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Abstract. In this paper, we introduce a variational framework derived
from data assimilation principles in order to realize a temporal Bayesian
smoothing of fluid flow velocity fields. The velocity measurements are
supplied by an optical flow estimator. These noisy measurement are
smoothed according to the vorticity-velocity formulation of Navier-Stokes
equation. Following optimal control recipes, the associated minimization
is conducted through an iterative process involving a forward integration
of our dynamical model followed by a backward integration of an adjoint
evolution law. Both evolution laws are implemented with second order
non-oscillatory scheme. The approach is here validated on a synthetic
sequence of turbulent 2D flow provided by Direct Numerical Simulation
(DNS) and on a real world meteorological satellite image sequence de-
picting the evolution of a cyclone.

1 Introduction

The analysis and control of complex fluid flows is a major scientific issue. In
that prospect, flow visualization and extraction of accurate kinetic or dynamical
measurements are of the utmost importance. For several years, the study of
dynamic structures and the estimation of dense velocity fields from fluid image
sequences have received great attention from the computer vision community
[3, 7, 8, 15, 18, 26]. Application domains range from experimental visualization
in fluid mechanical to geophysical flow analysis in environmental sciences. In
particular, accurate measurement of atmospheric flow dynamics is of the greatest
importance for weather forecasting, climate prediction or analysis, etc...

The analysis of motion in such sequences is particularly challenging due to
abrupt and sudden changes of the luminance function in image sequences. For
these reasons, motion analysis techniques designed for computer vision appli-
cation and quasi-rigid motions, are not well adapted in this context. Recently,
methods for fluid-dedicated dense estimation have been proposed to character-
ize fluid motion [3–5, 12, 24, 25]. However, these motion estimators are still using
only a small set of images and thus may suffer from a temporal inconsistency
from frame to frame. The set of motion fields provided may not respect fluid me-
chanics conservation laws. The design of appropriate methods enabling to take
into account the underlying physics of the observed flow constitutes a widely
open domain of research. We are here interested in using the vorticity-velocity

formulation of Navier-Stokes equations which describes accurately the evolution
of vorticity transported by the flow for the filtering of noisy motion fields.
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The approach we propose in this work is related to variational data assimila-
tion principles used for instance in meteorology [1, 6, 23]. Such techniques enable,
in the same spirit as a Kalman filter, a temporal smoothing along the whole im-
age sequence. As does a Bayesian smoother, it combines a dynamical evolution
law of state variables representing the target of interest with the whole set of
available noisy measurements related to this target. Nevertheless, unlike Kalman
filtering and stochastic Bayesian filtering approaches such as particle filtering,
variational assimilation techniques allows to cope with state spaces of very large
dimension.

The technique we devise allows us to incorporate in the whole set of mo-
tion fields a dynamical consistency along the image sequence. The approach is
expressed as the minimization of a global spatio-temporal functional stemming
from a Bayesian formulation. The optimization process is led through the intro-
duction of an adjoint evolution model. This method has the advantage to provide
an efficient numerical approximation of the gradient functional without resort-
ing to the complete analytical expressions of Euler-Lagrange equations. This is
particularly interesting when dealing with high order differential operators.

2 Data assimilation

2.1 Introduction

Data Assimilation is a technique related to optimal control theory which allows
estimating over time the state of a system of variables of interest. This method
enables a smoothing of the unknown variables according to an initial state of the
system, a dynamic law and noisy measurements of the system’s state. Let the
vector of variables X ∈ Ξ represents the state of the system. The evolution of the
system is assumed to be described through a (possibly non linear) differential
dynamical model M: 

∂tX + M(X, U) = 0
X(t0) = X0

(1)

This system is monitored by a control variable v = (U,X0) defined in control
space P . This control variable may be set to the initial condition X0 and/or to
any free parameters U of the evolution law.

