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Abstract
In this paper, a new framework for the tracking of closed

curves is described. The proposed approach formalized

through an optimal control technique, enables a continuous

tracking along an image sequence of a deformable curve.

The associated minimization process consists in a forward

integration of a dynamical model followed by a backward

integration of an adjoint dynamics. This latter pde includes

a term related to the discrepancy between the state vari-

ables evolution law and discrete noisy measurements of the

system. The closed curves are represented through an im-

plicit surface.

1. Introduction
Tracking the contours of an object is an essential task in

many applications of computer vision. Due to the chang-

ing shape of deformable or even rigid objects in image se-

quences such an issue appears to be very challenging in

the general case. Another serious difficulty comes from

the dimension of the space of closed curves in the general

case (infinite in theory). This context makes difficult the

use of recursive Bayesian filters such as the particle filter

[3], since stochastic sampling in large state spaces is usu-

ally completely inefficient. For such an issue, numerous

approaches based on the level set representation have been

proposed [5, 6, 8, 12, 15, 16, 19, 21]. All these techniques

describe the tracking as successive 2D segmentation pro-

cesses sometimes enriched with a motion based propagation

step. Segmentation techniques on spatio-temporal data have

also been proposed [1, 6]. Unless the introduction of knowl-

edge on the shape of interest [10, 18], these approaches are

quite sensitive to noise [13] and exhibit inherent temporal

instabilities. Besides, it is difficult in such techniques to

require the curve to obey to a specified dynamics and there-

fore to proceed to a real tracking.

In [22], an approach based on a group action mean shape

has been used in a moving average context. Contrary to pre-

vious methods, this approach introduces, through the mov-

ing average technique, a kind of tracking process. This

tracking is restricted to simple motions and does not al-

low to introduce complex dynamical law defined through

differential operators. The explicit introduction of a dy-

namic law in the curve evolution law has been considered

in [15]. However, the proposed technique needs a complex

detection mechanism to cope with occlusions. Few works

attempted to mix stochastic filtering and a level set repre-

sentation for curve tracking [7, 20]. As mentioned earlier,

these works have to face a high dimensional sampling prob-

lem and as a consequence rely on crude discretization of

the non linear curve dynamics which may be problematic in

some situations. In this paper, we propose a technique re-

lated to the optimal control theory [9, 11] for the tracking of

closed curves. This technique enables to estimate in batch

mode the complete trajectory of the level set surface accord-

ing to a set of noisy measurements and a specified dynam-

ics. This method has the advantage to authorizes naturally

to cope with state spaces of high dimension.

2. Variational tracking

In this section, we describe the general principles of the

technique proposed. This setup relies on control theory

recipes [11, 9].
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Direct evolution model The state variable representing
the feature of interest X , is assumed to live in a func-
tional space W(t0, tf ) = {X |X ∈ L2(t0, tf ;V), ∂tX ∈

L2(t0, tf ;V)}, where V is an Hilbert space identified to
its dual space. The evolution in time range [t0; tf ] of the
state is described through a (non linear) differential opera-
tor M : V×]t0, tf [→ V , defined up to a control function
ν ∈ W(t0, tf ), and an initial value defined up to another
control variable η ∈ V :
(

∂tX(t) + M(X(t), t) = ν(t) ∀t ∈]t0, tf [,

X(t0) = X0 + η.
(1)

We are facing an imperfect dynamical system which de-

pends on the whole trajectory of the control variables, ν(t),

and on the value of a control variable, η, modeling the un-

certainty on the initial condition.

This direct problem (1) will be assumed to be well

posed, which means that we first assume that the applica-

tion V × V → V : ν(t), η 7→ X(ν(t), η, t) is differentiable

and continuous ∀t ∈]t0, tf [ and secondly that given η ∈ V ,

ν ∈ W(t0, tf ) and tf > t0, there exists a unique function

X ∈ W(t0, tf ) solution of problem (1). Let us also as-

sume that some observations Y ∈ O of the state variable

components are available. These observations may live in a

different space (a reduced space for instance) from the state

variable. We will nevertheless assume that there exists a

(non linear) observation operator H : V → O, that goes

from the variable space to the observation space.

