the 
proposed method are a multidimensional AR modelling of the 
sensor outputs, spatial interpolation, and model reduction of a 
unique model for the frequency band of analysis. It is important 
to note that this method uses no a priori assumption about 
source locations or source models. Moreover, this one inherits 
the robustness w.r.t. spatial noise coloration from its 
narrowband version. Simulation results demonstrate the 
resolution and detection improvements achieved by the method. 

I - I "  
For most of practical situations, in underwater acoustic, 

sources emit wideband (w.b. for the sequel) signals; therefore, 
array processing must be expressed in terms of w.b. analysis. 
The usual and basic method, for that purpose, consists in 
beamforming and has the great interest to be of very simple 
implementation. However, its angular resolution is limited by 
the array aperture. In order to remedy this problem, high 
resolution (H.R.) methods have been derived; however, they 
are typically devoted to narrowband (n.b.) analysis. Recently, 
some extensions of these ones to w.b. analysis have been 
considered. They often consist in using coherent source- 
subspace transformations [ 11 or frequency-dependent models 
121; their main objective being to enhance angular resolution 
(w.r.t n.b analysis). 

However, for numerous practical situations, detection of 
weak sources is of fundamental importance. For that purpose, 
we have promoted the use of the theory of exact model 
reduction for array processing. This kind of method has already 
been considered for narrow-band array processing [3] by the 
authors; its performances are quite satisfying, especially for the 
detection of weak sources (detection gain w.r.t. H.R. methods 
can be up to 10 dB). Whereas usual array processing methods 
utilize a rough description of the acoustic field (including HR 
methods), the special structure (plane waves) of sources is 
fundamentally taken into account by the (exact) approximation 
scheme of the model reduction method. 

The methods of functional analysis are then the basic 
tools; especially the methods for function approximation in 
hardy spaces developed by Adamjan, Arov and Krein (A.A.K 
for the sequel) which constitute the theoretical framework and 

yield explicit solutions to the approximation problems (in 
infinite dimension, however). Fortunately, the tools of linear 
system analysis (balanced realizations) allow us to transform 
this infinite dimensional problem into an elementary problem of 
finite dimensional linear algebra [4]. 

Extension of this method to w.b. analysis can be achieved 
by using several ways. The simplest one consists in considering 
n.b. state space models of the array outputs; it is convenient to 
deduce from them a unique n.b. model at a given frequency. 
This is usually achieved by means of spatial interpolation which 
is straightforward for AR modelling. These interpolated models 
have rational common factors corresponding to the fact that 
source bearings are identical whatever the considered frequency, 
even if the power spectral densities of sources can greatly differ 
from a frequency to another. These factors can be estimated 
either by means of model reduction after spatial interpolation or, 
in a more rigorous way, by means of polynomial algebra, and 
yield w.b. source bearing estimates. 

The advantages of this approach are numerous: there is no 
a priori assumption w.r.t. source modelling (bearings, spectra, 
etc.), the computation cost is quite reasonable. Furthermore, the 
proposed method inherits the robustness w.r.t. spatial noise 
correlation [3] from the n.b. analysis (exact model reduction). 
These methods have been developed in the array processing 
context, leading to simple and efficient algorithms. 

2 - SIGNAL MODELING 
We assume that sources and noise are statistically 

independent, at a given frequency the spatial density of a sensor 
output (yi) is the sum of the source and noise spatial density: 

The AR spatial model corresponding to sources has its 
poles in the vicinity of the unit circle, whereas the noise is 
modelled by a general ARMA model (this last hypothesis is 
quite acceptable). 
Under this hypothesis, the sensor outputs (at a given frequency) 
can be modelled by an innovation state-space model [5]: 

(2) 

(yi : i - th sensor output, Xi : state-space vector, Wi  : white 
noise). 

A link can be made with the classical plane wave model [5]: 

i+l = F Xi + T W; E-  y' - h* Xi + wi 

242 7 
CH2847-2/90/0000-2427 $1.00 ' 1990 IEEE 

Authorized licensed use limited to: UR Rennes. Downloaded on July 17, 2009 at 11:44 from IEEE Xplore.  Restrictions apply.



m 

(3) yi = %exp[- j (i-1) (pk] +vi  ( j 2 = -  I )  

(m : source number, (Pk : phasing factor of the k-th source, a k  : 
random level of the source, (vi) : gaussian mean zero additive 
noise). 

