11 C~Anrn 9O9ONN7

.
AWV aVNdalVal'al )

maria NN170260N

nirma~vyulLruvovv, VOIolUIl 2 = 1L OTY LUV

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Detection and segmentation of moving objectsin
complex scenes

Aurélie Bugeau — Patrick Pérez

N° 6282

September 2007

Themes COM et COG

apport
derecherche

ISRN INRIA/RR--6282--FR+ENG

ISSN 0249-6399







% INRIA

RENNES

Detection and segmentation of moving objects in complex saes

Aurélie Bugeau , Patrick Pérez

Themes COM et COG — Systemes communicants et Systemagitog
Projet Vista

Rapport de recherche n° 6282 — September 2007 — 50 pages

Abstract: Detecting and segmenting moving objects in dynamic scanebard but essential task in
a large number of applications such as surveillance. Mastieg methods only give good results in
the case of persistent or slowly changing background, antti the objects and the background can be
characterized by simple parametric motions. This papes airdetecting and segmenting foreground
moving objects in the absence of such constraints. The segaave consider have highly dynamic
backgrounds, illumination changes and low contrasts, anchave been shot by a moving camera.
Three main steps compose the proposed method. First, mpwints are selected within a sub-grid
of image pixels. A descriptor is associated to each of theseg Clusters of points are then formed
using a variable bandwidth mean shift with automatic baddhwselection. Finally, segmentation of
the object associated to a given cluster is performed usmagltcuts. Experiments and comparison
to other motion detection methods on challenging sequesttas the performance of the proposed
method and its utility for video analysis in complex scenes.
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Détection et segmentation d’objets en mouvement dans desses
complexes

Résuré : De nombreuses applications en vision par ordinateur et preilance nécessitent la
détection et la segmentation des objets en mouvementuparildes méthodes existantes ne donnent
de bons résultats que pour des fonds statiques ou peu @rdageu si le fond et les objets sont
rigides et ont un mouvement affine 2D. Le but de ce papier edirdetement détecter les objets en
mouvement dans des séquences complexes n'ayant pas aeteatiques. Les vidéos considérées
ici ont un fond dynamique, avec de forts changements d’ithation et de faibles contrastes, et
peuvent avoir été prises par une caméra en mouvementétteohe proposée se divise en trois étapes
principales. Tout d’abord un ensemble de points en mouveesnsélectionné parmi une grille
de pixels uniformément répartis sur toute I'image. Toas points sont associés a un descripteur.
La deuxieme étape consiste a former des groupes de cets peprésentant chacun un objet en
mouvement. Ces partitions sont obtenues par un algorithesnrshift & noyau variable avec une
sélection automatique de la taille du noyau. Enfin, & pdetices groupes de points, la segmentation
des objets est donnée en minimisant une énergie par codpwraphe. Des résultats et comparaisons
avec d'autres méthodes de segmentation de mouvementanolreificacité de la méthode proposée.

Mots-clés : détection de mouvement, segmentation, partitionnemeatrshift, coupure de graphe
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Contents

1 Introduction

Detection of moving objects in sequences is an essentjalfstevideo analysis. It becomes a diffi-

cult task in the presence of a dynamic background. We areeted in very challenging sequences
containing a complex motion in the background. This mot@malso have a high amplitude. Further-
more, contrast between background and interesting oljactde small. Like in many applications

in video analysis, the algorithms have to be robust to ilhation and point of view changes. The
last particularity about our sequences is that the camkirag#he scene can move.

1.1 Existing methods

Different kinds of methods exist to solve the problem of motiletection and motion segmentation.
Good but incomplete reviews on motion detection methodsbedound in[[38]417]. Here, we divide
these methods into four categories: thresholding, backgtonodeling, layers extraction and finally
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4 Bugeau & Ferez

saliency based methods.

Tresholding methods First works on motion detection were based on adjacent fsadifeerence
[28]. The most obvious algorithm is to simply threshold th#fedence image. The choice of this
threshold highly depends on the sequence, its noise, itomadturthermore there is no reason for
this value to be constant on the whole image. Indeed, diffevbjects and motions give different
variations of luminosity. Many methods have been develdpetdkcide whether or not a pixel has
moved. The decision can be directly made independently oh pixel [35] or on small blocks of
pixels [18]. With independent pixel-wise detections, dén maps are usually corrupted by holes
in the mask of moving objects and false detections due teendikese errors can be attenuated us-
ing regularization constraints and contextual informatita Markov Random Field$1]. Ir43],
Markov Random fields are applied after a step of motion corsgigon. This step is described in
section 2. This method is well adapted to videos taken by aimgazamera. The decision rule in
many change detection algorithms is cast as a statistetahypothese§[25]. More complex methods
are proposed i 149] for modeling the spatial distributidreither noise or signal and selecting the
appropriate threshold. IAT58] ancontrariomethod is proposed. It is based on a perceptual grouping
principle named the Helmholtz principle. It consists in digfg an image model in the absence of
moving objects instead of modeling the moving objects.

Background modeling and subtraction methods Methods based on adjacent frame difference are
mostly sensitive to noise and to illuminations changes. Mthe number of frames in the sequence is
high and there is not much change between consecutive framether solution to motion detection
is background modeling. This technique is routinely usetthécontext of surveillance applications,
when the camera is fixed. Background modeling methods caralssified as predictive or non
predictive methods. Non-predictive methods build a prdbgldensity function of the intensity at
an individual pixel. In static environment, the statistidistribution of a pixel can be represented by a
single Gaussian [12[T26]130]. The foreground pixels areedmined as those for which the intensity
value is far from the mean background model and are clustateabjects. A variable number of
Gaussian distributions corresponding to each differerggmund object can be added. It was used
by [24] for generic objects and blz]66] for people tracking.the presence of dynamic background
the use of a single Gaussian becomes inappropriate and armodt several Gaussians is preferred
to model the background 1B, 121]. When changes in the backgiare too fast, the variance of
the Gaussians becomes too large and non parametric appsoaehmore suited. IR IL7], Gaussian
kernels calculated on the past frames are used to model tigétylat a particular pixel. Contrary
to previous approaches, this method addresses the umtgrtdispatial location. Until recently
methods were almost all based on photometric propertiest @f butdoor scenes exhibit a persistent