Cost function We aim in that work at estimating the con-
trol variable of lower magnitude that minimizes a discrep-
ancy measure between the state variable and the observa-
tions. This is expressed by the minimization of a cost func-
tion J : W ×V → R defined as:

J(ν, η) =
1

2

Z tf

t0

||Y − H(X(ν(t), η, t))||2R dt +
1

2
||η||2B

+
1

2

Z tf

t0

||ν(t)||2Q dt.

(2)

Norms || · ||R , || · ||B and || · ||Q are induced associated to

the scalar products
〈

R−1·, ·
〉

O
,
〈

B−1·, ·
〉

V
and

〈

Q−1·, ·
〉

V
,

where R, B and Q are symmetric positive defined endomor-

phisms of V . In our application, R, B and Q are respec-

tively called the observation covariance matrix, the initial-

ization covariance matrix and the model covariance matrix.

Differential model In order to compute partial derivative
of the cost function with respect to the control variables,
system (1) is first differentiated with respect to (ν, η) in
the direction (δν, δη). Noting dX = ∂X

∂ν
δν + ∂X

∂η
δη ∈

W(t0, tf ), we obtain the following problem:

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

Given (ν, η)∈(W,V), X(t) solution of (1)

and a perturbation (δν, δη)∈(W ×V),

dX =
∂X

∂ν
δν +

∂X

∂η
δη ∈ W(t0, tf ), is defined such that:

(

∂tdX(t) + (∂XM)dX(t) = δν(t) ∀t ∈]t0, tf [,

dX(t0) = δη.

(3)

In this expression, the tangent linear operator ∂XM is de-
fined as the Gâteaux derivative of the operator M at point
X :

(∂XM)dX(t) = lim
β→0

M(X(t) + βdX(t)) − M(X(t))

β
. (4)

The tangent linear operator (∂XH) associated to H may be
defined similarly. The differentiation of cost function (2)
with respect to (ν, η) in the direction (δν, δη) reads:

fi
∂J

∂η
, δη

fl

V

= −

Z tf

t0

fi

Y − H(X), (∂XH)
∂X

∂η
δη

fl

R

dt

+ 〈X(t0) − X0, δη〉B
fi

∂J

∂ν
, δν

fl

W

= −

Z tf

t0

fi

Y − H(X), (∂XH)
∂X

∂ν
δν(t)

fl

R

dt

+

Z tf

t0

〈∂tX(t) + M(X(t)), δν(t)〉Q dt.

(5)
These expressions can be rewritten as:

fi
∂J

∂η
, δη

fl

V

= −

Z tf

t0

fi

(∂XH)∗R−1(Y − H(X)),
∂X

∂η
δη

fl

V

dt

+
˙
B−1(X(t0) − X0), δη

¸

V
.

fi
∂J

∂ν
, δν

fl

W

= −

Z tf

t0

fi

(∂XH)∗R−1(Y −H(X)),
∂X

∂ν
δν(t)

fl

V

dt

+

Z tf

t0

˙
Q−1(∂tX(t)+M(X(t)), δν(t)

¸

V
dt,

(6)

where (∂XH)∗, the adjoint operator of (∂XH), is defined
by the scalar product:

∀X ∈ V, ∀Y ∈ O 〈(∂XH) X, Y 〉O = 〈X, (∂XH)∗Y 〉V . (7)
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Adjoint evolution model In order to estimate the gradient
of the cost function J , a first brute force numerical approach
consists in computing the functional gradient through finite
differences:

∇ek
J '

»
J(u + εek) − J(u)

ε

–

, k = 1 · · · p,

where u = (ν, η) ∈ (W ,V), ε ∈ R is an infinitesimal per-
turbation and {ek, k = 1, . . . , p} denotes the unitary basis
vectors of the control space (W ,V). Such a computation is
impractical for space of large dimension since it requires p

integrations of the evolution model for each required value
of the gradient functional. Adjoint model technique, as in-
troduced in control theory and data assimilation [11, 9], al-
lows to compute efficiently this gradient functional. To ob-
tain the adjoint equation, the first equation of model (3) is
multiplied by an adjoint variable λ ∈ W(t0, tf ) and inte-
grated on [t0, tf ]:
Z tf

t0

〈∂tdX(t), λ(t)〉V dt +

Z tf

t0

〈∂XMdX(t), λ(t)〉V dt

=

Z tf

t0

〈δν(t), λ(t)〉V dt.