Generally the eigenvalues of the transition matrix include 
the phasing factors (Pk ( q k  = 2 n f d/c cos 8k.  f : frequency, d : 
intersensor distance and 8k  bearing of the k-th source).So, we 
are concemed with the estimation of the matrix F, which can be 
achieved by using several ways. The more classical ones are 
based upon approximated covariances; whereas the more 
promising way considers directly an approximation of the 
transfer function, associated with the sensor outputs. 

k= 1 

3 - jlPPR0XIMATED REALIZATION M E T H O D S  
O [ S l  

Considering the model (2) of the sensor outputs, then the 
ARM rely upon the vectors Y+ and Y- (future and past at 
sensor nJ2) defined as follows: 

(4) 

n2 = ns/2 
The stochastic approach consists in determining a state 

vector X (of given dimension p) which sums up the more 
pertinent part of Y- in order to predict Y+, i.e.: 

X = A Y -  (5 )  
with A (p x n2) 

For a markovian system, the orthogonal projection of the 
future onto the past is given by: 

Y+ I Y- = BX (6)  
(8: observability matrix) 

The determination of A yields an estimate of the matrix 8 
and therefore of the system parameters. The crucial part of the 
ARM method consists in estimating the matrix A, for that 
purpose various methods have been considered. 

1) The predictive efficiency criterion (Arun-Kung method [6]): 
The following functional have been proposed. 

 in { tr [cov (Y+  - Y +  I X I ] }  (7) 
X = A Y -  

2)  The information criterion (Desai-Pal method [7] ): 

X = A Y -  
Max % ( y + , x )  (8) 

with: /(Y+, X) = Z(Y+) + %(X) - %! 

(Z(X) entropy of the generic vector X). 
6) 

Note that these two information criteria differ only from 
the functional (tr or det). Forgetting the parametric structure of 
A (i.e.: A = [T, (F - T h*) T ,  .... (F - T h*)n2-1 TI ) the 
corresponding optimization problem can be easily solved by 
means of elementary algebra. 

Actually, the information criterion may be expressed in 
terms of canonical correlations, let be: 

P 

k= 1 
(9) 

The [ (Tk) being the canonical correlations between the 
normalized future and past [7]. Consider furthermore, a strictly 
proper power spectrum density P(s), factorize it as : 
[W(s).W(-s)]; then it has been shown [8] that the Hankel 
singular values of the function w(s) / W(-s)]+ are precisely the 
canonical correlation coefficients of the function P(s). 

There is a link between canonical correlation coefficients 
and the singular values of an Hankel matrix. This is also a 
rationale for the following method. 

4 - OPTIMAL REALIZATION METHODS 
We are interested in a state space modelling of the sensor 

outputs; for that purpose consider, in a first time, the largest 
model. A special model must be chosen for playing the role of 
initial maximum order model. The maximum entropy (AR) 
model is convenient for several reasons. 

Consider the z-transform of the input-output processes for 
an innovation model, i.e.: 

With the state space notations, this transfer function is 
given by: 

fn (z) = y (z) / w (z) 

fn (z) = h* (Z I - F)-l T + 1 (10) 

n ( 4  
d (z) The z-function is rational: i.e. fn (z) 7 + 1. 

The function fn (z) is analytic outside the unit circle and 
fn (2 )  has a Lament series expansion on that domain: 

+- 
fn (Z) = 1 f Ck 2-k (11) 

k= 1 
with ck = h* Fk-' T 

The [Ck) are named Markov parameters of the system 
(impulse response) and are also its Fourier coefficients. The 
theory of approximation leads to consider the infinite Hankel 
matrix built with the Markov parameters of the system, i.e.: 

f C 1  c2 c3 '.. ) 
c2 c3 . . . . . .  

H f n = l  c3  . . . . . . . . .  I 
\ . . .  . . . . . . . . .  ,) 

Note that the singular values of Hfn are the square roots 
of the matrix product G g .  Gcg(respective1y observability and 
reachability gramians). 

