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1IRISA / INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
2CNRS / COSTEL UMR 6554, Place du Recteur Henri Le Moal, 35043 Rennes Cedex, France

3CEFIMAS, Avenida Santa Fe 1145 C1059ABF - Buenos Aires, Argentina
4Fac. de Ing. de la Univ. Buenos-Aires, Av. Paseo Colón 850, C1063ACV Buenos Aires, Argentina

{npapadak,corpetti,memin}@irisa.fr

Abstract

In this paper, we present a framework for dynamic con-
sistent estimation of dense motion fields over a sequence of
images. The originality of the approach is to exploit recipes
related to optimal control theory. This setup allows per-
forming the estimation of an unknown state function accord-
ing to a given dynamical model and to noisy and incomplete
measurements. The overall process is formalized through
the minimization of a global spatio-temporal cost functional
w.r.t the complete sequence of motion fields. The minimiza-
tion is handled considering an adjoint formulation. The re-
sulting scheme consists in iterating a forward integration of
the evolution model and a backward integration of the ad-
joint evolution model guided by a discrepancy measurement
between the state variable and the available noisy observa-
tions. Such an approach allows us to cope with several del-
icate situations (such as the absence of data) which are not
well managed with usual estimators.

1. Introduction
Optical flow estimation is one of the key problems in

computer vision and has largely been studied the last two
decades since the seminal work of Horn & Schunck [14].
From the panel of available techniques, the variational
methods have been proved to be very efficient to extract
accurate instantaneous velocity measurements [1, 4, 5, 6,
22, 23, 26, 29]. Performance evaluations of some of these
methods can be found in [2, 9].

However, the computation of the optical flow over a
complete sequence of images remains a difficult problem
if one wishes explicitly to maintain a relevant global spatio-
temporal coherence. Some spatio-temporal estimators have
been proposed in previous studies [4, 5, 22, 29]. Neverthe-
less, except the two frames Stockes regularization of [27],
none of them introduce an explicit dynamic law as a tem-
poral consistency. As a matter of fact, spatio-temporal reg-
ularizers as introduced in [4, 29] only consider a crude sta-

tionary local prior. Moreover, strong artifacts are managed
with difficulty. Such approach can not be used to enforce on
the whole sequence a solution minimizing an image based
discrepancy measure and in the same time that follows a
given dynamical model. This kind of tracking process is
indeed very difficult to manage with stochastic techniques
as the variable’s state space is of huge dimension (theoreti-
cally infinite) and can not be efficiently handled with usual
recursive Bayesian filters such as the particle filter.

In this paper, we propose a variational technique which
allows us to estimate a sequence of dense motion fields
guided by a given dynamical law. To that end, we suggest to
rely on recipes related to optimal control theory [19, 17] and
variational data assimilation [17] . As Bayesian smoothing,
such techniques allow to estimate on the basis of noisy and
possibly incomplete observations a feature trajectory (a se-
quence of dense motion fields in our application) respecting
a specified evolution law. The associated minimization pro-
cess is efficiently expressed considering an adjoint formu-
lation. The adjoint variable introduced enables to compute
the gradient of the cost-function from a forward-backward
integration of two coupled evolution models. This efficient
procedure authorizes coping with state space of very large
dimensions.

This framework has been used for two different applica-
tions of motion estimation. For each applications the image
observations and the dynamical law have been specifically
adapted.

In the section 2, we present the general principles of op-
timal control theory on which this setup relies. In section 3,
we describe its application for the computation of dense mo-
tion fields in two different applications involving dynamics
of different natures.

2. Optimal Control Theory
2.1. Mathematical formulation

The problem we are dealing with consists in recovering
a system’s state X (x, t) obeying to a dynamical law given
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some noisy and possibly incomplete measurements of the
state. The measurements (also called observations) are as-
sumed to be available only at discrete time. This is formal-
ized, for any location x at time t ∈ [t0, tf ], by the system:

∂X

∂t
(x, t) + M(X (x, t), u(t)) = 0 (1)

X (x, t0) = X 0(x) + εn(x), (2)

where M is a non-linear dynamic operator depending on a
control parameter u(t). We assume here that u(t) ∈ U and
X(t) ∈ V are square integrable functions in Hilbert spaces
identified to their dual. The term X0 is the initial vector
at time t0 and εn is an (unknown) additive control variable
on the initial condition. Besides, we assume that measure-
ments of the unknown state Y ∈ O are available. These
observations are measured through the non-linear operator
H and belong also to an Hilbert space .