After an integration by parts of the first term and using the
second equation of the differential model (3), we finally get:

−

Z tf

t0

〈−∂tλ(t) + (∂XM)∗λ(t), dX(t)〉V dt

= 〈λ(tf ), dX(tf )〉V − 〈λ(t0), δη〉V −

Z tf

t0

〈λ(t), δν(t)〉V dt.

(8)

where we introduced the adjoint operator (∂XM)∗ defined
by the scalar product:

∀X∈V, ∀Y ∈V 〈(∂XM) X, Y 〉V = 〈X, (∂XM)∗Y 〉V . (9)

In order to obtain an accessible expression for the cost func-
tion gradient, we impose to the adjoint variable to be solu-
tion of the following adjoint problem:

(

−∂tλ(t) + (∂XM)∗λ(t) = (∂XH)∗R−1(Y −H(X(t)))

λ(tf ) = 0.
(10)

Functional gradient Combining equations (6), (8) and
(10) and recalling that dX = ∂X

∂ν
δν + ∂X

∂η
δη, the functional

gradient is given by:
fi

∂J

∂ν
, δν

fl

W

+

fi
∂J

∂η
, δη

fl

V

=

Z tf

t0

˙
Q−1(∂tX(t)+M(X(t)),δν(t)

¸

V
dt−

Z tf

t0

〈λ(t),δν(t)〉Vdt

− 〈λ(t0), δη〉V +
˙
B−1(X(t0) − X0), δη

¸

V

=
˙
Q−1(∂tX + M(X) − λ, δν

¸

W

+
˙
−λ(t0) + B−1(X(t0) − X0), δη

¸

V
.

The derivatives of the cost function with respect to ν and η

are identified as:

∂J
∂ν

= Q−1(∂tX + M(X)) − λ, (11)

∂J
∂η

= −λ(t0) + B−1(X(t0) − X0). (12)

A gradient descent optimization can be set by canceling
these components. Introducing Q and B, the respective
pseudo inverses of Q−1 and B−1 [2], the state variables
update reads:

(

∂tX(t) + M(X(t)) = Qλ(t)

X(t0) − X0 = Bλ(t0).
(13)

The second equation constitutes an incremental update of

the initial condition from the value of the adjoint variable

at the initial time. This system can be generalized to define

the following incremental formulation.

Incremental function Denoting

(

X(t) = X̃(t) + dX(t) ∀t ∈ [t0, tf ],

X̃(t0) = X0,
(14)

where X̃(t) is either a fixed component or a previous esti-
mated trajectory of the state variable, equation (13) can be
written as:

∂tX̃(t) + M(X̃(t)) = 0 ∀t ∈]t0, tf [, (15)

∂tdX(t) + ∂X̃M(X̃(t))dX(t) = Qλ(t) ∀t ∈]t0, tf [. (16)

Hence, the update of the state variable X is driven by an
incremental function dX which depends on the whole tra-
jectory of the adjoint variable λ. The initial value of this in-
cremental function is given by the second equation of (13):

dX(t0) = Bλ(t0). (17)

Equations (10), (15), (16) and (17) give rise to a data as-

similation method with an imperfect dynamical model. A

sketch of the whole process is summarized in Algorithm

(2.1).

3. Application to curve tracking

We will focus in this section on the application of the

previous framework to curve tracking.
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Algorithm 2.1 Let X(t0) = X0.

(i) From X(t0), compute X(t), ∀t ∈]t0, tf [ with a

forward integration of system (15).

(ii) X(t) being given, realize a backward integration of

the adjoint variable with the system (10).

(iii) Compute the initial value of the incremental function

dX(t0) with relation (17).

(iv) From dX(t0), compute dX(t), ∀t ∈]t0, tf [ with a

forward integration of system (16).

(v) Update X = X + dX .