The initial approximation problem consists in seeking the 
meromorphic function fp (with p poles inside C (0,l)) which is 
the best approximation of the initial function f n  for the 
Chebychev norm. Actually, this problem reduces to the 
following one: 

Find a m  Hankel matrix HfP s.t.: 

M 
Min llHfn -Mils (12) 

(with: M rank p Hankel matrix, 11 IIs being the spectral norm). 
The existence of such a matrix HfP has been proven by 

Adamjan, Arov and Krein 191, furthermore the corresponding 
value of the minimum is the (p+l)-th singular value of Hfn : 
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cP+1. Denoting L,p the set of meromorphic functions ~ ( z )  s.t.: 

(13) 

where g belongs to H, (the subset of L, constituted by the 
functions which are analytic inside D(0, l ) )  and the poles 

[ ai)r=l are all include inside D(0,l). 

g(z) 
(z-a1) ...( z a p )  

w(z) = 

Then w can be partitioned in proper stable and instable 
parts, i.e.: 

w (z) = [w (z)l+ + [w (z)l- 

0 .  
ci z-') ([w (z)l+ = , C 

1z-m 

and HW = H[,+,- 

Hence, a rank p Hankel matrix determines a unique 
rational transfer function cpp(z) = [wp (z)j- of degree p (= degree 
of its denominator) which is stable and strictly proper. 

Moreover the theorem of Adamjan, Arov and Krein yields 
an explicit function wp(z). Let fn (z) be the initial function 
(fnE I-), then: 

where the function up+l (z) and vp+l (z) are the functions 
corresponding to the Schmidt pair (up+l, vPl) of Hfn, let: 

Hfn Vp+l = Op+l Up+l 

tm 

a n d :  

However, this theorem is not directly applicable because it 
uses the infinite Hankel matrix Hfn and its singular vectors. 
Using linear system properties, a practical algorithm can be 
derived [4], [3]. 

More precisely denoting wp (z) ( = p (z) / lii (z) , and 
lii (z) = zn-l m* (z-1)) the best order p approximation of fn(Z), 
then wp (z) is determined by the following polynomial equation: 

p (z) d (z) = n (z) iii (z) - 1 a (z) m (z) (16) 
The above polynomial equation is the basic equation for 

the model reduction procedure. It can be easily translated in 
matricial terms, leading to an eigenvalue-eigenvector problem 
141, itself solved by usual packages. 

The model reduction procedure is applied to an initial 
maximum order model itself estimated from the sensor outputs. 
In our context, the most random extension of the data (i.e. an 
AR model for an equally spaced line array) seems to be the more 
convenient. The complete algorithm for narrow-band (U 
analysis takes the following form: 
1) Estimation of maximum order AR model of the sensor 

2) Estimation of wp (z) by means of (16). 

3) Compute the roots of the wp denominator, the p roots inside 

outputs. 

D(0,l) provide the source bearing estimates. 
The corresponding algorithm is very simple and its 

computation cost is low. However, its performances are quite 
satisfying [3]. Especially the detection of weak sources is 
greatly enhanced w.r.t. MUSIC method [3] ; furthermore the 
method results are not affected by the noise correlations (which 
are unknown is the passive array context). 

We are now trying to extend these interesting properties of 
the n.b analysis to w.b. analysis. This task can be achieved by 
several ways, but it is important to note that, thanks to the 
simplicity of the initial modelling, the proposed method is well 
suited to w.b analysis. 

5 - WIDEBAND ANALYSIS 
We are now concemed with the extension of the previous 

An AR modelling of the sensor outputs is very 
method to w.b. analysis. 

convenient. This AR model is temporal and multidimensional: 
q 

1= 1 
Xt = ,E Ai Xt-i + Nt (17) 

(Ai are the matricial coefficients of the model, Nt: spatially 
white noise). 

The order q of the AR model is usually chosen great; the 
matricial coefficients Ai are estimated by means of the Levinson- 
Wiggins algorithm for instance. Then, the basic procedure for 
w.b analysis takes the following form: 
1) Estimate a temporal AR modelling of the sensor outputs. 
2) Deduce from it, M cross-spectral matrices associated with 

3) Interpolate (by any way) the cross-spectral matrices 

4) Focus the initial estimates at the lowest frequency. 
5) Apply the optimal reduction method, eq. (14). 

source models conversely to usual methods. 

The CSM are deduced from the Ai, let: 

sampled temporal frequencies. 

(C.S.M.). 

Note that there is no assumption about source locations or 

Let us now detail the basic steps of the above procedure: 

Rfi= [; C A j A  )-l Z, [: C A j A  r (18) 

(Zq: prediction error matrix, A0 I 1, z = exp (-2 j n fi)). The 
estimated CSM at the fi frequency. 

It can be easily shown that there is a 1:l mapping between 

a set ( Rf i ]E l  and the AR coefficients Ai (M = (ns - 1) q/2). 

Now a spatial AR model (at the frequency fi) is deduced 
from Rfi. 

