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Abstract. In this paper we describe a new framework for the tracking of closed
curves described through implicit surface modeling. The approach proposed here
enables a continuous tracking along an image sequence of deformable object
contours. Such an approach is formalized through the minimization of a global
spatio-temporal continuous cost functional stemming from a Bayesian Maximum
a posteriori estimation of a Gaussian probability distribution. The resulting mini-
mization sequence consists in a forward integration of an evolution law followed
by a backward integration of an adjoint evolution model. This latter pde include
also a term related to the discrepancy between the curve evolution law and a noisy
observation of the curve. The efficiency of the approach is demonstrated on image
sequences showing deformable objects of different natures.

1 Introduction

Tracking curves and contours is an important and difficult problem in computer vision.
As a matter of fact, the shapes of deformable or rigid objects may vary a lot along
an image sequence. These changes are due to perspective effects, self occlusions or to
complex deformations of the object itself. The intrinsic continuous nature of these fea-
tures and their high dimensionality makes difficult the conception of efficient non linear
Bayesian filters as sampling in large scale dimension is usually completely inefficient.
Besides, the use of lower dimensional features such as explicit parametric curves is lim-
ited to the visual tracking of objects with well defined shapes and that do not exhibit
any change of topology [2,15]. This kind of representation is for instance very difficult
to settle when focusing on the tracking of temperature level curves in satellite atmo-
spheric images, or simply when the aim is to track an unknown deformable object with
no predefined shape.

In such a context, approaches based on level set representation have been proposed
[5,6,8,11,12,14,16]. Nevertheless, apart from [11], all these solutions aim more at es-
timating successive instantaneous segmentation maps than at really tracking objects.
Indeed, in a formal point of view, they cannot be really considered as tracking ap-
proaches for several reasons. First of all, these methods are very sensitive to noise [9].
Unless the introduction of some statistical knowledges on the shape [3,7,13] these ap-
proaches do not allow to handle partial occlusions of the target. Since these methods do
not include any temporal evolution law on the tracked object shape, they are not able to
cope with severe failures of the imaging sensor (for instance a complete loss of image
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data, a severe motion blur or high saturation caused by over exposure). And finally, no
error assessment on the estimation is in addition possible. For all these reasons, only
approaches introducing basically a competition between a dynamical evolution model
and a measurement process of the target of interest enable to handle a robust tracking
in natural way. On the same basis, we propose here a variational method allowing to
combine these two ingredients for the tracking of non parametric curves.

Unlike the technique proposed in [11], which explicitly also introduces a dynamic
law in the curve evolution, our work includes in the same spirit as a Kalman smoothing
a temporal smoothing along the whole image sequence. In the same way as a Kalman
smoother the technique we propose here allows to estimate the conditional expectation
of the state process given all the available measurements extracted in the whole im-
age sequence. Nevertheless, unlike stochastic techniques our approach allows to handle
features of very high dimension.

The variational tracking technique we introduce relies on data assimilation concepts
used for instance in meteorology [1,4,17]. As will be demonstrated in the experimental
section, such a technique enables to handle naturally partial occlusions and a complete
loss of image data on long time period without resorting to complex mechanisms.

2 A system for contour tracking

As we wish to focus in this work on the tracking of non parametric closed curves that
may exhibit topology changes during the time of the analyzed image sequence, we will
rely on an implicit level set representation of the curve of interest I'(¢) at time ¢ €
[to, 7] Of the image sequence [12,16]. Within that framework, the curve I'(t) enclosing
the target to track is implicitly described as the zero level set of a function ¢(z,t) :
2 xR+ =R

Ir(t) ={z e 2| ¢(z,t) =0},

where (2 stands for the image spatial domain. This representation enables an Eulerian
representation of the evolving contours. As such, it allows to avoid the inescapable re-
griding ad-hoc processes of the different control points associated to any explicit spline
based Lagrangian description of the evolving curve. The problem we want to face thus
consists in estimating for a whole time range the state of an unknown curve, and hence
of its associated implicit surface ¢. To that end, we first define an a priori evolution
law of the unknown surface. We will assume that the curve is transported at each frame
instant by a velocity fields, w(t), and diffuses according to a mean curvature motion.
In term of the implicit surface this evolution model reads:

d¢ _ 9¢
dt ~— Ot

where « denotes the curve curvature. Introducing the surface normal, equation (1) can
be written as:

+ Vo(x,t) w(t) = exl| Vo, (1)
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where the normal and the curvature are given directly in term of surface gradient,

. L Vo V¢
with & = div (—”V¢”) andn = —||V¢||

At the initial time, the implicit function is assigned to a signed distance function up
to a white Gaussian noise. More precisely, the value of ¢(x, ) is set to the distance
g(x, I'(to)) of the closest point of a given initial curve I'(to), with the convention that
g(z, to) is negative inside the contour, and positive outside. An additive white noise pro-
cess is added in order to model the uncertainty we have on the initial curve. Associated
to this evolution model and to the initialization process we previously described, we
will assume that an observation function Y (¢) which constitutes a noisy measurement
of the target is available. This function will be assumed to be related to the unknown
state function ¢ through a differential operator H and a white Gaussian noise ¢(x, t):

Y(z,t) = H(¢(z, 1)) + e(, ). ©)

Let us note that in our case, the continuous observation function, Y (¢), is obtained from
discrete image frames, I,,, through multiplication by a family of localization functions.
These functions can be defined from delta functions at the observed time and location,
or from more advanced spatio-temporal averaging functions. Gathering all the elements
we have described so far, we get the following system for our tracking problem:

57 +M(¢) = n(=,1)

¢($,t0) :g(m,F(to)) +V($at) (4)

Y(z,t) = H(¢) +&(z, t)
In this system, M, denotes the differential operator involved in equation (2) and 7,
v and ¢ are time varying zero mean Gaussian noise functions defined on the whole
image plane, with covariance functions Q(x,t,z’,t"), B(x, '), R(x,t,x't') respec-
tively. The different noise functions represent the different errors involved in the differ-
ent components of our system.

3 Variational tracking formulation
3.1 Penalty function

Considering a system such as the one we previously settled comes to fix the conditional
probability distribution p(¢(¢)|g), p(g|¢(te)) and p(Y (¢)|¢(t)). From these pdf’s, one
get the a posteriori density function up to a normalization constant. As all the error
distributions involved here are Gaussian, the a posteriori pdf is also Gaussian. The
maximization of this distribution is thus equivalent to the minimization of the following
quadratic penalty function:

(@)= %/m /Q,t (?9_? + M(¢)) (z,)Q7 (z,t,2',1') (% + M(¢)> (', ¢')dt’ de dtdac
+ %/n /n (6(, to) — g(m, [(ts)) B (z, ) (¢(a',to) — g(a', [(to))) de’da

+3 /n /g (Y —H($))" (x, )R (@ t,a',t') (Y — H(p)) (2, t')dt'da’ did.
5)
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In this functional, 2, denotes the spatial domain coordinates defined on the image do-
main {2 and ¢ is a continuous time index lying within the image sequence time interval
[to = 0;7]. The minimizer of this expression minimizes a sum of norms expressing all
the possible correlations between errors at arbitrary two points of the image sequence.
The double space and time integrations are here due to the fact that the covariance
functions are first assumed to be non null for any two points (x,t) and (x',t") (cor-
related case) in order to stick to the most general case before considering a simplified
uncorrelated case corresponding to diagonal correlation matrices in a discrete setting.

In order to devise a minimizing sequence for this functional, let us now derive the
associated Euler-Lagrange equations.

3.2 Euler-Lagrange equations

Function ¢ is a minimum of functional J, if it is also a minimum of a cost function
J(¢ + B0(x,t)), where 8(x, t)) belongs to a space of admissible functions and 3 is a
positive parameter. In other words, ¢ must cancel the directional derivative :

dJ (¢ + B6(x,1))
ﬂ—»O d,B
The cost function J(¢ + 86(x,t)) reads

// K ”_*M“ﬂ")) // ( +ﬂ—+M(¢+ﬂ9)>dt'd:c’]dtdm

+5/n/n(¢+ﬂ0—g) B¢ + 80— g)da'dz

5.74(6) = —0.