(vi) Return to (ii) and repeat until convergence

(J(ν(t), η) < threshold).

3.1. Contour representation and evolution laws

As we aim at tracking non parametric closed curves that

may exhibit topology changes along time, we will rely on an

implicit level set representation of the curve of interest Γ(t)

at time t ∈ [t0, tf ] of the image sequence [16, 21]. Within

that framework, the curve Γ(t) enclosing the target to track

is implicitly described by the zero level set of a function

φ(x, t) : Ω × R+ → R : Γ(t) = {x ∈ Ω | φ(x, t) = 0}.

In order to define a dynamics for the unknown sur-
face, we will assume that the curve is propagated at
each frame instant by a given velocity field, w(x, t) =

[u(x, t), v(x, t)]
T

, and diffuses according to a mean cur-
vature motion. This dynamics is assumed to be valid up to
an additive control function ν:

∂tφ + (w · n − εκ) ‖∇φ‖
| {z }

4
=M(φ)

= ν, (18)

where the curvature and the normal are directly given in
term of surface gradient: κ = div(∇φ/‖∇φ‖) and n =

∇φ/‖∇φ‖. As indicated previously, the motion field trans-

porting the curve is assumed to be given by an external es-

timator. In practice, we used an efficient and robust version

of the Horn and Schunck optical-flow estimator [14]. The

additive control function allows us to model inaccuracy of

the velocity fields. Since it is rather difficult to infer pre-

cise errors model for this dynamics, we fixed the control

covariance matrix Q to a constant diagonal matrix (typically

Q = 0.005).

Tangent linear evolution operator To apply the setup
defined previously, we must first define the expression of
the directional derivative of the operators involved. Using
equation (18), the evolution operator reads in its complete
form:

M(φ) = ∇φ · w − ε||∇φ||div

„
∇φ

||∇φ||

«

.

This operator can be turned into a more tractable expression
for our purpose:

M(φ) = ∇φT
w − ε

 

∆φ −
∇

T

φ∇2φ∇φ

||∇φ||2

!

. (19)

The corresponding tangent linear operator at point φ finally
reads:

∂φMδφ = ∇δφT
w − ε

»

∆δφ −
∇φ

T

∇2δφ∇φ

||∇φ||2

+ 2
∇φ

T

∇2φ

||∇φ||2

 

∇φ∇φ
T

||∇φ||2
− Id

!

∇δφ

–

.

(20)

Operator discretization Before going any further, let us
describe the discretization schemes we considered for the
evolution law. This concerns the evolution operator, the as-
sociated tangent linear operator and the adjoint evolution
operator. We will denote as φt

i,j the value of φ at image
grid point (i, j) at time t ∈ [t0; tf ]. Using (18) and a semi-
implicit discretization scheme, the following discrete evo-
lution model is obtained:

φt+∆t
i,j − φt

i,j

∆t
+ Mφt

i,j
φt+∆t

i,j = 0.

Considering φx and φy, the horizontal and vertical gradient
matrices of φ, the discrete operator M is obtained as :

Mφt
i,j

φt+∆t
i,j =

 

(φt+∆t
x )i,j

(φt+∆t
y )i,j

!T

w

−
ε

||∇φt
i,j ||

2

 

−(φt
y)i,j

(φt
x)i,j

!T

∇2φt+∆t
i,j

 

−(φt
y)i,j

(φt
x)i,j

!

,

where we used usual finite differences for the Hessian ma-
trix ∇2φ and a first order convex scheme [21] for the ad-
vective term ∇φ · w. This scheme enables to compute the
surface gradients in the appropriate direction:

∇φ
T

i,jwi,j = max(ui,j , 0)(φi,j)
−
x + min(ui,j , 0)(φi,j)

+
x

+ max(vi,j, 0)(φi,j)
−
y + min(vi,j , 0)(φi,j)

+
y ,
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where (φ)−x and (φ)−y are the left semi-finite differences,
whereas (φ)+x and (φ)+y are the right ones. The discrete
linear tangent operator is similarly defined as:

∂φt
i,j

Mδφt+∆t
i,j = Mφt

i,j
δφt+∆t

i,j −
2ε (A B)

||∇φ||4

 

(δφt+∆t
x )i,j

(δφt+∆t
y )i,j

!