2.2. Cost function
The purpose consists in finding a controls of lower en-

ergy that leads to the lowest discrepancy between the mea-
surements and the state variable. This can be expressed
through the minimization of the following cost function:
J : U × V → R as: J : U × V → R as:

J (u, εn) =
1

2

Z tf

t0

‖Y − H(X (u(t), εn, t))‖2
R−1dt

+
1

2
‖εn‖2

B−1 +
1

2

Z tf

t0

‖u(t) − u0‖2
F−1dt,

(3)

where u0 is some expected value of the parameter. The
norms ‖.‖R−1 , ‖.‖B−1 and ‖.‖F−1 are induced norms of
the inner products < R−1., . >O , < B−1., . >V and
< F−1., . >U associated to Hilbert spaces O, V, U of the
measurements, the state variable and the control variable
respectively; R, B and F are endomorphism (called co-
variance matrices) of the observation space, state space and
control space. They are related respectively to the obser-
vations, the initial condition of the state variable and to the
expected value of the control. In our applications, these co-
variance matrices have been defined as diagonal matrices.

In order to compute the gradient of this functional we as-
sume that X(u(t), εn; t) depends continuously on u(t), εn

and is differentiable with respect to the control variables
u(t), εn, ∀t ∈]t0, tf [.

2.3. Differentiation
Noting that dX = (∂X/∂u)δu(t) + (∂X/∂εn)δεn ∈

V, the differentiation of equations (1–2) in the direction
(δu, δεn) reads:

∂dX

∂t
+∂X M(X , u(t))dX +∂uM(X , u(t))δu(t) = 0, (4)

dX (x, t0) = δεn(x), (5)

where ∂X M and ∂uM are the linear tangent operators de-
fined by:

lim
β→0

dM(X + βθ, u(t))

dβ
= ∂X M(θ). (6)

The differentiation of the cost function (3) in the direction
(δu, δεn) (omitting the spatial coordinates x and denoting
UT as the space L2(t0, tf ; U) for sake of clarity) then reads:

D∂J
∂u

, δu
E

UT

=

Z tf

t0

D

u(t) − u0, δu(t)
E

F
dt

−
Z tf

t0

D

Y(t) − H(X (t)), (∂X H) (
∂X

∂u
δu(t))

E

O
dt,

D ∂J
∂εn

, δεn

E

V
=

D

(X (x, t0) − X 0(x)), δεn

E

B

−
Z tf

t0

D

Y(t) − H(X (t)), (∂X H) (
∂X

∂εn
δεn)

E

O
dt.

These two relations can be reformulated as:
D∂J

∂u
, δu

E

UT

=

Z tf

t0

D

F−1(u(t) − u0), δu(t)
E

U
dt

−
Z tf

t0

D

(∂X H)∗R−1(Y(t) − H(X (t)),
∂X

∂u
δu(t)

E

V
dt,

D ∂J
∂εn

, δεn

E

V
=

D

B−1(X (x, t0) − X 0(x)), δεn

E

V

−
Z tf

t0

D

(∂X H)∗R−1(Y(t) − H(X (t)),
∂X

∂εn
δεn

E

V
dt,

(7)

where we have introduced the adjoint operator (∂X H)∗ de-
fined as:

∀(x, y) ∈ (V,O), <(∂X H) x, y >O=< x, (∂X H)∗y >V . (8)

Expression (7) gives the gradient of the functional in the di-
rections (δu, δεm). We can remark from these expressions
that a direct numerical evaluation of these gradients is in
practice completely unfeasible. As a matter of fact, such
an evaluation would require to compute perturbations of the
state variables along all the components of the control vari-
ables (δu, δεn) – i.e. integrate our dynamical model for
all perturbed components of the control variables which is
computationally completely unrealistic.