1 T T T o
T2 /n/o /9/0 (Y —H(¢ + f6)) R™H(Y — H(¢ + 86))dt'dz’ dtdz. i
6

Adjoint variable In order to perform an integration by part — to factorize this expres-
sion by 6— we introduce an "adjoint variable" X defined by:

Az, t) = / / ( +M(¢)> dt'de’, ©)

8¢) and ( ) defined by
dM(¢ + 86) _ oM

as well as linear tangent operators (

AT Y (©)- ®)
By taking the limit 3 — 0, the derivative of expression (6) then reads
60 6M
é{r%)% / / ( ) Az, t)dtdx
v [ (m,O)B—1<¢(z',O)—g(z',o»dz'dm
ola 9)

_/Q/OT/Q/OT (%ﬂe)TR—l(Y—H(¢))dt’dm'dtdm
~0
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Considering the three following integrations by parts, we can get rid of the partial
derivatives of the admissible function € in expression (9), i.e.

/9 0 ") (a, t)dtdm—/ 0" (z, )\, Tdm_/ 6 (a, 0)A(, 0)da

ot
_/n/o 0" (m,t)adtdm,
/Q/OT (‘?%19) (x t)dtda:_/ / 0 ) Az, t)dtdx, (11)

/ /T/ /T (aﬂ‘")T R™N(Y —H(¢))dt' de'dtde = o
1
/ / / / 6" ( aﬂ LY - H(¢)) dt' dx’ dtdz.

In the two last equations, we have introduced adjoint operators (%—%)* and (g—ﬁi)* as
compact notations of the integration by parts of the associated linear tangent operators.
Gathering all these elements, equation (9) can be rewritten as

(10)

/ 0" (z,7) Mz, 7)dz +/ 9" (z,0) [/ (B~H(¢(z',0) — g(z',0)) — A(z,0)) dm'] dz

// [( o+ > // Yy - H(q&))dt’dm’]dtdmzo.

(13)

Forward-backward equations Since the functional derivative must be null for arbi-
trary independent admissible functions in the three integrals of expression (13), all the
other members appearing in the three integral terms must be identically null. We fi-
nally obtain a coupled system of forward and backward PDE’s with two initial and end
conditions:

Mz, 7) =0 (14)

8)\ _ T aﬂ * p—1 _ T
_2 - /g / (G5)" R (¥ ~ H(@))drd (15)
Az, 0) = /Q (B (6(x',0) — g(z',0)) da’ (16)
06,0 | Mig(a, 1) = /Q /OTQ)\(m',t')dt'dm'. (17)

The forward equation (17) corresponds to the definition of the adjoint variable (7) and
has been obtained introducing @, the pseudo-inverse of Q —', defined as [1]:

/ / Q(z,t,x' Q' (x',t', 2" t")dt dx’ = d(x — z")5(t —t").
2 Jo
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We will discuss the discretization of these equations in the next section. Before that, we
can make several remarks. First of all, we can see that eq. (14) constitutes an explicit end
condition for the adjoint evolution model eq.(15). This adjoint evolution model can be
integrated backward from the end condition assuming the knowledge of an initial guess
for ¢ to compute the discrepancy Y — H(¢). To perform this integration, we also need
to have an expression of the adjoint evolution operator. Let us recall, that this operator
is defined from an integration by part of the linear tangent operator associated to the
evolution law operator. The analytic expression of such an operator is obviously not
accessible in general. Nevertheless, it can be noticed that a discrete expression of this
operator can be easily obtained from the discretization of the linear tangent operator. As
a matter of fact, the adjoint of the linear tangent operator discretized as a matrix consists
simply of the transpose of that matrix. Knowing a first solution of the adjoint variable,
an initial condition for the state variable can be obtained from (16) and a pseudo inverse
expression of the covariance matrix B. From this initial condition, (17) can be finally
integrated forward.