INRIA



Detection and segmentation of moving objects in complexesce 5

motion which is well modeled by optical flow and a non paramedtgorithm that combines color
and flow features can be uséd][40]. As optical flow can not bepeed when there is no intensity
gradient, the authors have chosen to use kernels with Vabandwidth. In[[4B] the authors extended
a statistical background modeling technique to cope with stationary camera. The current image
is registered to the estimated background image using areadfi projective transformation. The
foreground information can also be used a$1r [44] in whiehttackground and foreground maps are
forced to be a Markov random field. All these pixel-wise agmtees allow an accurate detection of
moving objects but are memory and possibly computatiordpensive. Also, they can be sensitive
to noise and they do not take into account spatial correlatpatial consistency can be added [52]
with a MAP-MRF modeling of both foreground and backgrountisTmethod has been extended to
novelty detection in[[38].

Predictive methods use a dynamical model to predict theevafl@a pixel from previous observa-
tions. A Kalman filter based approach that models the dynaofithe intensity at a particular pixel
can be used [31,784]. I [57] an algorithm called wallflowedé&scribed. It uses a simpler version
of the Kalman filter calledVeiner filterto predict a pixel’s current value from itsprevious values.
Pixels whose prediction error is high are classified as cbaupixels. Recent methods are based on
more complicated models. For example,[inl[16] and [68], aor@gressive model was proposed to
capture background properties.

Background subtraction and tresholding methods are anpiredry step to moving object detec-
tion and subsequent processing is necessary to get the wfasksing objects.

Layer approaches Motion segmentation can be seen as the problem of fittingaatmn of motion
models to the spatio-temporal image data. This leads toater lapproacH[15] that tries to fit a
mixture of motion models to the entire image. Layers are fbend by associating each pixel to the
model it belongs to. In many papefs [Z] B2, 63] a mixturprobabilistic models is iteratively
built with an Expectation-Maximization algorithm (EM). Aajor drawback of such approaches is
that they are very sensitive to the initialization and am@patationally expensive. I [67] graph cuts
have been used to extract these models or layers. After agnohbeed regions are determined using
two frames correspondences, these seed regions are festlextthanks to a graph cuts segmentation
method. The resulting initial regions are then merged iaje@ts according to motion similarities.
This method requires the scene to be induced by multipleapleegions having an apparent affine
motion. Other approaches aim at fitting a polynomial modedltdhe image measurements and
then factorizing this polynomial to obtain the parametdrgach 2D motion models (multi-body
factorization) [58]. It was adapted to both static and dyitasecenes[[60]. Recently, i [46], an
incremental approach to layer extraction has been intedlu€eature points are detected, tracked
and then merged into groups based on their motion. Objeetdetected incrementally when enough
evidence allows them to be distinguished from their backgdo
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6 Bugeau & Rerez

In [B2] a combination of background modeling with a layelhteicue is proposed. The layers are
called short-term backgrounds. The idea is to assign a tayeach moving object and to keep this
object as a single layer even when it stops moving.

Saliency based methods A last approach is to define moving objects as areas havirensaiotion.

In [64], salient motion was defined as motion that is likelyasult from a typical surveillance target
(e.g. person, vehicle). This definition was used [in1[65] and [56P&tect moving objects. The
assumption made is that an object with salient motion mavesiiapproximate consistent direction
during a time period. Therefore moving objects are seardseldcalized image regions that have
moved in the same direction during a time period [1d [56],abeumulation of flow motions is done
during 10 frames. A fusion of background modeling and saljemas proposed i [69]. A specificity
in this paper is that the background is only sparsely modatecbrners, and moving objects are then
found by the clustering of foreground corner trajectories.

1.2 Overview of the paper

In this paper, we are interested in challenging sequenagsioing complex motions, with possible
high amplitude and sudden changes in the background. For@gain the context of driver surveil-
lance, the motions visible through the windows are oftem harcharacterize. The “background” is
composed of both the passenger compartment and what iscbifl@irwindows. Furthermore, con-
trast between background and interesting objects (facejd)aan be low. Also, the motion of the
"interesting” moving objects can be close to the one of thevingpbackground. For example, on
driver sequences, depending on the speed of the car, an angpfgun the steering wheel to the face
can have the same speed as some trees behind the windowy,REimakequences we consider can
be shot by a moving camera. Few frames of such a sequenceava shfigure[l. Most existing
methods would fail to detect only the moving arm becauseldfialmotions present behind the win-
dow and the low contrast between the harm and the guardrail wOrk does not aim at modeling
the background or at finding every layer but only at deteatiroying foreground objects. We define
these objects as groups of pixels salient for both motionatdr. Our algorithm can be divided
in three main steps. First, in sectibh 2, the camera moti@oisputed and a subgrid of “moving”
pixels,i.e not belonging to camera motion, is selected. A descriptdefined to characterize each
points of this grid. They are then merged into clusters tast for both color and motion (section
B), using mean shift filtering algorithr iL4]. From the ckrst, the complete pixel-wise segmentation
of moving objects is found using a MAP-MRF framework (secf@). Finally, sectiol]5 presents
some experimental results.
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Detection and segmentation of moving objects in complexesce 7

Figure 1: Exemple of a driver sequence

2 Point selection and description

In this paper, similarly to[T685] and[56], the moving objedistection will only be performed on
several points and their neighborhood. We have prefereddmputational lightness and the noise
robustness of these methods to the accuracy of the pixel-approaches. The first step of our
algorithm is then to build a sub-grid of moving pixels and étest a descriptor for these pixels. This
section is organized as follows. First we explain what aeerttoving pixels. Next we discuss the
construction of the grid of points and finally we present thlested descriptors.

