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ABSTRACT 

The aim of this paper is to present new methods 
for passive array processing. The basic idea consists in 
using a state-space modelling of the sensors output. 
This paper copes with basic problems as: unknown 
noise correlations. approximation by a Tceplitz matrix 
of lower rank, detection of small sources. The 
p r e s e n t e d  m e t h o d s  r e p r e s e n t  c o n s i d e r a b l e  
improvements with respect to the usual ones and 
furthermore are quite feasible, some statistical results 
illustrate these claims. 

1. In t roduct ion .  
A modelling of the sensors output of an equally 

spaced linear array by a linear system is shown to be a 
powerful tool, in particular to take into account 
fundamental hypotheses ahout sources and noise. A 
general frame for approximated stochastic realization 
methods is presented and connections with existing 
work and array processing are especially considered. 

A state space modelling of the sensors output 
uses sources and noise properties in a summarizing 
way and is a powerful means to separate the noise and 
sources contributions even in the case of an unknown 
correlated noise. This last property represents a 
considerable improvement against  usual high 
resolution methods. For that purpose two methods of 
approximated stochastic realization are considered. the 
links between these ones and array processing are 
detailled. 

However a fundamental problem remains: find 
an estimation of the sources subspace that preserves 
the plane wave structure. We are now facing the basic 
problem which consisis in extracting a low rank 
matrix (of sources) from an estimated (full rank) one, 
preserving the special structure (Tceplitz or Hankel) 
induced by plane wave and spatial stationnarity 
hypotheses. The Adamjan-Arov-Krein theory is the 
theoretical frame, the initial problem of functionnal 
analysis is translated into another simpler and finite 
dimensional problem by the use of the properties of 
finite structures and balanced realizations. A further 
advantage consists in using a L,-norm rather than an 
L2-norm ,much more sensitive to local variations of.  the 
spectra.  

Fur thermore .  s imula t ion  resu l t s  present  
comparisons between state space approaches and. usual 
high resolution methods (as eigenvectors methods) and 
try to precise their advantages. 

2. Additive white noise. 
This case is especially simple but allows us to 

precise our definitions. In the whole paper, the 
sensors output of a linear equispaced array constituted 
by n sensors are considered at a given frequency 
(omitted for the sequel). Under plane wave assumption, 
the output at the i-th sensor may be written as: 

2601 

y i = x  rn ak.exp(-j.cpk)+vi ( I )  ( j  2 = - I )  

k= I 
where. m is the number of sources, a k  and 'pk represent  
respectively the random level and the deterministic 
phase of the k-th source, and (vi)  is the additive noise. 

A rank m linear state space model of ( I )  is given 
in the case of an additive white noise by [ I ]  

Xi+, = F.  Xi F : (mxm) 

yi= h'. Xi + vi (2 )  h': (Ixm) 
where F, h are deterministic parameters. Xi is the state 
vector at sensor i and (vi)  is an additive white noise. 
The matrix F translates the phasing properties of the 
propagation while h represents its power effects. The 
phases v k  are determined from the eigenvalues of the 
transition matrix F which is similar to diag[exp(-j. fqk)]. 

Let rP be the covariances of the sensors output. 
i.e. : Tp = E(yi+pyi') then I 

{ 

rp = h*. Fp. P . h + b2. 6(p) 

I-+= 0 . P .  0' + b2. I, 

( 3 )  
with P = E(Xi . Xi'), b2 = E(lvil*). 

matrix of the sensors output, then 
Furthermore, let r +  be the exact covariance 

(4) 
where. 0 is the (nxn) observability matrix 

The following property can he easily deduced 
from the structure of the observability matrix: 

( f :  select the (n-I) last rows, I: select the (n-I) first 
rows, 0 Tand 0 'are ((n-1)xm) matrices), and therefore; 

( #: denoting pseudo-inverse matrix) 

written in terms of array processing as: 

0'.  F = 0 3  ( 5 )  

F=(Of)# .O '  ( 6 )  

Elsewhere, the covariance matrix can also be 

r+ = D . y .  a* + h2. 1, (7) 
with D : source steering matrix 

then the plane wave hypothesis yields: 
~f . F = DL or F = ( ~ f ) # .  DJ ( 8 )  

leading to property 1 [2], and a geometric meaning of 
the Observability matrix. 

Ereel: in the asymptotic case, the eigenvalues 
of the transition matrix F are identical to these of the 
matrix [(Ul')' . U,'] where U1 is the (nxm) matrix 
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formed front the eigenvectors corresponding to the m 
largest eigenvalues of r+ . 

In practical situation however, the matrix U1 i s  

replaced by U, an estimate (fromr,), therefore the 
presented method "forgets" the special structure of the 
Observability matrix. 