We then assume that observations Y ∈ Oobs are available. These observations
may live in a different space (a reduced space for instance) from the state vari-
able. We will nevertheless assume that there exists a differential operator H, that
goes from the variable space to the observation space. A least squares estimation
of the control variable regarding the whole sequence of measurements available
within a considered time range comes to minimize with respect to the control
variable v ∈ P , a cost function of the following form:

J(v) =
1

2

Z tf

t0

||Y − H(X(v))||2 dt. (2)

A first approach consists in computing the functional gradient through finite
differences:

∇vJ ' lim
ε→0

J(v + εek) − J(v)

ε
,

where ε ∈ R is an infinitesimal perturbation and {ek, k = 1, . . . , N} denotes the
unitary basis vectors of the control space of dimension N . Such a computation is
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impractical for control space of large dimension since it requires N integrations
of the evolution model for each required value of the gradient functional.

Adjoint models as introduced first in meteorology by Le Dimet and Talagrand
in [6] authorize the computation of the gradient functional in a single backward
integration of an adjoint variable. The value of this adjoint variable at the initial
time provides the value of the gradient at the desired point. This first approach
is widely used in environmental sciences for the analysis of geophysical flows [6,
23]. However, these methods rely on a perfect dynamical modeling of the system
evolution. Such modeling seems to us irrelevant in image analysis since the dif-
ferent models on which we can rely on are usually inaccurate due for instance to
3D-2D projections, varying lighting conditions, completely unknown boundary
conditions, etc ... Considering imperfect models, defined up to a Gaussian noise
comes to an optimization problem where the control variable is constituted by
the whole trajectory of the state variable. This is the kind of problem we are
facing in this work.

2.2 Data assimilation with imperfect model

The ingredients of the new data assimilation problem are now composed by
an imperfect dynamic model of the target system (without parameter U), an
initialization of the system’s state and an observation equation which relates the
system variables to some measurements:







∂tX + M(X) = η(x, t)
X(t0) = X0 + ηi(x)
Y (t) = H(X) + ηo(x, t),

(3)

where η, ηi and ηo are time varying zero mean Gaussian noise vector func-
tions. They are respectively associated to covariance matrices Q(x, t), B(x,x′)

and R(x, t). The state variable X is defined on the image plan Ω. The noise
functions represent the errors involved in the different components of the sys-
tem (i.e model, initialization and measurement errors) and are assumed to be
uncorrelated in time. The system of equations (3) could be specified describing
the three Gaussian conditional probability densities p(X|X(0)) , p(X(0)|X0) and
p(Y |X) which relates respectively the state trajectory X along time to the initial
state value X(0), the initial state value to the initial condition X0 and Y , and
the complete set of measurements to the state X. As in any stochastic filtering
problem, we aim at estimating the conditional expectation of the state trajec-
tory given the whole set of available observations. As all the pdf involved here
are Gaussian, it becomes estimating the mode of the a posteriori distribution
p(X|Y,X0).

Penalty function The goal is thus to minimize the new functional:

J(X) =
1

2

Z tf

t0

||∂tX +M(X)||2
Q
dt+

1

2
||X(t0) − X0||2B +

1

2

Z tf

t0

||Y − H(X)||2
R
dt, (4)

where the norms are the Mahalanobis distance defined by the inverse matrices
associated to Q, B and R (the information matrices) and the dot product of
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L2(Ω). The minimization has to be done according to variable X. It is the
complete trajectory of the state variable that constitutes the control variable of
the associated problem.

Minimization of the functional A minimizer X of functional J is also a
minimizer of a perturbed function J(X + βθ(x, t)), where θ(x, t) belongs to a
space of admissible function and β is a positive parameter. In other words, X

must cancel out the directional derivative:

δJX(θ) = lim
β→0

dJ(X + βθ(x, t))

dβ
= 0.

The functional J at point X + βθ(x, t)) reads:

J =
1

2

Z

Ω

(X + βθ − X0)
>
B

−1(X + βθ − X0)dx

+
1

2

Z

Ω,T

(∂tX + β∂tθ + M(X + βθ))>Q−1(∂tX + β∂tθ + M(X +βθ)) dtdx

+
1

2

Z

Ω,T

(Y − H(X + βθ))>R−1(Y − H(X + βθ))dtdx, (5)

where integration with respect to Ω denotes spatial integration on the image
domain and subscript T stands for temporal integration between an initial time
t0 and a final instant tf

Adjoint variable In order to perform an integration by part – to factorize this
expression by θ – we introduce an “adjoint variable” λ defined by:

λ = Q
−1 (∂tX + M(X)) , (6)

as well as linear tangent operators ∂XM and ∂XH defined by:

lim
β→0

dM(X + βθ)

dβ
= ∂XMθ. (7)

Such linear operators correspond to the Gâteaux derivative at point X of the
operators M and H. Let us note that the derivative of a linear operator is the
operator itself. By taking the limit β → 0, and applying integrations by parts, we
can get rid of the partial derivatives of the admissible function θ. We also have
to introduce the adjoint operators ∂XM

∗ and ∂XH
∗ as compact notation of the

integration by parts of the associated linear tangent operator. Considering the
dot product 〈φ, ψ〉 =

R

Ω,T
φ(x, t)ψ(x, t)dxdt associated to L2(Ω, T ∈ [t0, tf ]) such

operators are defined as:

〈∂XMX1,X2〉Ξ = 〈X1, ∂XM
∗
X2〉Ξ 〈∂XHX, Y 〉

Oobs
= 〈X, ∂XH

∗
Y 〉

Ξ
. (8)

Gathering all the elements we have so far, equation (5) can be rewritten as:

lim
β→0

dJ

dβ
=

Z

Ω,T

θ
>

»

(−∂tλ + ∂XM
∗
λ) − ∂XH

∗
R

−1(Y − H(X))

–

dtdx

+

Z

Ω

θ
>(x, t0)

ˆ`
B

−1(X(x, t0) − X0(x)) − λ(x, t0)
´
dx

′
˜
dx

+

Z

Ω

θ
>(x, tf )λ(x, tf )dx = 0. (9)
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Forward/backward equations Since the functional derivative must be null
for any arbitrary independent admissible functions in the three integrals of ex-
pression (9), all the other members appearing in the three integral terms must
be identically null. It follows a coupled system of forward and backward PDE’s
with initial and final conditions:

λ(x, tf ) = 0, (10)

−∂tλ + ∂XM
∗
λ = ∂XH

∗
R

−1(Y − H(X)), (11)

λ(x, t0) =
`
B

−1(X(x, t0) − X0(x)
´
, (12)

∂tX + M(X) = Qλ. (13)

The forward equation (13) corresponds to the definition of the adjoint variable
(6) and has been obtained introducing Q, the pseudo-inverse of Q−1 [1]. Let us
remark that if the model is assumed to be perfect, we would have Q = 0 and
retrieve the case of a perfect dynamical state model associated to an initial state
control problem.

Otherwise, equation (10) constitutes an explicit end condition for the adjoint
evolution model equation (11). This adjoint evolution model can be integrated
backward from the end condition assuming the knowledge of an initial guess for
X to compute the discrepancy Y −H(X). This backward integration provides the
gradient of the associated functional. To perform this integration, an expression
of the adjoint evolution operator is required. Let us recall that this operator is
defined from an integration by part of the linear tangent operator associated
to the evolution law operator. The analytic expression of such an operator is
obviously not accessible in general. Nevertheless, it can be noticed that a discrete
expression of this operator can be obtained from the discretization of the linear
tangent operator. Thus, the adjoint of the linear tangent operator discretized as
a matrix simply consists of the transpose of that matrix. Knowing a first solution
of the adjoint variable, an initial update condition for the state variable can be
obtained from (12) and a pseudo inverse expression of the covariance matrix B.
From this initial condition, equation (13) can be finally integrated forward and
supply a new right hand part for the adjoint equation (11) and so forth.

Incremental state function The previous system can be slightly modified to
rely on an adequate initial guess for the state function. Considering a function
of state increments linking the state function and an initial condition function,
δX = X −X0, and linearizing the operator M around the initial condition func-
tion X0, as M(X) = M(X0) + ∂X0

M(δX) enables to split equation (13) into two
pde’s with an explicit initial condition:

X(x, t0) = X0(x), (14)

∂tX0 + M(X0) = 0, (15)

∂tδX + ∂X0
MδX = Qλ. (16)

Combining equations (10-12) and (14-16) leads to the final tracking algorithm.
The method first consists of a forward integration of the initial condition X0

with the system’s dynamical model equation (15). The current solution is then
corrected by performing a backward integration (10, 11) of the adjoint variable.
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The evolution of λ is guided by a discrepancy measure between the observation
and the estimate: Y −H(X). The initial condition is then updated through equa-
tion (12) and a forward integration of the increment δX is realized through the
equation (16). The overall process is iteratively repeated until convergence.