First, let us introduce the notations. In all the pagewill denote the set ofV pixels of the frame
I, at timet from an input sequence of images. To each pixel (z,y) of P is associated a feature
vectorz,(s). In case of color sequences(s) = (zEG) (), z§C>(s), ng) (s)), wherezga)(s) isaone
dimensional vector of grayscale valux%,c) (s) a 3-dimensional vector of color values azw[) (s)a
2-dimensional vector characterizing the apparent mofidre computation oEEM)(s) is explained
in sectiol2311 and the one mﬁc)(s) in sectioZ3P. In case of grayscale sequences, the éeatur
vector only contains two elements;(s) = (z.“(s), 2™ (s)).

2.1 Sensor motion

Moving pixels are the pixels not belonging to the camera amtiWe only work on moving pixels
because we aim at detecting moving objects. We assume thaipirarent motion induced by the
physical motion of the camera is dominant in the image (am@rgpus movements in the image
field, it is the one that concerns the larger number of pixats) is well approximated by a 2D affine
motion field. The parametric flow vecter,(s) at locations = (z, y) reads:

o)z ()
Gy as ae Yy
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8 Bugeau & Rerez

Different methods are available to estimate the parametessich a model[J6[~22,51]. We
use the robust real-time multiresolution algorithm desdiin [42]. The parameter vectér =
(a1,a2,as, a4, as, ag) is estimated between two consecutive frarfies and!; as follows:

0= arg meinz p(zgfi(s +wp(s)) — Z,gG)(S) + Ct) ) (2

wherep(z) is an M-estimator and; is a global intensity shift that accounts for global illuration
changes. The minimization is done through a multiscale &alesvton method that yields a suc-
cession of reweighted least-squares problems. The agyxili@ight maps of the M-estimator will be
denoted asV; (W:(s) € [0,1]). The final map indicates if a pixel participates to the firabust
motion estimatel{’;(s) close to 1) or is more considered as an outlié% (s) close to 0). A simple
pixel-wise motion detector can be built using this map. Agpix considered as "moving” at timef

it is an outlier to the dominant motion at timeandt — 1:

M (S) . 1if Wt(S + We_’tfl(s))) + Wtfl(S) = 0,
") o else.

3)

If M:(s) = 0, pixel s is considered as a motionless pixel, and it will not be usethfe clustering
step of the algorithm. The choice of pure outliers to domimaation for moving pixels can seem
drastic. However experiments have shown that no movingeblgeost using such method. This
choice has been made to avoid false labeling of pixels. Eurtbre, it permits to deal with occlusion
and disocclusion of the scene background. Fifflire 2 showsut o this pixel-wise motion detector.
Itis easy to see that this preliminary step is not sufficierttdtect interesting moving objects. In this
sequence, we are willing to detect the water skier. The matiche water is complex, not repetitive,
and so can not be estimated directly. A drawback of dominasitam estimation can appear in the
presence of large uniform objects moving slowly. Inner jooit of such objects often appear to
belong to the dominant motion (see the person on figlire 3).a@arithm will handle this loss of
moving pixels thanks to the segmentation step where theaytigel grid is considered (see section

B).

2.2 Grid construction

The goal of the algorithm is to build groups of pixels coraigtboth for motion and for some pho-

tometric or colorimetric features. These groups must spoad to interesting moving objects. In

[69], moving objects are found using corners, detected thighHarris corner detector. The authors
justify the use of corners by claiming that a moving objeatteins a large number of corners. In

our experiments, we have observed that the number of cobeévaging to a moving object can be

much lower than the number of corners belonging to the backyt (figurdl). Besides, if variations

in the background are fast and if parallax changes, the nuoftmrners and their neighborhoods
can be signicatively different from one frame to the oth@mally, corner detection adds one stage of
calculation and requires two thresholds.

INRIA



Detection and segmentation of moving objects in complexesce 9

Figure 2: Motion maps for the water skier sequence. (a)r(itial grayscale frames 107 to 109. (d)
Displaced frame difference at tinte (e) Displaced frame difference at time- 1. (f) ResultM,; of
the pixel-wise motion detector.

(b)

Figure 3: Motion maps for the person walking in front of wageguence. (a) Initial grayscale frame
(b) ResultM; of the pixel-wise motion detector.

As noa priori is assumed on the shape and texture of objects, we have ctwogsa points of
arbitrary type. Hence, we only use a grid of points regulapsead on the image. As the purpose is
to detect moving objects, the simple pixel-wise motion d&tefrom previous subsection is used to
restrict this step to the grid subset:

g:{SZ(%,%),k:0~~-Ng,l:O~~-Ng|]V[t(s):1}, 4)

RR n° 6282



10 Bugeau & Rerez

Figure 4: Result of the Harris corner detector on frame léhefdriver sequence and frame 108 of
the water skier sequence.

wherew andh are the dimensions of the image aNg the size of the grid before pruning. We have
arbitrarily chosen to use the same number of points in thedxyeexes. The value of the parameter
Ng is important. It controls the balance between computatioost (regional methods) and accuracy
(local methods). Next step of the algorithm can become caatipmally expensive if the number of
points of the grid is too large. An important thing to notehiattNg may depend on the number of
“moving” pixels in the imagem = Y, ., M:(s). To limit the computational cost for clusters creation,
we fix the number of moving points teg (500 in our experiments) that will be approximatively kept
in further steps of the algorithm. The si2&; of the grid is then set adg = [\/w * h * ng/m],
where|e | is the integer part 0é.

2.3 Description of the selected points

Now that the points are chosen, the features that will be tsexeate clusters corresponding to
objects need to be defined. It is necessary to chose only feeviginant features. An object is
defined as a moving and compact area over which the valuespliadement and photometry are
nearly constant. Color is not sufficient because the canbretsveen an object and the background
can be small, nor is flow in case of similar motion between gedaitand the background. Hence
the descriptor is formed by three different groups of feegsurThe first group is composed of the
coordinates of the point. The second group contains itsanpénd the last one contains discriminant
photometric features.