,

where A and B are:

A = φt
xφt

y(φt
xyφt

x − φt
xxφt

y) + (φt
y)2(φt

yyφt
x − φt

xyφt
y),

B = φt
xφt

y(φt
xyφt

y − φt
yyφt

x) + (φt
x)2(φt

xxφt
y − φt

xyφt
x).

As for the iterative solver involved in the implicit discretiza-

tion, we used a conjugated gradient optimization. The dis-

cretization of the adjoint evolution model is finally obtained

as the transposed matrix corresponding to the discretization

of the derivative of the evolution law operator.

3.2. Initial condition

In order to define an initial condition, we assume that
an initial contour of the target object is available. It can be
provided by any segmentation technique or specified by the
user. In this work we used a simple thresholding technique.
Given this initial contour, we initialized the implicit func-
tion at the first time as a signed distance function. More pre-
cisely, the value of φ(x, t0) is set to the distance g(x, Γ(t0))

of the closest point of the initial curve Γ(t0), with the con-
vention that g(x, t0) is negative inside the contour, and pos-
itive outside. An additive control variable models the un-
certainty we have on the initial curve. This initial condition
reads:

φ(x, t0) = g(x, Γ(t0)) + η(x, t).

The covariance matrix B associated to the initial state con-
trol variable has been defined as a diagonal matrix which
fixes a low uncertainty in the vicinity of the initial given
curve and an increasing uncertainty as soon as the curve
moves away from the initial contour:

B(x) = Id − e−|g(x,t0)|.

3.3. Measurement equation

To link the image data to the unknown surface vari-

able we rely on a measurement modeling that involves lo-

cal probability distributions of the intensity function. This

model compares at each point of the image domain a lo-

cal photometric histogram to two global probability den-

sity functions ρo and ρb modeling respectively the object

and background intensity distribution. These two distribu-

tions are assumed to be estimated from the initial location of

the target object. The measurements equation we propose

reads:

F (φ, I)(x, t) = [1 − dB(ρVx
, ρo)]

2
1φ(x)<0+

[1 − dB(ρVx
, ρb)]

2
1φ(x)≥0 = ε(x, t),

(21)

where dB is the Bhattacharya probability density distance
measure defined as:

dB(ρ1, ρ2) =

Z 255

0

p

ρ1(z)ρ2(z)dz.

and ρVx
is the probability density in the neighborhood of

pixel x. Let us note that by replacing the densities with

intensity average, we retrieve the Chan and Vese functional

proposed for image segmentation[4].

The corresponding linear tangent operator in the sense of

distributions [4] is:

∂φF =
(

[1 − dB(ρVx
, ρo)]

2
− [1 − dB(ρVx

, ρb)]
2
)

δ(φ),

(22)
where δ(·) is the Dirac function. The covariance associ-

ated to the measurements discrepancy has been fixed to a

diagonal matrix corresponding to the minimal empiric local

photometric covariance:

R(x, t) = E[Min((1−dB(ρVx
, ρo))

2, (1−dB(ρVx
, ρb))

2)].

This measurement equation and the corresponding adjoint
linear tangent operator are involved in the adjoint model
(10):

−∂tλ(t) + (∂φM)∗λ(t) = (∂φF )∗R−1F (φ, I).

4. Experimental results

As a first example, we tracked a curve delineating al-

phabetic letters. The measurements consist of a set of four

binary letters images, as presented on figure 1. On the same

figure, we plotted the results obtained at intermediate in-

stants in order to show how curve deforms continuously
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along the sequence to give some kind of morphing results.

Contrary to other results, the curve is here only propagated

using its mean curvature motion instead of optical flow. The

assimilation principle allows to track the global deforma-

tion of the curve along time thanks to the batch approach

that considers all the set of available observations.

t = 0 t = 1
5 t = 2

5 t = 3
5

t = 4
5 t = 1 t = 6

5 t = 7
5

t = 8
5 t = 9

5 t = 2 t = 11
5

t = 12
5 t = 13

5 t = 14
5 t = 3

Figure 1. Letter sequence. Result of the assimilation process.

