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Abstract: Detecting and segmenting moving objects in dynamic scenes is a hard but essential task in

a large number of applications such as surveillance. Most existing methods only give good results in

the case of persistent or slowly changing background, or if both the objects and the background can be

characterized by simple parametric motions. This paper aims at detecting and segmenting foreground

moving objects in the absence of such constraints. The sequences we consider have highly dynamic

backgrounds, illumination changes and low contrasts, and can have been shot by a moving camera.

Three main steps compose the proposed method. First, movingpoints are selected within a sub-grid

of image pixels. A descriptor is associated to each of these points. Clusters of points are then formed

using a variable bandwidth mean shift with automatic bandwidth selection. Finally, segmentation of

the object associated to a given cluster is performed using Graph cuts. Experiments and comparison

to other motion detection methods on challenging sequencesshow the performance of the proposed

method and its utility for video analysis in complex scenes.

Key-words: motion detection, segmentation, mean shift clustering, graph cuts



Détection et segmentation d’objets en mouvement dans des scènes

complexes

Résuḿe : De nombreuses applications en vision par ordinateur et en surveillance nécessitent la

détection et la segmentation des objets en mouvement. La plupart des méthodes existantes ne donnent

de bons résultats que pour des fonds statiques ou peu changeants, ou si le fond et les objets sont

rigides et ont un mouvement affine 2D. Le but de ce papier est dedirectement détecter les objets en

mouvement dans des séquences complexes n’ayant pas ces caractéristiques. Les vidéos considérées

ici ont un fond dynamique, avec de forts changements d’illumination et de faibles contrastes, et

peuvent avoir été prises par une caméra en mouvement. La méthode proposée se divise en trois étapes

principales. Tout d’abord un ensemble de points en mouvement est sélectionné parmi une grille

de pixels uniformément répartis sur toute l’image. Tous ces points sont associés à un descripteur.

La deuxième étape consiste à former des groupes de ces points représentant chacun un objet en

mouvement. Ces partitions sont obtenues par un algorithme mean shift à noyau variable avec une

sélection automatique de la taille du noyau. Enfin, à partir de ces groupes de points, la segmentation

des objets est donnée en minimisant une énergie par coupure de graphe. Des résultats et comparaisons

avec d’autres méthodes de segmentation de mouvement montrent l’efficacité de la méthode proposée.

Mots-clés : détection de mouvement, segmentation, partitionnement mean shift, coupure de graphe



Detection and segmentation of moving objects in complex scenes 3

Contents

1 Introduction 3

1.1 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3

1.2 Overview of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 6

2 Point selection and description 7

2.1 Sensor motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

2.2 Grid construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8

2.3 Description of the selected points . . . . . . . . . . . . . . . . . .. . . . . . . . . . 10

2.3.1 Motion features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.3.2 Photometric features . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 14

3 Clustering points: mean shift for mixed feature spaces 16

3.1 Fixed bandwidth mean shift partitioning . . . . . . . . . . . . .. . . . . . . . . . . 16

3.2 Variable bandwidth mean shift . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 17

3.3 Bandwidth selection for mean shift . . . . . . . . . . . . . . . . . .. . . . . . . . . 17

4 Segmenting the objects 21

5 Experimental results 23

5.1 Sequences taken by a moving camera . . . . . . . . . . . . . . . . . . .. . . . . . 23

5.2 Comparison with other motion detection methods . . . . . . .. . . . . . . . . . . . 24

6 Conclusion 26

1 Introduction

Detection of moving objects in sequences is an essential step for video analysis. It becomes a diffi-

cult task in the presence of a dynamic background. We are interested in very challenging sequences

containing a complex motion in the background. This motion can also have a high amplitude. Further-

more, contrast between background and interesting objectscan be small. Like in many applications

in video analysis, the algorithms have to be robust to illumination and point of view changes. The

last particularity about our sequences is that the camera taking the scene can move.

1.1 Existing methods

Different kinds of methods exist to solve the problem of motion detection and motion segmentation.

Good but incomplete reviews on motion detection methods canbe found in [39, 47]. Here, we divide

these methods into four categories: thresholding, background modeling, layers extraction and finally
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4 Bugeau & Ṕerez

saliency based methods.

Tresholding methods First works on motion detection were based on adjacent frames difference

[28]. The most obvious algorithm is to simply threshold the difference image. The choice of this

threshold highly depends on the sequence, its noise, its motion. Furthermore there is no reason for

this value to be constant on the whole image. Indeed, different objects and motions give different

variations of luminosity. Many methods have been developedto decide whether or not a pixel has

moved. The decision can be directly made independently on each pixel [35] or on small blocks of

pixels [18]. With independent pixel-wise detections, detection maps are usually corrupted by holes

in the mask of moving objects and false detections due to noise. These errors can be attenuated us-

ing regularization constraints and contextual information via Markov Random Fields [1]. In [43],

Markov Random fields are applied after a step of motion compensation. This step is described in

section 2. This method is well adapted to videos taken by a moving camera. The decision rule in

many change detection algorithms is cast as a statistical test hypotheses [25]. More complex methods

are proposed in [49] for modeling the spatial distribution of either noise or signal and selecting the

appropriate threshold. In [58] ana contrariomethod is proposed. It is based on a perceptual grouping

principle named the Helmholtz principle. It consists in defining an image model in the absence of

moving objects instead of modeling the moving objects.