2.3.1 Motion features

As we try to detect moving objects, an essential featureasdibplacement of the selected points.
Several types of methods exist for computing optical flow.oGeeviews are given i [3]4]. We
concentrate on the Lucas and Kanade algorithm [37], withharemental multiscale implementa-
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Detection and segmentation of moving objects in complexesce 11

tion. The reasons for such a choice are that we want an effiagproach and that we do not aim
at computing the flow on the whole image but only on severahigdiwhich are not particular fea-
ture points). In order to use classical notations, in thisseation/ denotes the intensity function,
I(z,y,t) is the intensity value at point= (z, y) and at timet, andd,, andd,, are the horizontal and
vertical components of the apparent displacement betwestarits andt + 1. The initial assump-
tions are that image intensities are approximatively amtatnder motion for at least a short period
of time and that motions are small:

Iz +dy,y+dy,t+1) > I(z,y,t) . (5)

Using a Taylor approximation, previous equation leads ¢datightness constancy equation:

oy a2 ©
This equation has two unknowns and is thus insufficientlyst@mned. This is the aperture problem:
edges parallel to the motion do not convey motion informmati@nly the motion component in the
direction of the local gradient of the intensity functiomdze computed. To find the optical flow some
additional constraint must be added. The solution of Lucad@nade is to use a local neighborhood
V(z,y) and to assume that the flow is constant in this small regioizefrs This leads to an over-
determined system of equations solved using a least squeamd. The flow is then obtained by

solving:

. oI oI oI 2
argmlr’tdmd ) Z |:_(x7,7ylat)dw + _(xiayi7t)dy + _(xiayi7t) . (7)
v Ox oy ot
(zi,y:)€V(2,y)

Unfortunately the associated 2x2 linear system is reguidneell conditioned only for "textured”
neighborhoods. Therefore we will not use the points for Wik intensity gradient is very low in
all the region. These points will not be considered in nexppstf the algorithm and are therefore left
apart from the grid:

ha Lh
Ng ' Ng

g

{s= (ljv_lgu %) | Mi(s) =1 & 3(ws,ys) € V( ) V@] #0} - @

The brightness constancy equation is only valid for smatiomo In order to access large motions,
an incremental multiscale approach can be used. A Gausgiamgl is derived from each image.
The optical flow constraint holds for coarsest scales of ffrarpids even when the motion is large.
Estimated motion for large scales are used as initial estisrfar lower scales.

The whole procedure can be applied, independently, to fferelt locations of any pixel set. No
spatial consistency is enforced over estimates at neigidptwrcations. We could instead have used
Horn and Schunk algorithni [R3] that adds a smoothness temegidarize over the whole image or
the robust estimation of Black and AnandBh [5] to get a be&mation. However these algorithms
are more computationally expensive and we do not aim at gavitense and very precise estimation
over the whole image.

RR n° 6282



12 Bugeau & Rerez

The computation of flow using gradient based methods failsnithe brightness constancy is not
satisfied and when a point does not move as its close neighlmaised, the two basic assumptions
are not valid in such cases. Instead of using a more robustadéd compute optical flow, we have
chosen to keep Lucas and Kanade algorithm, which is easygzinent, not expensive, robust to
noise, and we verify afterwards if the flow vectors are goodair To validate values of displace-
ment, a comparison is done between the neighborhood of pixelz, y) in image at timet (data
sampleX), and the neighborhood of the corresponding psiat (z + d.,y + d,) at timet + 1 (data
sampleY’). The linear relationship between intensity valueskodndY is often estimated by com-
puting the normalized cross correlationThis coefficient is also known as Pearson product-moment
correlation coefficient by statisticians. A value near Zedicates that the two samples are uncorre-
lated. Unfortunately, the correlation does not take intwoant the individual distributions o and
Y. Hence it is a poor statistics for deciding whether or not tigtributions are really correlated.

In statistics, a result is called significant if it is unlilggb have occurred by chance. Statistical
tests exist to assess this correlation. They are based opringipal notions: the null hypotheses
and the alpha risk (or fixed level testing). In 1928, Neymad Bearson[[41] argued that rather
than having a single hypothesis that should be rejected pritnis better to choose between two
hypotheses. One of them is the null hypothesis and the otfeeisathe alternative hypothesis. The
goal of statistical tests is then to decide if the null hysik should be rejected. An alpha risk can be
attached to the null hypothesis. This risk is defined as #gheafirejecting the null hypothesis when in
factitis true. Itis stated in terms of probability and c@mends to the confidence level of a statistical
test. In our case, the null hypothegéis asserts that the two data sampes&ndY are uncorrelated.

A statistical test related to the linear correlation is thecalled “p-value” (or observed signifi-
cance level). To get the p-value, the T-statisticsStudent’s statistigshas to be computed:

n—2
T = —— 9
W12 9)
The parameter is the size of the sampl& andY and~ the normalized cross correlation. A T-
statistics near zero is evidence under the null hypotheaiglere is no correlation between the two

samples. Assuming tha&f is true,T" is well represented by a Student’s distribution defined by:

_ 1 ’ v s
=m0 T 1

whereB is the beta function given by:
1
B(a,b) = B(b,a) = / 2711 —2)" lde . (11)
0

The p-value is finally the probability, when the null hypddfseis true, that the absolute value of the
T-statistics would exceed the alpha risk. It is equali(@Z’|). A small p-value means that the null
hypothesis is false and that the two data samples are inda&tlated. If one wants to limit t6% the
alpha risk, then data are assumed correlated if the p-valiesvier thar).05. For more information
on the theory and the implementation of the p-value, we teff5].

INRIA



Detection and segmentation of moving objects in complexesce 13

If the p-value obtained for a poiatis larger thar.05, the flow for this point is considered as non
valid. The points will then not be processed in next steps of the algorithmaliinrecalling that
s’ = (z +dy,y + dy), anew grid

kw L.h

G = {5 - (’“” ”l) | My(s) = 1& 3(ws, yi) € v(N—g, No

o ), IV I (i, )| # 0 & p-valug(s, ') < 0.05}

12)
is obtained with a flow vectozﬁM)(s) = (dy,d,) associated to each of its poinit The size of the
grid G will be denoted a$g|.

The influence of the p-value is shown on figlte 5.

() (9) (h)

Figure 5: Result of grid construction (second row) and assed motion fields (third row) on frame
16 of the driver sequence. (a) Original image. (b) Movingefsx (c) Final grid without flow vectors
validation (associated motion field is shown on image (f)l). Kinal grid obtained by a correlation
validation with correlation threshold at 0.5. (associatestion field is shown on image (g)). (e) Final
grid obtained by using the p-value (associated motion feekhbwn on image (h)).