A 

3. Approximated realization methods, 
addi t ive  cor re la ted  noise. 

In the general case, it is possible to take into 
account the noise correlations by modelling the 
sensors output as the outputs of a minimum phase 
innovation model, i.e. : 

Xi+l = F .  Xi+  T . yi 

yi= h'. Xi + vi ( 9 )  1 
Then the approximated realization methods rely 

upon consideration of two vectors Y + and Y - ( f u t u r e  
and past at sensor n/2) defined as follows: 

Y-  = (ynZ. ynZ.1 . ... .YI) ("2 = n/2) 

I Y+ (YnZ+l *Ynz+2* .. .Yn) (10) 
The aim of the methods consists in summarizing 

the past in order to obtain the more efficient (for a 
given criterion) prediction of the future. The 
stochastic approach 131 determines a state vector X (of  
a given dimension) which sums up the more pertinent 
part of Y. in order to predict Y +  , i.e.: 

X = A .  Y. , with A (pxn) (11) 
Theoretically one has: 

(12) 
Furthermore, in the case of a markovian system. 

the onhogonal projection of the future onto the past is 
given by: 

Y+ I Y- = 0 . X (0 : observability matrix) ( 1  3) 
The determination of A allows us to estimate 0 

and therefore the system parameters. The crucial step 
of these methods consists in the estimation of the 
matrix A. for that purpose various methods can be 
considered. 

A = [ T . ( F - T . h * ) . T  ...., ( F -  T .  h*)n2-1.T] 

(AK method) 3.1. u d  ictive effici- 

variance of the predictor error, i.e. 141 : 

. .  . .  
The matrix A is the matrix which minimizes the 

Min (tr[cov(Y+ - Y+ I X) ] )  
X = A .  Y- 

yielding to: 
Min(tr[r+ - H .  A' . ( A .  r-.  A*). A .  H*l) 

(r+ = EW+ . Y+*), r- I E(Y-. Y-'), H = WY+.  Y-*) ) 

(14) 
A 

forgetting special structure of A, the solution of (14) is 
obtained by elementary algebra, i.e.: w: the solution of the problem (14) has the 
general form: (15) 
where B is any (pxp) invertible matrix and ( Z,z , U1)  

are the p principal components of the matrix H.r--l.H'. 

A = B .  Z l - l  . Ul* . H .  r--l 

(DP method) 3.2. -on & . .  
This approach is based upon the fact that the whole 

information contained in Y +  which is explained by Y. 
can be expressed in terms of few parameters ( u k ) k = , , p ,  
called the canonical correlation coefficients: 

2 
Z(Y+.Y .)=- f l o g ( l  - Uk) 

t= l  

Denoting Z ( Y  + , X) the mutual information 
between Y, and X defined as follows: 

(16) 

where H(X) is the entropy of the gaussian vector X, 
then the estimation of X = A . Y. amouts to minimize the 
following criterion [ 5 ] :  

Min[detlr+ - H . A' . ( A .  r-. A*). A .  H.1) (17) 

Note that both criteria differ only by the 
functionil (tr o r  det) , the minimization of this 
criterion is achieved by means of elementary algebra 
leading to: 

Emg-3: the solution of the problem (17) is given 
by: A = B . V I * .  I---Il2 (18) 

where VI is the matrix formed from 
the p right principal singular vectors of the matrix 

Therefore the solution of (17) is nothing but the 
solution obtained by maximization of canonical 
correlations as advocated by Desai and Pal 151. 

The matrix A being estimated by means of Prop.2 
or 3, F is staightforwardly deduced by two ways since: 

- 0 . A = H , r - - I  , and O f . F = O 1 .  
- X i + l \ X i =  F . X i .  
The links with classical methods of array 

processing are much more subtle than in 02. In the 
white noise case, one has IS]: ' 

therefore the matrix H . r - - I .  H' plays the roleof r+ in 
Prop. 1; but this is  not very relevant of the general 
case. For that purpose. i t  is more appropriate to 
consider the predictive efficiency criterion in terms of 
the intersection of two linear subspaces, i.e. 161 : 

eLpp9: the rows of the matrix A approximate a 
basis of Range(". H) n Range(r-). 

A 

(r+-ln . H .(r--I/z)*). 

H . r--l. H' = 0. A . 0' 

Prop. 4 means that the rows of A minimize the 
principal angles between Range(r) and Range(H*.H). 

Under the assumption of a shortly correlated 
additive noise, the matrix H is perturbed only by a 
triangular matrix. the vectors of Range(" .H) n 
R a n g e ( T j  are mainly related to source parameters. 