3 Application to fluid motion tracking

We aim here at applying the previous framework for a consistent tracking along
time of fluid motion velocity fields. For fluid flows, the Navier-Stokes equation
provides a universal general law for predicting the evolution of the flow. The
purpose will be thus to incorporate into a data assimilation process such a dy-
namical model together with noisy velocity measurements.

3.1 Basic definitions

In this work, the formulation of the Navier-Stokes on which we will rely on
uses the vorticity ξ = ∇

⊥ · w = vx − uy and on the divergence ζ = ∇ · w =
ux + vy of a bidimensional motion field w = [u, v]>. The vorticity is related
to the presence of a rotating motion, whereas the divergence is related to the
presence of sinks and sources in a flow. Assuming w vanishes at infinity1, the
vector field is decomposed using the orthogonal Helmholtz decomposition, as a
sum of two potential functions gradient w = ∇

⊥Ψ + ∇Φ. The stream function
Ψ and the velocity potential Φ respectively correspond to the solenoidal and the
irrotational part of the vector field w. They are linked to the divergence and
vorticity maps through two Poisson Equations: ξ = ∆Ψ , ζ = ∆Φ. Expressing
the solution of both equations as a convolution product with the Green kernel
G = 1

2π
ln(|x|) associated to the 2D Laplacian operator: Ψ = G ∗ ξ, Φ = G ∗ ζ, the

whole velocity field can be recovered knowing its divergence and vorticity:

w = ∇
⊥
G ∗ ξ + ∇G ∗ ζ. (17)

This computation can be very efficiently implemented in the Fourier domain.

3.2 Fluid motion evolution equation

In order to consider a tractable expression of the Navier-Stokes equation for the
tracking problem, we rely in this work on the 2D vorticity-velocity formulation of
the 3D incompressible Navier-Stokes equation, as obtained in the shallow water
model:

∂tξ + w · ∇ξ + ξζ − ν∆ξ = 0. (18)

This formulation states roughly that the vorticity is transported by the veloc-
ity field and is diffused along time. Modeling the vorticity divergence product
as a zero mean Gaussian random variable, we end up with an imperfect 2D
incompressible vorticity-velocity formulation.

Concerning the divergence map, it is more involved to exhibit any conserva-
tion law. We will assume here that it behaves like a noise. More precisely we will

1 A divergence and curl free global transportation component is removed from the
vector field. This field is estimated on the basis of a Horn and Schunck estimator
associated to a high smoothing penalty [3].
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assume that the divergence map is a function of a Gaussian random variable,
Xt, with stationary increments (a Brownian motion) starting at points, x. It
can be shown through Ito formula and Kolmogorov’s backward equation, that
the expectation at time t of such a function, u(t,x) = E[ζ(Xt)] obeys to a heat
equation [20]:

∂tu − νζ∆u = 0,

u(0,x) = ζ(x).
(19)

According to this equation, we indeed make the assumption that the divergence
at any time of the sequence is a solution of a heat equation (i.e. it can be
recovered from a smoothing of the initial motion field divergence map with a
Gaussian function of standard deviation 2

√
νζ ).

As the curl and divergence maps completely determine the underlying ve-
locity field, equations (18) and (19) allow us to write the following imperfect
dynamical model for the fluid motion field:

∂t

»
ξ

ζ

–

+

»
w · ∇ − νξ∆ 0

0 −νζ∆

– »
ξ

ζ

–

| {z }

M(ξ,ζ)

= η(t). (20)

The noise function η(t) is a Gaussian random vector modeling the errors of our
evolution law.

3.3 Fluid motion observations

With regards to the velocity measurements, we will assume that an observa-
tion motion field wobs is available. This motion field can be provided by any
dense motion estimator. In this work, a dense motion field estimator dedicated
to fluid flows is used [3] to supply the velocity measurements. Taking the vor-
ticity and divergence of these optical-flow motion fields as observation, provides
measurements in the state variable space and consequently H = Id.