RR n° 6282



14 Bugeau & Rerez

The first row shows the original image and the set of movinglgixThe second row shows the
final grid obtained without using a validation step (Fighl, 3vhen keeping only vector flows for
which the correlation coefficient is higher than 0.5 (Fidhdé and the final grid obtained with the p-
value test (FigurEl5e). The third row presents the assatimtgion fields, as estimated by multiscale
Lucas-Kanade technique at each point of the various gridds.pRrameters that yield these grids are
the following: the number of moving pixels is 10845, the size of the image is 240x320 and the
parameterNg is equal to 5. The grid finally contains 420 pixels when nodadion is used, 184
pixels for a correlation test and 277 with the use of p-valltee p-value enables to keep more points
than the correlation, especially important points on time af the driver.

2.3.2 Photometric features

The last features concern the photometry at selected to=atiThey are different for grayscale and
color sequences. To be robust to noise, the features areutechpver the neighborhood of each
point of the grid defined in previous subsection.

Grayscale sequences:

In case of grayscale sequences, the first photometric tettine intensity itself, and more precisely
the mean@(s) of the luminance on a 3x3 window around the paint (z,y). As the contrast
between the object and the background can be small, thisréeit not sufficient. Another interest-
ing information is the texture. A lot of definitions and chetexizations of texture can be found in
literature. Here it will be simply associated to the quandit the strength of edges present in the
studied area. The feature that we introduce to capture #eréeis the standard deviati(mlzi@ )

to the mean of the Laplacian of intensity on a 3x3 window atbtlve point. To include some simple
temporal consistency, we add image intensity and textuteegaat timet + 1 for the displaced point
s’ = s+ (dg,d,). Finally, for grayscale sequences, the descriptor at eadilidual valid point

s = (z,y) of the grid, indexed by (: = 1...|G]), is:
x® = (i, xy”, %), (13)
where
0 = (@) %D = (d,dy) s xP = @D (s), gAzic;)(S),E(s’), Tan® )

ands’ = (z + d.,y + dy).

Color sequences:

For color sequences, the information given by the threemélaiave appeared to be sufficient during
our experiments. Hence, no texture information will be atildéowever, we observed that the three
color channels RGB do not give the best representation ofnoages. Indeed, they are highly cor-
related and this representation is sensitive to illumorathanges. Therefore it is better to separate
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Detection and segmentation of moving objects in complexesce 15

the luminance and the chrominance informations. Furthegpmoost of our test sequences contain
human skin, which has a specific signature in the space ofihemcel[38, 53]. Therefore, it is inter-
esting to use a color system representing the chrominastasith of the classical RGB system. Most
chrominance spaces give the same results on skin deteBtigni this paper we use the YUV color
space. This choice proves appropriate for various types@iiences. Here again, to include some
simple temporal consistency, we add image 1 chrominance values of the corresponding point.
Finally, for color sequences, the descriptor at each iddii valid point indexed by (i = 1...|G|)
of the grid is:

x® = (xi”, x3”, %), (14)

where
i 7 7 C C
xV = (2,) %) = (ds,dy)  x$) = (207 (5), 201 (5)))

where the 3-dimensional color feature vector$? (s) = (Yi(s), Ui(s), Vi(s)).
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3 Clustering points: mean shift for mixed feature spaces

Now that a grid of valid points has been chosen and descnbedddress the problem of grouping
the points into clusters. Many data clustering methods baea described in the literature. A good
review on classic clustering techniques can be foundih. [2Xh appealing technique to extract
the clusters is the mean shift algorithm, which does notirego fix the (maximum) number of
clusters. On the other hand the kernel bandwidth and itseshape to be chosen or estimated for
each dimension.

3.1 Fixed bandwidth mean shift partitioning

Mean shiftis an iterative gradient ascent method used aidabe density modes of a cloud of points,
i.e. the local maximum of its density. This technique, which wa/rsoimmarize, is well described in
[T4].

Given a set ofr points{x”},_; ,, in the d-dimensional spac&?, the non-parametric density
estimation at each poigtis given by:

76 _n|H|1/2ZKH_1/2 -x)
(15)

T Zk 120 = x )] 2)

whereK is a kernel with associated profv’ceH is the bandwidth matrix ane, is a strictly positive
normalization constant which mak&gx) integrate to one. Introducing the notation

9(x) = —k'(x)
the density gradient reads:
Vi(x) =H" f(x) m(x) (16)
wherem is the "mean shift” vector,
S X g(JIH2(x —x@)|1?)
S g(H2x = x0)[2)
Using exactly this displacement vector at each step of aatite search guaranties convergence to
the local maximum of the density[i14]. Withcavariate Gaussian kernel, equatifnl(17) becomes
S x exp(—3D%(x,x, H))

) = e (I X0 ) X (19)

(17)

m(x) =

where
D?(x,x H) = (x — x)TH ! (x — x) (19)
is the Mahalanobis distance frogto x*).
A mode seeking algorithm, or mean shift filtering can be datiby iteratively computing the
mean shift vector. The final partition of the feature spa@bigined by grouping together all the data
points that converged to the same mode.
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3.2 Variable bandwidth mean shift

Usual mean shift procedures use a fixed bandwidth for all &te set. However, variable bandwidths
are essential when local characteristics of the data vgnjif&iantly across the feature space. Two
density kernel estimators have been introduced to takeaitttount a bandwidth that is not fixed for
each point[[61]. The first one is called "balloon estimatantianakes the bandwidth vary at each
estimation point. It was first introduced by Loftsgaarded @uensberry[36]. It is defined as:

J/‘\(x):—ZKH (x —x@)

- Z 7 K (G2 x)

whereH(x) is the bandiwth matrix varying at each estimation point. Whaeplied globally, this

(20)

estimator typically does not integrate to 1 and thus is Ugunalt itself a density, even wher is.