The curve is superimposed on the observed letter images at times

t = 0, 1, 2, 3.

We then applied the process to the tracking of a running

tiger. This sequence composed of 27 frames is of bad qual-

ity: it includes motion blur at some places and is quite noisy.

The measurements are provided by local photometric his-

tograms. The initial curve that determines probability den-

sity functions of the tiger and the background is obtained

with a simple threshold technique. The results shown on

figure 2 illustrate the fact that despite the very bad quality of

images, the method allows to track the tiger in a consistent

way. For this sequence we also plotted on figure 3 a serie of

segmentation obtained through a Chan and Vese segmen-

tation process [4] based on the same data model than our

measurements model (eq. 21-22) with an additional penal-

ization term on the curve length. As can be observed from

figure 3 the mask obtained with this spatial segmentation

t = 0 t = 2

t = 4 t = 5

t = 7 t = 10

t = 14 t = 17

t = 19 t = 21

t = 23 t = 26

Figure 2. Tiger sequence. Result of the assimilation technique.

Despite of the noisy images, the global shape of the tiger is pre-

served along the time.

technique are of good quality on some images. They never-

theless appears to be unstable along time and would require

a delicate tuning of the parameter to obtained a consistent

sequence of curves. At the opposite, the curves provided

by the proposed technique are more stable in time and con-

sistent with respect to the object shape and its deformation.

Compared to traditional segmentation techniques the assim-

ilation techniques provides results which reflect in a more

coherent way the topology and the deformation of the target

object along time. Due to the bad quality of the image se-

quence and to the amplitude of the motions we can observe

that it is nevertheless difficult for the curve to fit precisely
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t = 0 t = 2

t = 4 t = 5

t = 7 t = 10

t = 14 t = 17

t = 19 t = 21

t = 23 t = 26

Figure 3. Tiger sequence. Successive segmentations obtained

through a Chan and Vese level-set techniques with a data model

based on local probability density measurement and a Bhat-

tacharya distance (eq. 21-22).

and in a continuous way to the photometric boundaries of

the object.

To further illustrate the differences between the results

obtained through assimilation and successive photometric

segmentations we finally run our method on a cardiac mag-

netic resonance imaging sequence 1. The purpose is here

to track the left ventricle. The result of the method are pre-

sented on figure 4. As can be observed the target region

approximatively delineated in the first image by the user is

1http://mrel.usc.edu/class/preview.html

well tracked. The successive deformations of the region are

recovered in a coherent continuous way. The sequence of

curve delineates well the evolution of a target region of in-

terest specified at the initialization stage. In comparison, the

results obtained from the same initialization with the Chan

and Vese techniques show an immediate expansion of the

target region to other regions of the image characterized by

the same photometric distribution (see figure 5). Incoher-

ent merging or splitting of regions regarding the effective

deformations of an object shape is maybe one of the main

problems met when running spatio-temporal analysis on the

basis of consecutive single spatial analyses (even chained

together through their initializations).

Initialization t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7
Figure 4. Cardiac magnetic resonance imaging sequence. Re-

sult of the assimilation technique with the photometric measure-

ment model based on local probability density. The initial target

region is shown in the first image of the top row

Initialization t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7
Figure 5. Cardiac magnetic resonance imaging sequence. Suc-

cessive segmentations obtained through a Chan and Vese level-set

techniques with a data model based on local probability density

measurement and a Bhattacharya distance (eq. 21-22). The initial

target region is shown in the first image of the top row
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5. Conclusion

In this paper, a new framework allowing the visual track-

ing of curves has been presented. The proposed technique

relies on data assimilation technique formulated through an

optimal control problem [9]. and allows to handle in batch

mode the tracking of an implicit surface. The technique

is simple and consists in a forward integration of a level-set

dynamics coupled with a backward integration of an adjoint

dynamics incorporating a data measurement model. The

method incorporates only few parameters representing the

different errors involved in the considered system. In this

work, the curve velocity fields is assumed to be known, nev-

ertheless we could have as well coupled the curve tracking

with a similar tracking mechanism on the velocity fields to

improve the performances [17]. This will be the subject of

future work.
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