To sum up. the presented methods are efficient to 
estimate the source bearings in presence of an additive 
noise with unknown correlations, however they do not 
use fundamentally the plane wave hypothesis for the 
estimation of A. We shall now cope with this problem. 

4. Optimal realization methods. 
4.1. 

The approximation of a linear system by a lower 
order one represents an important part of control 
systems littcrature. However this field seems to be not 
very relevant for array processing, but the following 
general framework permits us to use the results of 
control systems theory. 

The array outputs arc modelled by a maximal 
order parametric model (e.g.: an AR model of order n), 
note that there is  no inkrmation loss since it is 
possible to construct the corresponding covariances 
( r )  from them. It is  simply another representation of 
the covariances. A state space model can be easily 
obtained from the model and it is then possible to use 
the optimal model reduction methods [7]. 

We want an exact approximation. preserving the 
structure and avoiding the classical least squares 
approximations (leading generally t o  principal 
component analysis). This is basically a problem of 
approximation. In fact, the theorem of Adamjan. Arov 
and Krein (AAK) is the foundation of such an 
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approximation. although it is mainly theoretical and in 
particular involves infinite matrices. Fortunately it is 
possible to translate this problem into another finite 
dimensional problem (by use of finite structure) and to 
'present a practical algorithm. 

4.2. 
Given a scalar transfert function (e.g. : 

f(z) = h*.  (z . I - F)-l. T + 1) we seek an approximation 
(for a certain norm) of this function by a lower order 
system. The use of L2-norm is classical but is not as 
powerful as L,-norm for our problem where sources 
may have very different powers. The inclusion of 
special structure leads to the following problem: 

U: given f E L, (defined on C(0, l ) )  and a 
positive integer k. find 

(19 )  
and a function f+k (of H,,k) for which the infinimum is 
attained; H,,k being the set of meromorphic functions 
in L, which can be written as: 

inf{ I I f - cp I I , : cp E H,+ J 

cp(z)= g(z) (20) 
(z -a3  ... ( z - a d  

where : ( a l ,  ... .ak) E D(0,I) and g E H,; H, being the 
subspace of L, for which c(n) = 0 for n < 0 (c(n) being 
the n-th Fourier coefficient of f w.r. to the complete 
basis (2"). z = exp(-j . e)). 

This problem has been solved by AAK. its 
solution consists in using the Hankel matrix of a 
function f w.1. to the basis z-', z-~, ... in L2 9 H2 defined 
as: 

H -  

I ................................... I 
L J 

then a first result is available: 

the function of H, which minimizes that distance 
being given by Nehari's theorem. 

Furthermore. the Kronecker's theorem allows us 
to precise the problem: 

Kronecker's theorem : let f E L,, then Hf has 
finite rank I k if and only i f f  E H,,k. 

The theorem of AAK gives an explicit solution to Pb. 1. 
T h e o r e m  (AAK): let f E L, and k 1 0. Then 

distL,(f.H,,k) = Ck+l(Hf),  where the u i  are the singular 
values of Hf ordered in decreasing value; furthermore 
this distance is attained at a unique function cpk E H,,k 
and if Vk+l is the singular vector of H f c o r r e s p o n d i n g  

EaJ: 1 1  Hfll ,  =distL_(f.H,) 

10 Uk+l(Hf) then: 
9k(Z) = f(z) - [Hf .  Vk+lI(z) / Vk+l(z) 

where H f .  Vk+l n.(Vk+l . 0 (22) 
Defining the projection operators n +  and n ~ b y 

j=1 

+o. k + l  1- j  
with :  

vk+I(z) = z v j  . z 
j=1 

these results are interesting but not directly 
useful because they involve mainly the infinite 
Hankel matrix Hf and its singular vectors. The 
implication of finite structure allows us to solve 
explicitely the initial Pb. 1. . .  4.3. ImDlication of 

Firstly. recall the classical equality: H = 0 . C , 
therefore the square of the i-th singular value u i  of 
the (infinite) matrix H is 

q(H'. H) = q(C*. 0'. 0 . c) = Oi(C . e*. 0.. 0 )  
=ui(P. Q )  (24) 

where P and Q are respectively the controllability and 
observability gramians. The matrices P and Q depend 
strongly on state-space coordinates but not the 
eigenvalues of the product P . Q , furthermore it has 
the great advantage to be finite-dimensional. 

Let the strictly proper part of the transfert 

function be: (25) 
where d(z) = det(z . I - F). By use of balanced system 
transformation, it is  possible to obtain simpler 
expressions for thez functions pi@) and vi(z). 