In [B4] the authors have investigated the degree of impr&rithat this estimator allows over fixed

kernel estimates. For data up to 3 dimensions, the impronessems to be very modest. However
the balloon estimator becomes very efficient as soon as timeuof dimensions becomes larger
than 3.

The second density kernel estimator is the "sample poiihastr” that makes the bandwidth
vary at each data point. In]b4] the advantages and drawldithis estimator have been studied. The
major advantages are that it is a density and that a panticitace of the bandwidth can considerably
reduce the bia§]22]. However, finding this value for muliise data is a hard problem not yet solved.
A disadvantage is that the estimate at a point may be infladebg@bservations very far away and
not just by points nearby. I [54] simulations have shown thia estimator has a very good behavior
for small-to-moderate sample sizes, but deterioratesiifopeance compared to fixed estimates as
the sample size grows.

In this paper we are working on data having more than 3 dino@ssiTherefore, we will concen-
trate only on the balloon estimator. The mean shift techmiggsing the balloon estimator has been
introduced in[[ID] for univariate and multivariate data.

3.3 Bandwidth selection for mean shift

A mode seeking algorithm can be derived by iteratively cotimgLand applying the mean shift vector.
The partition of the feature space is obtained by groupiggtieer all the data points whose associated
mean shift procedures converged to the same mode. Theygofilite results highly depends on the
choice of the bandwidth matrii.

The bandwidth selection can be based on statistical asalysask-oriented. Statistical methods
compute the best bandwidth by balancing the bias and thanagiof the density estimate. Task-
oriented methods rely on the stability of the feature spacttpning. In [I3] a method that combines
the two different approaches has been introduced. Thisadethbased on the maximization of the
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normalized mean shift vector. However, there is no thecaibtesult permitting to relate formally this
maximization to the quality of the clustering. [n]10], a inedl based on the task oriented stef of [13]
has been developed. It is dedicated to the variable bankwéléction in mixed multi-dimensional
spaces. Here we briefly remind its principle.

The main idea underlying this bandwidth selection methaldasif one cluster can be represented
by a normal distribution, then the best cluster is the onevfuch the normal distribution is the most
stable. If few points are added to the cluster or if some drepart, the associated distribution should
not change. Therefore by partitioning the data for severedigfined bandwidths, one can identify
the best bandwidth as the one that gave the most stabldquastit

Assume that thé-dimensional data can be decomposed as the Cartesian pajddéndepen-
dent spaces associated to different types of informaiog. (position, color), also called feature
spaces or domains, with dimensiénp = 1...P (Wherer:1 d, = d). The method in[[T0] pro-
poses to find iteratively for each feature spadie best bandwidthr!” for each estimation point
1. The iterative estimation of bandwidths is shown in algonfl. The final partition of the data
is obtained by applying a last time the mean shift partitigniising the balloon estimator with the
selected variable bandwidthg” = diag[Y},p=1...B].

The last point to discuss is how to choose the range of prestefiandwidths for our application
of moving object detection. It is obvious that this choic#uances the results. One could use a
large sample of bandwidths but this would be very expensith@number of mean shift partitioning
procedures would be very large. In our application of mowiigect detection the data space is
divided in P = 3 feature spaces: the position, the motion and the color. | lowalexperiments we
have selected the same predefined bandwidth matrices. IRredleature spaces we have taken
B, =9 bandwidths. For the position they depend on the size of tige gr

3b
O
! Ng( +Bl—1

h 3b
H = —(1
) 2 Ng( +Bl_1

) ,b=1...B; , (26)

whereB; is the number of predefined bandwidths for the first featuagsghere3; = 9). The range

of predefined matrices for color and motion is directly comegufrom images noises. We define
color, respectively motion, noises as the standard deviatver the whole grid of the color values
difference, respectively motion, between two neighbopnts of the grid. Introducingyg the set

of pairs of neighboring points of the gri@l |Vs| its cardinal, the mean and standard deviation vectors
are:

1 . ,
o= 2 K -x (27)
Vel ;. 5eve
and
1 ; »
Bo= | ar 22 (" =% =ap)? (28)
91 (i,j)eve
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Algorithm 1 Iterative estimation of mean shift bandwidths

Givenn data pointsx” = (x')),—1.p, i = 1...n. Given a set ofB, predefined bandwidths

MwP p=1...
Forp'=1,...,

B} for each feature spage the bandwidth selection is as follows.
P

e Evaluate the bandwidth at the partition level: Forval 1,..., B

1.

Forallp=1,...,P,p#p',i=1,...,n computef,’:

B b) -
{ =L Y ifp> g

. (21)
T else.

() —
H,) =

. Define{fi®" = diagf1{”,... . &Y HYAY ... HYb=1,...B,}

. Partition the data using the balloon mean shift partitign The result is® clusters

denoted as”,u = 1...k®. We introduce the functionthat associates the— ¢h data
point to its clusterz(i,b) = u < x® e c{?.

. Compute the normal representativiy..”, (") of each cluster using:

. 1 '
W= (1), Wit = o ) -
p=1... ICa”] i e(ity=u
and
, b . b 1 ; ;
=0~ (20) | wins(, - e S = u) e = )T (@3)
ile(i,b)=u

. Associate to each poirt” the mean."’) , and covarlancélsz) » Of the cluster it belongs

c(i,b)
to. Denotep** the corresponding normal distribution.

¢ Evaluate the bandwidth at the data level: For each pdint

1.

2.