Let f l  be the reference frequency then the AR spatial 
model at the frequency fi is interpolated in order to produce an 
estimate of the spatial correlation at f l ,  i.e.: 

f f i ( f l ,  q d) = f if;, 2 q d] (19) 

(d: intersensor distance, q integer 0 5 q 5 ns-l). 
The interpolated spatial covariances are themselves 
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obtained by Fourier transforms, i.e.: 

BT=30 
2 / 1 0  

Wl2 

BT=% BT=210 BT=30~7=210 
01 10 6 /  10 7 / 1 0  

(w: spatial bandwidth, P (fi, k): spatial density, k: 
wavenumber). 

In the above formula the spatial density P (fi, k) is directly 
obtained from the spatial AR model. 

Obviously the above formula can be replaced by direct 
interpolation. 

Therefore, a set of M spatial covariance lags 
[f (fl, q d)) can be estimated by the above procedure. Then, a 
unique order n AR (spatial) model can be derived from all of 
them in a least square sense. Then, the model reduction 
procedure provides a multifrequency analysis. 

A rationale for this procedure can be derived as follows. 
After interpolation, the poles associated with sources are 
identical whatever the considered frequency. Then, the spatial 
density at the frequency fi  takes the form: 

S - 
(21) p (fi, .) = c % + % + ni 

k=l z-zk r1 -- zk 

( Z k :  exact source bearings, ak,i: source p.s.d, ni: noise at 
frequency f i ) .  

The above formula is assumed to be valid for the 
interpolated process, then we consider the multifrequency 
functional: 

(22) 

(Z) can 

- 
P (z) = p(fi, Z) 

t 
itself associated to the least square procedure. Then, 
also be written as: [: ak i j + [ ak. i ]  * 

F ( z ) = C -  - +C ni (23) 

The interpolation procedure results generally in a highly 
(spatially) correlated noise. In order to remedy this problem, it 
is always possible to whiten it. This constitutes a delicate step 
for usual multifrequency methods (in particular if the noise 
model is unknown); but this step is, thanks to the fundamental 
robustness w.r.t noise correlations, useless for our method. 

SIMULATION R ESULTS 
The output data of a linear array composed with 20 

equispaced sensors are simulated to show the performances of 
the w.b method. The noise is assumed temporally and spatially 
white, and the sources have flat spectra in the band of analysis 
[0.22 ; 0.441 in normalized frequency unit. The intersensor 
distance is d = c / (2 fe), where c is the velocity of wave and fe 
the sampling frequency; the broadside corresponds to 90 deg. 
The CSMs Rfi, and an order 19 temporal AR model of the 
sensor outputs are estimated with the same integration time: 
T = 30 / fe. The following simulations underline the resolution 
and detection improvements of the w.b method on n.b ones: 

Resolution of two close sources: two sources with same 
SNR per frequency bin ( 0 dE3 ) are simulated at bearings 20 and 
23 deg. The narrow-band methods ( n.b ORM with BT=30 and 

k=l z-zk z-zk 

Root-MUSIC method with BT=30, BT=210 ) are performed 
with the CSM at the highest frequency bin of the band: 0.44 ; 
and the wide-band ORM is performed in the band [0.38 ; 0.44 ] 
with 7 frequency bins (and the same integration time), thus 
BT=30 x 7 = 210. The results are summarized in the following 
table for 10 independent trials (the assumed source number=2): 

I n.bORM I Root-MUSIC I Root-MUSIC I W.BORM I 
BT=30 I BT=% I BT=210 I BT=30~7=210 
5 / 1 0  I 2 / 1 0  I 7 / 1 0  I 7 / 1 0  

Detection of a weak source: 3 sources are simulated with 
respective bearing and SNR per frequency bin (70 deg, -10 
dB), (78 deg, -3 dB) and (87 deg, -20 dB). With the same 
processing parameters as in the preceding simulation the 
different results can be compared in the table below ( 10 trials, 
the assumed source number is 3): 

I n.bORM I Root-MUSIC 1 Root-MUSIC I W.BORM I 

6 - CONC LUSIOry 
A new method for multifrequency analysis has been 

derived. It requires no assumption about source locations, 
source models, noise correlations. The complete procedure is 
very simple and low cost. 

The simulation results are quite satisfying and it is 
important to note the following facts: improvements w.r.t. 
narrow band analysis can be considerable (angular resolution, 
weak source detection...), the method is quite robust (no a 
priori hypothesis is used). 
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