2.4. Adjoint model
An elegant solution of this problem consists in relying

on an adjoint formulation [17, 19]. To that end, relation (4)
is multiplied by an adjoint variable λ ∈ VT and integrated
over the range [t0, tf ]:

Z tf

t0

˙∂dX

∂t
(t), λ(t)

¸

V
dt +

Z tf

t0

˙

(∂X M) dX (t), λ(t)
¸

V
dt

+

Z tf

t0

˙

(∂uM) δu(t), λ(t)
¸

V
dt = 0.



An integration by parts of the first term yields:

−
Z tf

t0

˙

− ∂λ

∂t
(t)+(∂X M)∗λ(t), dX (t)

¸

V
dt=

˙

λ(tf ), dX (tf )
¸

V

−
˙

λ(t0), dX (t0)
¸

V
+

Z tf

t0

˙

δu(t), (∂uM)∗ λ(t)
¸

U
dt,

(9)
where the adjoint of the tangent linear operators (∂X M)∗ :
V → V and (∂uM)∗ : V → U have been introduced. In
order to get a simple and accessible solution for the cost
function gradient, we impose that λ(tf ) = 0 and that the
adjoint variable λ is solution of the system:


− ∂λ

∂t
(t) + (∂X M)∗ λ(t) = (∂X H)∗ R−1(Y − H(X ))(t)

λ(tf ) = 0.
(10)

Injecting now this relation into the cost function gradient
(7), and using relation (9) we get (recalling that dX (t0) =
δεn and dX = (∂X/∂u)δu(t) + (∂X/∂εn)δεn):
D ∂J

∂εn
, δεn

E

V
= −

D

λ(t0), δεn

E

V
+

D

B−1(X (t0)−X 0), δεn

E

V
,

D∂J
∂u

, δu
E

UT

=

Z tf

t0

D

δu(t), (∂uM)∗ λ(t)+F−1(u(t) − u0)
E

U
dt

=
D

(∂uM)∗ λ+F−1(u − u0), δu
E

UT

.

From these relations, one can now readily identify the two
components of the cost function derivatives with respect to
the control variables:

∂J
∂εn

= −λ(t0) + B−1(X (t0) − X 0),

∂J
∂u

= (∂uM)∗ λ + F−1(u − u0).

(11)

The partial derivatives of J are now simple to compute
when the adjoint variable λ is available. Canceling out
these derivatives leads to the following gradient descent al-
gorithm:

X (t0) = X 0 + Bλ(t0),

u = u0 + F (∂uM)∗ λ,
(12)

where we introduced the pseudo-inverse B and F of B−1

and F−1. The adjoint variable is accessible through a for-
ward integration of the state dynamics (1-2) and an back-
ward integration of the adjoint variable dynamics (10).

The overall optimal control process can then be schemat-
ically summarized as follows:

1. Set initial conditions: X (t0) = X 0 and u = u0

2. From X (t0), compute X (t) with the forward in-
tegration of relation (1)

3. Compute the adjoint variable λ(t) with the back-
ward integration of system of equations (10)

4. Update the initial value X (t0) and the parameter
model u with (12)

5. Loop to step 2 until convergence

Such a formulation provides us a practical framework for
a tracking of very large state spaces. However, unless if a
small temporal integration window of two frames is used
[27], the approach is intrinsically a batch technique. The
noise or the eventual missing of input data can easily be
managed through the covariance matrix R−1. In the fol-
lowing we exploit this formalism to perform the estimation
of dense motion fields over a sequence of images.

3. Application to Optical-Flow
In this section, we propose to use this framework to

compute dynamic consistent motion fields for two kinds
of image sequences representing either fluid phenomenon
or rigid objects. For fluid observations, the Navier-Stokes
equations provide a reliable prior knowledge about their dy-
namics. The observation can be set to a simple measure-
ment. Concerning the rigid objects, as no universal physi-
cal law can be stated, we rely on a coarser dynamical model
associated to a more accurate observation based on a robust
optical-flow formulation.