Incremental state function The previous system can be modified slightly to produce
an adequate initial guess for the state function. Considering a function of state incre-
ments linking the state function and an initial condition function, ¢ = ¢ — 4, and
linearizing the operator M around the initial condition function :

M(g) = M(9) + %ﬂw),

it is possible to split equation (17) into two pde’s with an explicit initial condition:

Y(x,0) = g(z, I'(t)) a8)
% M) =0 o)
% + (%\f)w = /n/o Q' t', z,t)\(z, t)dtdx. (20)

The first equation initializes function ¢ as a signed distance function corresponding
to the initial contours. Integrating forward equation (19) provides an initial guess of
the state function (assuming the increment is initially null). This initial guess can then
be used for the backward integration of the adjoint variable (15). The increment state
function is updated by a forward integration of equation (20). These two last integra-
tions successively iterated until convergence constitute the overall process.

4 Curvetracking implementation

In this section, we describe further the implementation of the method we propose for
object contour tracking. We present the discretization scheme we used and give the
analytic expression of the tangent linear operator associated to our evolution model.
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4.1 Tangent linear operator

Considering a (nonlinear) operator G mapping one element of an initial functional space
to another functional space, the tangent linear operator to G at point m is a linear oper-
ator defined by the limit:

lim G(m + vh) — G(m) _ G
=0 ¥ om

(h) (21)

where ~h is a small perturbation in the initial space. The tangent linear operator g;g
is also known as the Géateaux derivative of G at point m. Let us note that the Gateaux
derivative of a linear operator is the operator itself.

In our case, the evolution operator reads:

T _ Vo
1(9) = V6" w — | Vollaiv (175
IVl
This operator can be turned into a more tractable expression:

V' V2V
M(¢):V¢-w—e<A¢—W>.

After some calculations, the tangent linear operator to M at point ¢ finally reads:

&M
(5g)99=Vip-w—e [Aaqs -

Vv V2eVy Ve V2 (Ve ]
9 —1d| Vig)|.
velr S velp (HWHZ ) ’

4.2 Algorithm specification

Up to now, we did not specified yet the observation function, Y, associated to our track-
ing problem. In order to have the simplest interaction as possible, we defined it in the
same space as ¢, that is to say H = Id. As for the observation function corresponding
to a measurement of the evolving object contours we chose to define it as the signed
distance map to an observed closed curve, g(x, I'(t)). These curves are assumed to be
generated by a basic threshold segmentation method or provided by some moving ob-
ject detection method. Such observations are generally of bad quality. As a matter of
fact, in the first case, very noisy curves are observed whereas in the later case, when the
object motion is too slow, there is no detection at all. Concerning the motion field, w,
we used in this work an efficient and robust version of the Horn and Schunck optical-
flow estimator [10].
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Combining equations (14-15-16) and (18-19-20), we finally get the following itera-
tive tracking system:

Y=z, to) = g(=, I'(to)) (22)
O 4 M) =0 (23)
ot o
M(ry=o0 (24)
Nt oM T
—W +(a¢k) ’\k /0 R ! (Y_wk) (25)
A (to) = 15¢k (to) (26)
Dok k k
5+ (st = [ ok @)

A forward integration of the initial condition function (23) is done at the first iteration.
Index k, represents the current iteration which consists of a backward integration of the
adjoint function and a forward integration of the increment function (24 - 27). At the
end of the iteration , 1 is updated according to the relation *+1 = ¢* = % + §¢*.
We have chosen to represent the covariance matrix B as the diagonal matrix B(x, ) =
Id — e~!¥(®t)l In a similar way, we define matrix R from the observations Y, as

R - Rmzn + (Rmam — Rmzn)(-[d — e—lY(m,t)l)‘

This observation covariance matrix has therefore lower values in the vicinity of the
observed curves and higher values faraway from them. When there is no observed curve,
all the value of this covariance matrix are set to infinity. Otherwise, covariance matrix
@, has been fixed to a constant diagonal matrix.