Select the scali giving the most stable normal distribution by solving:
b =argmin_, 5 IS, ptm plrty) (24)

wherelJS is the Jensen Shanon divergence defined by:

1 EYi =0,
JS (i,r—1) _(i,7)  (¢,7+1) ] 3 =7— c(i
(p " p )= 3lo 0 |
b=r—1 c(i,b) (25)
1 r+1 r+1 r+1 r+1
(b) (b) T (b) - (b) (b)
3 Z Fe(iby — Z Fe(i b)) Z Ec(i,b)) Fe(ib) — Z Fe(iby)
b=r—1 b r—1 b r—1 b r—1

The best bandwidtit; is Hﬁfi/).
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Some experimentations have shown the range of predefinettesator color p = 2) and motion
(p = 3) can be defined as

1.5b
B,—1

HY) = 8,(0.5+ Mg, b=1...B, , (29)

wherel,, is the identity matrix of sizel,. The clustering step decomposes the data into several
clusters, each corresponding to a moving object or a movaryg piNe retain only large enough
clusters €.g, with more than 15 grid points). Finally we obtdipclustersC., ¢, u = 1... k.
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4 Segmenting the objects

In order to get the complete masks of objects, a final stepdessary. Segmenting the object associ-
ated to a given cluster amounts to assigning a lahelither “background” or “object”, to each pixel

s of the image. This problem can be reformulated into the gaplramework as a bi-partitioning
problem. In recent years graph cuts have been increasisgly in image segmentation. The reason
for such a popularity is that the exact maximarposteriori(MAP) of a two label pairwise Markov
Random Field (MRF) can be computed in polynomial time usimg-aut/max-flow algorithmd120].

In seminal papei]9], Boykoet al. introduce an iterative foreground/background segmenrtays-
tem based on this principle, using hard constraints pravitiethe user. Here we can directly learn
some properties of the object from the points belongingstalitster. These points are called inliers.
The energy function is defined so that its minimum shouldespond to a good segmentation, in the
sense that it is guided both by the motion and color of theisl{observed foreground) and by distri-
butions of color and motion built on the whole image. Alsoubdaries of the segmentations should
preferably coincide with large photometric gradients. Séhearious specifications are captured by
the following objective function:

E(L) = =7 Y n(Pr(z{(s)]1s)) — vm Y In(Pr(z{"" (s)|1s))+

seP seg
(30)
Iz (s) — 29 ()2 1
A _ 16,1,
(omyey exp ( o2 ) dist(s,r) ( ( )

whereL is the set of all the labels, s € P, dist is a distance measure, ands the set of unordered
pairs(s,r) of neighboring elements gf. The parameters,,, 7., A are some weight constants dis-
cussed below. Since we are segmenting each object indemtgndeere is one such energy function
to be minimized per cluster.

The two first terms of the cost function are based on pixebwi®deling of color and motion
features distributions. Motion term only concerns the poof the grid. For both color and motion,
the object distribution is a mixture of Gaussians on theeisli For the background, the mixture is
built as follows. For color it is computed on the whole imadgeaneas for motion it is only computed
on the grid. In[[¥], authors have shown that it is possibleotaé some pixels to belong to the object
or to the background. Here we force inliers to belong to thieatb This is done by rewriting the
energy function as:

E (L) == Y. WP 6))—ym Y. Pz (s)]l)-

SE'P\Cu,t Seg\cu,t

(31)
3 (1+5127>§A 3 V{SQT})&(ZS, object’) + A S Vig,p(1 - 8(ls. 1)
SECu,¢ r|(s',r)eV (s,r)EV
i i i 1249 () -2 12y 1
whereu is the object or cluster we are trying to segmenteng,, = exp (——t———* ) Tt
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Because for motion we only consider points of the grid, wesetto set the parametersandy,,,
such thaty. = 1 and
TYm = Né (32)

This choice permits to give more influence to the points hguarvalid motion. Ify,, and~. were
equal, the motion would have only a very small influence tostgmentation result.
The parameter in the third energy term can be related to noisé [50]:

o =25 (2 (s) — 2, (r))?) (33)

where(.) denotes expectation over the whole image. The value of paeamhas not been really
studied in literature. To avoid a possible saturation obaidary edges in the max-flow procedure, we
fix here its value as:

=1 (Y Y mEEO) - wm Y Y P e)

TR o e S
(34)

After the minimization, all pixels labeled as “object” fortime final mask of the moving object.
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5 Experimental results

This section presents several experimental results oerdift kinds of sequences. These videos have
been shot by a moving or a non moving camera, and they exhithier different types of motions.
Also we tested our method on both grayscale and color segqaeRor all the tests, exactly the same
parameters were used. The size of the grid as well as thefpredenatrices for bandwidths selection
are set as detailed in the paper. This section is decompo$e iparts. First we present the results
obtained for both the clustering and the segmentation $tep.second part we see the final output
(set of all segmented objects) of our algorithm as a motidaeali®n mask in order to compare our
approach with other methods mainly based on backgroundimgde

5.1 Sequences taken by a moving camera

We start by showing the results of the clustering and the seg¢gtion on three different video se-

guences. For visualization purpose, an arbitrary indi@idwlor is assigned in each frame to each
segmented object. This color only depends on the arbitnagron which the objects were handled.

Hence there is no temporal consistency and the same objedieceepresented by different colors
along the sequence.

The two following results are on color sequences shot by aimgozamera. The first one is
the water skier sequence already discussed in sedtiion 2 sEgjuence is hard because a lot of
moving pixels are present in the water. On figiire 6 we show tiggnal images (first column), the
moving pixels maps (second column), the results of the etirgi steps (third column) and finally
the segmented moving objects (fourth column). The watezrskimost of the time well detected
and segmented while no objects are found on the water. Orrdheefat timet = 124, the skier is
not detected since, at this instant, his apparent motiomi¢as to the dominant motion estimated on
the scene (see the mask of moving pixels). Note also thateeame frame, part of the water was
detected as a moving object at the end of the clustering $ta@p.happened several times during the
sequence. However most of the time there is no correspomaaving object. The reason is that the
water occupies a large part of the image, making the prabatilbelong to the background almost
the same as the one to belong to the object. At the end of tligyemeénimization, all the pixels in the
water are labeled as background, except for the inliersbes forced to belong to the object. These
inliers are only visible by zooming on the segmentation imatnh frame number 214, the cluster
covers both the skin (arm, face, legs) and the body of tha.sKikis comes from the automatic
bandwidth selection for the mean shift partitioning. Theothinance values corresponding to these
different parts are very close. However it is not the caseterY channel, corresponding to the
intensity. The range of predefined bandwidths we are usitegge, and the preferred bandwidth for
the intensity turned out to be large.
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The next sequence is the difficult driver sequence presémtbe introduction. In this sequence
we have to deal with the high dynamic background (behind thelow), the low contrast between the
shirt and the guardrail, some drastic illumination chandesthermore the motion of the hand and
the trees behind the window are sometimes rather similag.clirsters corresponding to the moving
objects and the segmentations can be seen on fijure 7. Déwpitember of moving pixels found
behind the window, no objects are detected in this part ofittagje. The hand is very well detected
in the three frames shown. However the arm is not detecteldeitast frame because not enough
moving pixels with similar motion are found. Unfortunatelyart of the passenger compartment and
the guardrail are detected as moving objects. The clustergifthere were small but as there is no
strong enough contours, the segmentation spills over. \lievieghat detecting this area is not such a
big problem. Indeed, itis not moving during several sudeedsames. Hence, adding some temporal
consistency and/or tracking that would reject static digjaould probably allow the removal of such
spurious detection. On figuk& 8, we show another part of gsisnce with a different background.
The results obtained, although not perfect, are rathereaging for such a difficult sequence.