4 Discretization of the vorticity-velocity equation

The discretization of the vorticity-velocity equation 18 must be done cautiously.
In particular, the advective term ∇ξ · w must be treated specifically. A lot of
non-oscillatory schemes for conservation laws have been developed to solve this
problem [11, 14, 19]. Such schemes consider a polynomial reconstruction of the
sought function on cells and discretize the intermediate value of this function
at the cell’s boundaries. The involved derivatives of the transported quantity
are computed with high orders accurate difference scheme. The value of these
derivatives are attenuated through limiting function (so called slope limiters).
This prevents from inappropriate numerical error amplifications. The ENO (Es-
sentially non-oscillatory) or WENO (Weighted ENO) constitute the most used
schemes of such family[16, 21].

To achieve an accurate and stable discretization of the advective term, one
must use conservative numerical scheme. Such schemes exactly respect the con-
servation law within the cell by integrating the flux value at cell boundaries.
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Total Variation Diminishing (TVD) scheme (which are monotonicity preserving
flux) prevents from an increase of oscillations over time and enables to transport
shocks. All these methods are well detailed in [21].

Reconstruction of the vorticity In our work, the reconstruction of the vor-
ticity on the cell boundaries is realized through a second order accurate method
[17] based on a Min-Mod limiter on the regular spatial grid (i∆x, j∆y) :

ξ
+

i+ 1

2
,j

= ξi+1,j −
∆x

2
(ξx)i+1,j and ξ

−

i+ 1

2
,j

= ξi,j +
∆x

2
(ξx)i,j ,

with (ξx)i,j = Minmod

„

2
(ξi,j − ξi−1,j)

∆x

,
ξi+1,j − ξi−1,j

2∆x

, 2
(ξi+1,j − ξi,j)

∆x

«

,

and Minmod(x1, · · · , xn) =

8

<

:

infi(xi) if xi ≥ 0 ∀i
supi(xi) if xi ≤ 0 ∀i

0 otherwise.

The intermediate values ξ+
i,j+ 1

2

and ξ−
i,j+ 1

2

are computed in the same way. As

the Mid-Mod limiter provides the smallest slope, the reconstructed values of
the vorticity on the cell boundaries attenuate amplification effect due to spatial
discontinuities.

Vorticity-velocity scheme To deal with the advective term, we use the fol-
lowing semidiscrete central scheme [13, 14]:

∂tξi,j = −
Hx

i+ 1

2
,j
(t) −Hx

i− 1

2
,j

(t)

∆x

−
H

y

i,j+ 1

2

(t) −H
y

i,j− 1

2

(t)

∆y

+ νξDi,j , (21)

with a numerical convection flux derived from the monotone Lax-Friedricks flux:

H
x

i+ 1

2
,j
(t) =

ui+ 1

2
,j(t)

2

h

ξ
+

i+ 1

2
,j

+ ξ
−

i+ 1

2
,j

i

−
|ui+ 1

2
,j(t)|

2

h

ξ
+

i+ 1

2
,j
− ξ

−

i+ 1

2
,j

i

H
y

i,j+ 1

2

(t) =
vi,j+ 1

2

(t)

2

h

ξ
+

i,j+ 1

2

+ ξ
−

i,j+ 1

2

i

−
|vi,j+ 1

2

(t)|
2

h

ξ
+

i,j+ 1

2

− ξ
−

i,j+ 1

2

i

.

(22)

This resulting second order, semidiscrete central scheme is TVD [13, 17] and not
very dissipative. The intermediate values of the velocities are computed with a
fourth-order averaging:

ui+ 1

2
,j(t) =

−ui+2,j(t) + 9ui+1,j(t) + 9ui,j(t) − ui−1,j (t)

16

vi,j+ 1

2

(t) =
−vi,j+2(t) + 9vi,j+1(t) + 9vi,j(t) − vi,j−1(t)

16
.