4.3 Operator discretization

We will denote by ¢ the value of ¢ at image grid point (¢, j) at time ¢ € [0; 7]. Using
(23) and a semi- |mpI|C|t discretization scheme, the following discrete evolution model
is obtained:

G =0, e
s M + t .
A + gb =0

Considering ¢, and ¢,, the horizontal and vertical gradient matrices of ¢, the discrete
operator M is obtained as :

[ gear _ (054, ) e <—<¢f)z~,-> ) M(—wt)i,-)
Mo, o5 = (Gt ) = ream () s ()

where we used usual finite differences for the advection term Vq)Tw and the Hessian
matrix V2¢. The discrete linear tangent operator (27) is similarly defined as:

OM i+ AL t+At_ 2 (A B)((5¢t+At) ,j)
oot % = Met, 0% g \(ogkr )
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where A and B are defined as:

A= 6,040, 0% — 61.60) + (62046 — 0,00,
B = 6L04(64,0} — 4y 80) + (01 (8hadl — 64,00

As previously indicated, the discretization of the adjoint evolution model is obtained
as the transposed matrix corresponding to the discretization of the derivative of the
evolution law operator. Otherwise, we used a conjugated gradient optimization for the
iterative solver involved in the implicit discretization.

5 Numerical results

In this section, we present results we obtained for three different kinds of image se-
quences. The first sequence is a 16 frames sequence presenting a moving skate fish on
the sand (fig. 1). As this kind of fish possesses natural camouflage mechanisms, its lu-
minance and texture are very similar to the surrounding sand. The contours of such an
object are therefore really difficult to extract. For this sequence we used a simple seg-
mentation algorithm based on selection of intensity level curves. To further demonstrate
the robustness of our tracking approach, we only considered observations at every third
frames (i.e for £ = 0, 3,6,9,12,15). It can be noticed on the second row of figure 1
that the global shape and the successive locations of the skate have been well recon-
structed at all time instants € [to,?16]. The noisy and instable observed contours have
been smoothed in an appropriated way. For instance, it can be outlined that the tech-
nique has been able to cope with the partial occlusion generated by the lifting of the
skate ventral fin (see images going from #5 to #15 in fig. 1).

The second sequence shows a person playing ping-pong. This is a 20 frames se-
guence where the camera is slightly moving backward. The observed curves are here
provided by a motion detection method. For this sequence, no mask were detected be-
tween frames #5 and #14. Mask contours were thus only available for frame #0 to #4,
and for frames #15 to #19. It can be noticed in addition that the observed curves are
locally varying a lot between two consecutive frames. For example the racket is not
always recovered by the motion detection technique. We show in figure 2 a sample of
the observed curves and the corresponding results. We can observe that the recovered
curves follow quite well the shape of the player even in the time interval for which no
observation was available.

As a last example, we show on Figure 3 results obtained on a meteorological im-
age sequence of the Meteosat infra red channel. The observed curve is a level line at
a given value within a region of interest. We aim here therefore at tracking an iso-
temperature curve. The results demonstrate that the technique we propose keeps the
adaptive topology property of level set methods, and in the same time, incorporates a
consistent temporal prior for the curve evolution.

As for the computation time of the method, our code takes less than 1 minute for a
forward-backward integration of a 20 frame sequence. It has to be noticed that our code,
written in C, has not been particularly optimized. For instance, the different integration
considered have been performed on the whole image plane. A significant reduction of
the computational load could be probably obtained considering a narrow band technique
[16].
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Fig. 1. Skate fish sequence. Top row: Sample of the observed curves. Bottom row: Recovered
curve superimposed on the corresponding image

6 Conclusions

In this paper, we have presented a new technique for closed curves tracking. The pro-
posed technique allows to estimate the contours location of a target object along an
image sequence. In a similar way to a stochastic smoothing the estimation is led consid-
ering the whole set of the available measurements extracted from the image sequence.
The technique is nevertheless totally different. It consists to integrate two coupled pde’s
representing the evolution of a state function and of an adjoint variable respectively. The
method incorporates only few parameters. Similarly to Bayesian filtering techniques,
these parameters mainly concern the definition of the different error models involved
in the considered system. In our case, we have an additional parameter that weight the
mean curvature motion appearing in our dynamic evolution model. The value of this
parameter tunes the degree of smoothing of the curve (in our experiments it has been
always fixed to the same value of 0.1).
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Fig. 2. Ping pong player sequence.Top row: Sample of the observed curves. Bottom row: Re-
covered curve superimposed on the corresponding image
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