The last results presented in this subsection were obtainedgrayscale sequence with a non
moving camera showing some cars and pedestrians movingtieet.s The difficulty here comes
from the high level of noise and the low contrast present@litie sequence. Furthermore, there
is a large number of small moving objects. If, for these reasthe segmentation (not shown) are
disappointing, the detected clusters are nonetheleseatileg. In figurd® we show the bounding
boxes corresponding to these clusters. Another difficatedl by the segmentation part lies in the
small number of pixels available in each cluster for leagrtime foreground distributions used in the
energy functions. Most of the largest pedestrians are tigted he one on the right and the middle
is not most of the time, because there are not enough movkadspuith valid optical flow vectors
on him. Also, some clusters corresponding to noise are soregtdetected. However, as there is
not any constancy in their detection, once again, a tempgoraistency or a tracking scheme would
probably flag these objects as false detections.

In this subsection we have shown promising results on thiféereht kinds of sequences. To
extend the validation of our method, comparisons with othetion detection methods are presented
in the sequel.

5.2 Comparison with other motion detection methods

We now compare our algorithm to the background modeling owktif Grimson and Stauffef 1]

and the non parametric background modeling of Elganehal. [I7]. We also show the masks of
moving pixels resulting from the robust estimation and tbhenpensation of the dominant motion
with the technique of Odobez and Boutheryl[42]. In order tongation detection results as binary
maps, all the objects segmented by our approach are set asotfing areas of the image (white
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pixels). Also note that the sequences used here were takafiixgd camera so that the background
modeling methods can be applied.

The first sequence is a grayscale sequence of a pedestrigingvial front of water (figurélo0).
This is not a very difficult sequence for our algorithm as ¢hare not many moving pixels detected
in the water (second row of figuEgl10). While our method dstacid segments well the person, the
bike and the small cars moving on the bridge, the other metdetect several moving pixels in the
water while there are many holes on the person masks. Théepnaif holes in the detection mask
(moving pixels) was mentioned in sectidn 2. Here they resoith the fact that the coat of the person
is not highly textured and the person is walking slowly. Desfhis lack of motion information at
places, the segmentation step enables to recover the wiigerpas one unique moving object.

The second sequence on which we compare our algorithm tesotha color sequence of two
pedestrians walking behind some waving trees. This segusiard because of the complex move-
ments of the trees and the frequent occlusions of the twampsrsGrimson and Stauffer's method
does not permit to distinguish the trees from the buildingibé. The results obtained by the non
parametric method and the detection of moving pixels me#itecimilar. These two methods do not
detect the buildings but find many spurious motions withia tirees. Our method also detects few
objects within the trees but the segmentation permits tp drost of them. The masks of objects ob-
tained by our algorithm are not perfect though. The partalusions lead to many high contours on
the pedestrians which stop the flow. Also, due to these oicelgsthe clusters are usually very small,
which does not permit to construct enough good distribgtiointhe interesting objects. Still the re-
sults obtained by our method, as compared to other motiettet techniques, are very promising.
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6 Conclusion

A new technique to detect and segment moving objects in caagynamic scenes shot by possibly
moving cameras has been presented in this paper. The hlgarén be divided into three main steps.
First, a set of points are selected and described in termelof and motion, then these points are
clustered according to their descriptors and finally a sedation is obtained from these clusters.
Each cluster corresponds to a moving area of the image. &aadient aspects of the contribution
can be emphasized. First we only work on “moving” pixels beliog to a grid regularly spread on
the whole image and with a motion estimate that passed at8tatitest. Second, we use position,
color and motion to describe each point. Third, we use a bbribandwidth mean shift using the
balloon estimator and an automatic bandwidth selectiondate the clusters. And finally, we use
sparse motion data in an optimization framework to get thed 8egmentations of moving objects.

Until now, we have segmented each object independently. rd/a@w trying to segment all the
objects jointly by using a multilabel energy function thatid be minimized using the-expansion
algorithm [89].

It is worth emphasizing that the parameters involved in thedipinary motion computations
(optic flow and parametric dominant motion) are fixed to th@esaalues in all experiments, while
the other parameters (for clustering and segmentatiorgugmenatically selected.

Finally, the proposed method does not make use of any teringmrsistency. We are now study-
ing the introduction of such a consistency either on a fraoarame basis or within a tracker whose
(re)initialization would rely on detection maps. To thatlewe proposed i [11] a first method to
combine the tracking and the segmentation phase.
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Original images Moving pixels maps Clusters Segmentedotdje

Figure 6: Results on the water skier sequence for frames2Z4 144, 214, 232, 236 and 242
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Original images Moving pixels maps Clusters Segmentedotdje

Figure 7: Results on the driver sequence for frames 15, 16, 17
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Original images Moving pixels maps Clusters Moving objects

Figure 8: Results on the driver sequence for frames 48, 49, 50
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Figure 9: Results on the traffic sequence. Bounding boxesteftted clusters are shown.
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Original images

Non parametrical metho@[1L7]

Our method

t=234 t =259 t=284

Figure 10: Detection masks on the person walking in frontatfensequence for different methods.
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L

Our method

t =108 t =168 t =235

Figure 11: Detection masks on the waving trees sequencéfferasht methods.
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