(23)

The linear viscosity ∆ξ is approximated by the fourth-order central differencing:

Di,j(t) =
−ξi+2,j(t) + 16ξi+1,j(t) − 30ξi,j(t) + 16ξi−1,j (t) − ξi−2,j(t)

12∆2
x

+
−ξi,j+2(t) + 16ξi,j+1(t) − 30ξi,j(t) + 16ξi,j−1(t) − ξi,j−2(t)

12∆2
y

.

(24)
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The time integration is realized with a third-order Runge Kutta scheme, which
also respect the TVD property [21]. The divergence is integrated with a stable
implicit discretization. The motion field is updated at each time step in the
Fourier domain with equation (17). With this whole non-oscillatory scheme, the
vorticity-velocity and divergence equations can be integrated in the image area.

Adjoint discretization Variational data assimilation assumes that the adjoint
operator is the exact numerical adjoint of the direct operator [22]. Thus, the
adjoint computation must be done according to the previously described vorticity
simulation method. For large scale applications involving several coupled state
variables of huge dimension and where for each of them a specific dynamical
model is discretized accordingly, automatic differentiation programs [9] are used
to compute the adjoint model. In our case, as only two variables are involved, it
is possible to derive an explicit version of the discretized adjoint operator and a
backward Runge-Kutta integration can be realized [10].

5 Results

In order to assess the benefits of our technique for the tracking of fluid motion, we
first applied it on a synthetic sequence of particles images of a 2D divergence free
turbulence obtained through a direct numerical simulation of the Navier-Stokes
equation [2]. In this sequence composed of 52 images, we compare in figure 1 the
vorticity map of the actual, the observed and the assimilated motion fields. It

t=3

t=13

t=23
(a) (b) (c) (d)

Fig. 1. 2D Direct Numerical Simulation. a) Particle images sequence. b) True
vorticity. c) Vorticity observed by optic flow estimator. d) Recovered vorticity.



10 Nicolas Papadakis and Étienne Mémin

can be observed that the proposed technique not only denoises the observations,
but also enables to recover small scales structures that were smoothed out in the
original velocity fields. These observations were obtained from a dedicated optic
flow estimator [3]. To give some quantitative evaluation results, we present the
comparative errors in figure 2. As can be seen, we have been able to significantly
improve the quality of the recovered motion field (about 30%). A spectral anal-
ysis of the energy of the row average vorticity is also realized in order to show
that our assimilation process recovers the high frequencies of the flow, which
correspond to the small scales spatial structures.

10−2 10−1
10−1

100

101

102

103

104

 

 

DNS
Assimilation
Optical flow

Root Mean Square Error Spectral analysis

Fig. 2. Comparison of errors. On the left figure, the red curve outlines the mean
square error of the vorticity computed by the optic flow technique on the 25 images
of the particle sequence. The green curve exhibits the error obtained at the end of the
assimilation process. The assimilated vorticity is then closer to the reality than the
observed one. The actual mean absolute value of the vorticity is about 0.43. On the
right, a spectral analysis of the energy of the row average vorticity is represented in
the log-log scale. Contrarily to the observed vorticity, the assimilated vorticity recovers
high frequencies.

Finally, we applied our technique on a Infra-red meteorological sequence
showing Vince cyclone over north atlantic. The sequence is composed by 20
satellite images acquired the 9 october 2005 from 00:00 up to 5:00 am2. Com-
plete results in term of curves and vorticity maps are presented on figure 3. Line
(b) exhibits the different vorticity maps of the initial motion fields used as noisy
measurements. These motion observations present temporal inconsistencies and
discontinuities, whereas the recovered vorticity maps shown on line (c) are more
compliant with the vorticity conservation law.

6 Conclusion

In this work a variational framework for the tracking of fluid flows has been
introduced. This approach relies on variational data assimilation principles. The
proposed method allows to recover the state of an unknown function on the basis
of an imperfect dynamical models and noisy measurement of this function. This
technique has been applied to the tracking of fluid motion from image sequences.

2 We thank the Laboratoire de Météorologie Dynamique for providing us this sequence.
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(a)

(b)

(c)
t=1 t=7 t=13 t=19

Fig. 3. Cyclone sequence. (a) Cyclone sequence. (b) Sample of observed vorticity
maps. (c) Vorticity maps corresponding to the recovered motion fields.
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