3.1. Fluid sequences
We are here interested in 1) a numerical simulation

of an incompressible (i.e. divergence-free) 2D turbulence
flow visualized through particles and 2) a cyclone observed
from meteorological images. In both situations, for sake
of clarity, we assume that the unknown velocity fields
are divergence-free (solenoidal). Nevertheless, a divergent
curl-free component (irrotational) driven by another cou-
pled evolution law could also be handled [12, 25].

Dynamic model For this application we rely on the in-
compressible vorticity velocity formulation of the Navier-
Stokes equation with an additive control variable, u. This
variable aims at representing deviations from the pure vor-
ticity transport model. These departures may be due to un-
known forcing terms or to out of the plane motions. It al-
lows us also dealing with compressible flows associated to
low divergence value (intrinsically or at the observed scale).
This model reads:

∂ξ

∂t
+ v · ∇ξ − ν∆ξ = u. (13)

The field v = (vx, vy)T represents a solenoidal velocity field
determined by its vorticity ξ(v) = ∂vy/∂x − ∂vx/∂y. The
coefficient ν models the diffusion of the flow. The knowl-
edge of ξ enables to recover the motion field through Biot-
Savart law:

v = ∇
⊥G ∗ ξ, (14)

where G denotes the Green kernel (G = 1

2π
ln(|x|)) asso-

ciated to the Laplacian operator. This computation can be
very efficiently done in the Fourier domain [8].

Discretization and adjoint evolution model The dis-
cretization of the vorticity equation ought to be cautiously
done. In particular, the advective term ∇ξ·v must be treated



specifically. In order to achieve an accurate and stable dis-
cretization of this term one must use conservative numer-
ical schemes. Such schemes are designed to exactly re-
spect the conservation law within the pixel by integrating
the flux value at pixel boundaries. Total Variation Dimin-
ishing (TVD) scheme (which are Monotonicity preserving
flux) prevents from an increase of oscillations over time and
enables to transport shocks. In this work, we used semidis-
crete central scheme [15, 16] associated to a second order
accurate method [18] based on a Min-Mod limiter for the
vorticity reconstruction [25]. The time integration is real-
ized with a third-order Runge Kutta scheme, which also re-
spect the TVD property [28].

The adjoint evolution model is constructed through a
backward integration of the Runge-Kutta scheme [11] in-
volving the same diffusive term (as the laplacian is auto
adjoint) and the adjoint of the advective term (considering
the velocity given by the forward integration of the vorticity
transport equation). This latter term is as a consequence lin-
ear and its adjoint can be directly deduced from the adjoint
of its discretization.

Observation Operator Starting on the well-known opti-
cal flow constraint equation, one can assume, in order to
cope with the aperture problem, that if the unknown optic
flow vector at a location x is constant within some neigh-
borhood of size n [20], the motion field is obtained by min-
imizing:

Kn ∗
„

∂E(x, t)

∂t
+ ∇E(x, t) · v(x, t)

«2

, (15)

where E stands for the luminance function and Kn is
a Gaussian kernel of standard deviation n. This Lucas-
Kanade formulation yields to the relation:

Kn ∗
»

E2
x ExEy

ExEy E2
y

–

v ≈ −Kn ∗
»

ExEt

EyEt

–

, (16)

where E• = ∂E(x, t)/∂•. In our application, the system’s
state is ξ(t) connected to v through relation (14). As a con-
sequence, our observation system reads :

Y = −
»

Kn ∗ (ExEt)
Kn ∗ (EyEt)

–

, (17)

and H(ξ(t), t)=

»

Kn ∗
`

E2
x

´

Kn ∗ (ExEy)
Kn ∗ (ExEy) Kn ∗

`

E2
y

´

–

∇
⊥G ∗ ξ(t).

This observation operator is also linear w.r.t the state’s vari-
able ξ. Therefore, its linear tangent operator is itself. The
expression of its adjoint is not trivial as this operator is ex-
pressed through a convolution product. It can be demon-
strated in the Fourier space that its expression is (∂ξH)∗ =

−H. Finally, let us note that, as the dynamic model is quite
accurate, the initial field was set to zero (v0(x) = 0). To deal
with the larger displacements, a multi-resolution approach
has been used.