More precisely, let H = H(f) and B a balancing 

transform : (F, h * ,  T )  3 ( F b .  h b * . T b )  
(balanced triple).Hence, 

therefore : 
( 2 6 )  

where e i  denotes the i-th column of the (nxn) identity 
matrix.  

f(z) = h*. (z . I - F)-1. T =E 

if H = U .  . v , then 0, = U .  and c b  = x". v , 

P i ( Z )  = Oi-1'2. hb* . (In ~ Z . Fb)-l. ei 

Similarly, one obtains: 
Vi(Z) = Ci-1'2. ei* . (2 . I, - Fb')''. T b  (27) 
This last equality can be usefully transformed by 

means of the following property: w: for a balanced SISO system, the following 
equalities are satisfied: Fbt= Q . Fb. Q' ; T = Q'.h , 
Q being a unitary diagonal matrix. 

Prom (26) we see that pi@) has a rational form. 
SdLl i.e.: Pi(z) = d(z) 

then (27) and Prop. 5 yield the following fundamental 
p roper ty :  

q (z)  = qi . 2-1. Mi(Z.1) = qi . E M  (withIqil2= 1) 
a ( Z )  

where qi is the i-th element of the diagonal Q and ZI(Z). 
(a(z)) the reversed polynomials of m(z) (resp. d(z)) , 
i.e. 

Using AAK theorem the best L, approximation of 
order k is given by: 

6(z) = 2"-1 . m(z-1) 

4(2) - (28) 
d ( z )  . h ( z )  

Furthermore it can be easily proved that the 
rational fraction q(z)/d(z) is actually a polynomial p(z) 
of degree < n , as a consequence the following equality 
is valid: 

( = %+l . Ok+1 ) 
(23) This last form of Vk(z) leads to determine the 

coefficients of m(z) by solving the following 
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polynomial equation: 
(29) 

equating the coefficients of powers of z [7], one obtains 
the two following matricial equations (30) and (31): 

J . s2 .  J .  p = R ~ .  m - 5 .  J . S I  . J . m (zJ: i = 0. ... , n-1) 

s1 . p = R~ . i - x . Sz . m (2': i = n, ... , 2n-1) 

p ( ~ )  . d(z) = n(z) . EI(z) - x . a(Z) . m(z) 

where : 
n(z) = c, + cn-l . z + ... + cl . P1 
d(z) =a,, + . z + ... + a1 . zn-' + zn 
m(z)=mn.l + m , . z . z + . . . + m o . z n ~ L  
p(2) = pn-l + pn-2 . z + ... + po 

and: 

Detection of a weak source 
100 trials 

. .  

0, c l . . . c  
. .  . . . .  

R s  . . .  
1 .  . . .  

. c  
. 1  

MUSIC ARM 
15/100 40/100 

51 . . 

Separation 
of the tvosources 

L cy c 2 .  

MUSIC ORM 
4/10 9/10 

and J the antidiagonal matrix 
from (30) and (31) one obtains (33): 

(J.S2.J.SI-I.R~ - R z ) . ~  = 5 .(J.S2.J.Sl-'.S2 - J. i l . J ) . m  
m t  = (mo, ml, ... . mn.l) 

which appears as a generalized eigenvalue- 
eigenvector equation. In order to solve (33). numerous 
subroutines are available. Once the coefficients of m(z) 
have  been ca lcu la ted .  those  o f  p(z)  a re  
straightforwardly deduced. 

I .  S 2 . J .  p = R 2 .  m - A .  1 .  SI . J . m (2': i = 0. ,.. , n-1) 

S I  . p = R I  . m - I .  S2 ..m (2 ' :  i = n, ... , 211-1) 

Practical utilization of the previous method 
needs a prior state-space model which will be reduced. 
The more  "random" model (or maximum entropy) 
seems to be the most convenient. it summarizes all the 
available informations (i.e. : the estimated covariance 
of the outputs) and gives the more "random" extension 
of them. For a linear equispaced array of sensors it is 
similar with an AR modelling. The practical algorithm 
takes the following form after DFT of sensors: 

1) estimation of the covariances of the sensors 
output (n+l  sensors); i.e. : 

2) estimation of the corresponding AR model 
coefficients: 

3) solve the generalized eigenvalue-eigenvector 
problem (33) with: 

al  = al . ... . h.1 = b-1 . a,, = a, 
Cl = 0 , ... , cn.l = 0 , cn = 1 

4.4. 

;(o), 31). ... , % n ) .  
A A  

(1, al.  ... , a,, ; b2). 

A A A 

select the (k+l)-th generalized eigenvector (to obtain a 
rank k approximation) and calculate m k + l ( Z ) .  

4) compute the roots of m k + l ( z )  and their 
arguments (note that by definition of H,,k there are k 
roots in D(0,I)). 

5. Simulation results. 
Due to the lack of space, we present briefly 

simulation results. details are available in 161. 
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