Covariances The covariance matrix of the initial condi-
tion B and the covariance matrix of the parameter Q have
been fixed to constant diagonal matrices.

The matrix R linked to the observations is defined as:
R = C(Id − e−|∇E(x,t)|/σ2

),

where C and σ are parameters to be fixed. When no obser-
vation is available, this matrix is set to infinity. In all our
applications, we fixed B = 0.1, Q = 0.001, σ = 0.9 and
C ∈ [50; 500].

Situation #1 : Synthetic DNS fluid motion sequence
This first sequence of 50 frames has been obtained from
a numerical simulation of an incompressible 2D turbulence
flow with an unknown forcing term (at Reynolds number,
Re = 1/ν = 4000). This sequence simulates an exper-
imental flow seeded with particles. Such kind of data are
largely used in the experimental fluid mechanics commu-
nity. The top of figure 1 represents: a PIV image (a), a mo-
tion field estimated in the sequence (b), two synthetic maps
of vorticity (e,f) and the corresponding estimated maps
(g,h). It can be observed that the extracted motion fields are
in accordance with the ground truth. In addition, we present
two quantitative evaluations of our motion fields compared
to the ground truth and to the ones obtained with a fluid
dedicated motion estimator [7] in (c,d). These comparisons
are made on the basis of the vorticity and a spectral analysis
on the row average. These two comparisons prove the abil-
ity of our approach to recover very accurate motion fields
with a better estimation of small scales structures which are
smoothed out by the dense fluid motion estimator [7].

Situation #2 : Cyclone Vince sequence We applied this
technique on an infra-red meteorological sequence of 17
frames showing the Vince cyclone over north Atlantic. The
sequence was acquired on the 9 October 2005. The top
of figure 2 presents the estimated motion fields superim-
posed to their corresponding image for three frames of the
sequence. The second line presents the corresponding vor-
ticity and on the third line we plotted the vorticity obtained
with a dedicated fluid motion estimator [7]. As many loca-
tion of the image plane are disturbed by non-valid data, it
can be observed that the dedicated estimator presents some
temporal inconsistencies and discontinuities in terms of vor-
ticity. These noisy values are completely removed by the
technique presented which provides smooth and coherent
vorticity maps.

3.2. Video sequence
We tested our approach on the 10 first images of the well-

known taxi sequence. To assess the benefit of the temporal
model, we blurred 3 images as depicted in figure 3(b–d).
This kind of artifacts may appear when, for instance, one
wants to restore old videos.

Dynamic model No universal physical law can be stated
for general videos showing moving objects of different na-
tures. It is therefore difficult to propose a generic formula-
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Figure 1. Experimental results on DNS: Sequence #1: (a): a PIV image; (b): an estimated motion field of the sequence; (c): the
vorticity error compared to an optical-flow estimation; (d): spectra of the velocities, (e,f): two maps of vorticity issued from DNS and
(g,h): the corresponding estimated maps.
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Figure 2. Experimental results on Vince sequence: Sequence #2: (a–c): three images and the corresponding motion field; (d–f): the
estimated vorticity; (g–i): the vorticity obtained with a fluid dedicated estimator without any temporal consistency.

tion that describes accurately the evolution of moving ob-
jects. However, one can rationally assume over a short
range of time that the velocity is transported by itself up
to a Gaussian discretization error. Defining the location xt

of a point as a stochastic process driven by an Ito diffusion
dxt = v(xt) + νdB and noting g = E[f(xt|xt−h)], the ex-
pectation of a function of xt given xt−h reads, through the
forward Kolmogorov equation, ∂g/∂t = −∇g ·v+1/2ν2∆g
[24]. We therefore assume the following dynamical model:

dv

dt
=

∂v

∂t
+ ∇v · v = ν∆v,

where ν is to be fixed, but could be considered as a model’s
parameter. The operator M is then:

M(v(x, t)) = v(x, t) · ∇v(x, t) − ν∆v(x, t);

the associate tangent linear operator at point v for a pertur-
bation δv is

(∂vM) δv = v · ∇δv + δv · ∇v − ν∆δv,

and its adjoint (∂vM)∗ used in (10) is obtained by the trans-
pose of the matrix corresponding to the linear tangent oper-
ator discretization.

Observation Operator As no accurate dynamic model is
available in that case, we prefer to apply a more suitable ob-
servation operator based on the optical flow constraint equa-
tion accompanied with a first order robust smoothing. The
motion field v to extract may be formulated as:

v(x, t) ≈ min
v(x,t)

Z

Ω

f1

“

[∇E(x, t) · v(x, t) + Et(x, t)]2
”

+ α

Z

Ω

f2(|∇vx|2) + f2(|∇vy|2),



where Ω is the image plane, α is a smoothing positive pa-
rameter and f1 and f2 are two robust penalty functions [3]
such that f(

p

y2) is concave. A weighted quadratic formu-
lation of these cost functions can then be obtained [10]:

v(x, t) ≈ min
v,δo,δu,δv

Z

Ω

δo [∇E(x, t) · v(x, t) + Et(x, t)]2

+ φ(δo) + α

Z

Ω

δu(|∇u|)2 + δv(|∇v|)2 + φ(δu) + φ(δv),

where the minimization w.r.t the additional outliers vari-
ables (δ•) is given explicitly through the derivative of func-
tion f : δ̂•(y) = f

′

•(
p

y2) (see [13] for more details). The
Euler-Lagrange equations of the previous functional may
be written as the following system of coupled equations:

δo∇E(x, t)
“

∇E(x, t)T
v(x, t) + Et(x, t)

”

−

αδu∆∇u − αδv∆∇v = 0 and δ•(x) = f ′
•(
√

x2).
(18)

The observation system for our tracking problem is thus de-
fined as (with δ•(x) = f ′

•(
√

x2)):

H(v(t), t) =

»

δo∇E(x, t)∇E(x, t)T− α

„

δu∆ 0
0 δv∆

«–

v(t)

Y = −δo∇E(x, t)Et(x, t)

Given the weight values (which are obtained explicitly for a
value of the velocity and the corresponding robust function
argument), the operator H is linear w.r.t. the state func-
tion v. Its tangent linear operator is itself and the adjoint
operator (∂vH)∗ used in relation (10) is given by the trans-
pose of the matrix corresponding to its discretization. As
for the initial field it has been set to a motion field recov-
ered from a fast Horn & Schunck estimator embedded into
a multiresolution framework. This initial field is then propa-
gated through the considered dynamics and can be seen as a
first coarse estimation. The assimilation process is further-
more much faster than a sequence of motion estimations.

Results The figures in 3 (e–h) represent 4 motion fields
obtained with our approach whereas figures 3 (i–l) show the
corresponding motion fields obtained with a robust motion
estimator [21]. Thanks to the optimal control process, the
motion fields recovered are not affected by the strong arti-
facts introduced. This kind of results might be interesting
for applications in the field of video coding and/or restora-
tion. As for the computation time, this process was two-
time faster than the successive estimations of dense motion
fields with the same observation operator. Such an approach
could also be used to estimate motion of temporarily oc-
cluded objects in video, and as a consequence constitutes
an important basic ingredient for video object removing in
video post-processing.

4. Conclusion
In this paper a framework allowing us to estimate and

track dense motion fields with a temporal consistency has
been introduced. The approach is related to optimal control

theory. It authorizes through noisy and incomplete obser-
vations to estimate a sequence of motion fields guided by
a dynamical model . To correctly deal with the huge state
space we are facing, the minimization is handled using an
adjoint formulation. The resulting process consists in al-
ternating a forward integration of the state variable and a
backward integration of the introduced adjoint variables.

This technique has been successfully applied and com-
pared with usual optical flows estimators in three different
situations: a fluid motion simulation, a real fluid sequence
depicting a cyclone and the real taxi sequence. Concerning
fluid images, the results are very good despite the fact that
no information of the initial field was assumed. For the rigid
motion example, the definition of the dynamical model is
more complex since no accurate law can be defined in such
a situation. Hence, we rely on a more sophisticated observa-
tions and an initial motion field based on a Horn & Schunck
estimation. The rest of the process is then very fast and the
quality of the recovered motion fields is good and consistent
in time despite the artifacts introduced.
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