Background modeling and subtraction methods Methods based on adjacent frame difference are

mostly sensitive to noise and to illuminations changes. When the number of frames in the sequence is

high and there is not much change between consecutive frames, another solution to motion detection

is background modeling. This technique is routinely used inthe context of surveillance applications,

when the camera is fixed. Background modeling methods can be classified as predictive or non

predictive methods. Non-predictive methods build a probability density function of the intensity at

an individual pixel. In static environment, the statistical distribution of a pixel can be represented by a

single Gaussian [12] [26] [30]. The foreground pixels are determined as those for which the intensity

value is far from the mean background model and are clusteredinto objects. A variable number of

Gaussian distributions corresponding to each different foreground object can be added. It was used

by [24] for generic objects and by [66] for people tracking. In the presence of dynamic background

the use of a single Gaussian becomes inappropriate and a mixture of several Gaussians is preferred

to model the background [19, 21]. When changes in the background are too fast, the variance of

the Gaussians becomes too large and non parametric approaches are more suited. In [17], Gaussian

kernels calculated on the past frames are used to model the density at a particular pixel. Contrary

to previous approaches, this method addresses the uncertainty of spatial location. Until recently

methods were almost all based on photometric properties. A lot of outdoor scenes exhibit a persistent

INRIA



Detection and segmentation of moving objects in complex scenes 5

motion which is well modeled by optical flow and a non parametric algorithm that combines color

and flow features can be used [40]. As optical flow can not be computed when there is no intensity

gradient, the authors have chosen to use kernels with variable bandwidth. In [48] the authors extended

a statistical background modeling technique to cope with non stationary camera. The current image

is registered to the estimated background image using an affine or projective transformation. The

foreground information can also be used as in [44] in which the background and foreground maps are

forced to be a Markov random field. All these pixel-wise approaches allow an accurate detection of

moving objects but are memory and possibly computationallyexpensive. Also, they can be sensitive

to noise and they do not take into account spatial correlation. Spatial consistency can be added [52]

with a MAP-MRF modeling of both foreground and background. This method has been extended to

novelty detection in [38].

Predictive methods use a dynamical model to predict the value of a pixel from previous observa-

tions. A Kalman filter based approach that models the dynamics of the intensity at a particular pixel

can be used [31, 34]. In [57] an algorithm called wallflower isdescribed. It uses a simpler version

of the Kalman filter calledWeiner filterto predict a pixel’s current value from itsk previous values.

Pixels whose prediction error is high are classified as changed pixels. Recent methods are based on

more complicated models. For example, in [16] and [68], an autoregressive model was proposed to

capture background properties.

Background subtraction and tresholding methods are a preliminary step to moving object detec-

tion and subsequent processing is necessary to get the masksof moving objects.

Layer approaches Motion segmentation can be seen as the problem of fitting a collection of motion

models to the spatio-temporal image data. This leads to the layer approach [15] that tries to fit a

mixture of motion models to the entire image. Layers are thenfound by associating each pixel to the

model it belongs to. In many papers [2, 29, 62, 63] a mixture ofprobabilistic models is iteratively

built with an Expectation-Maximization algorithm (EM). A major drawback of such approaches is

that they are very sensitive to the initialization and are computationally expensive. In [67] graph cuts

have been used to extract these models or layers. After a number of seed regions are determined using

two frames correspondences, these seed regions are first extended thanks to a graph cuts segmentation

method. The resulting initial regions are then merged into layers according to motion similarities.

This method requires the scene to be induced by multiple planar regions having an apparent affine

motion. Other approaches aim at fitting a polynomial model toall the image measurements and

then factorizing this polynomial to obtain the parameters of each 2D motion models (multi-body

factorization) [59]. It was adapted to both static and dynamic scenes [60]. Recently, in [46], an

incremental approach to layer extraction has been introduced. Feature points are detected, tracked

and then merged into groups based on their motion. Objects are detected incrementally when enough

evidence allows them to be distinguished from their background.

RR n° 6282



6 Bugeau & Ṕerez

In [32] a combination of background modeling with a layer technique is proposed. The layers are

called short-term backgrounds. The idea is to assign a layerto each moving object and to keep this

object as a single layer even when it stops moving.

Saliency based methods A last approach is to define moving objects as areas having salient motion.

In [64], salient motion was defined as motion that is likely toresult from a typical surveillance target

(e.g. person, vehicle). This definition was used in [65] and [56] todetect moving objects. The

assumption made is that an object with salient motion moves in an approximate consistent direction

during a time period. Therefore moving objects are searchedas localized image regions that have

moved in the same direction during a time period. In [56], theaccumulation of flow motions is done

during 10 frames. A fusion of background modeling and saliency was proposed in [69]. A specificity

in this paper is that the background is only sparsely modeledon corners, and moving objects are then

found by the clustering of foreground corner trajectories.

1.2 Overview of the paper

In this paper, we are interested in challenging sequences containing complex motions, with possible

high amplitude and sudden changes in the background. For example, in the context of driver surveil-

lance, the motions visible through the windows are often hard to characterize. The “background” is

composed of both the passenger compartment and what is behind the windows. Furthermore, con-

trast between background and interesting objects (face, hands) can be low. Also, the motion of the

”interesting” moving objects can be close to the one of the moving background. For example, on

driver sequences, depending on the speed of the car, an arm going from the steering wheel to the face

can have the same speed as some trees behind the window. Finally, the sequences we consider can

be shot by a moving camera. Few frames of such a sequence are shown in figure 1. Most existing

methods would fail to detect only the moving arm because of all the motions present behind the win-

dow and the low contrast between the harm and the guardrail. Our work does not aim at modeling

the background or at finding every layer but only at detectingmoving foreground objects. We define

these objects as groups of pixels salient for both motion andcolor. Our algorithm can be divided

in three main steps. First, in section 2, the camera motion iscomputed and a subgrid of “moving”

pixels, i.e not belonging to camera motion, is selected. A descriptor isdefined to characterize each

points of this grid. They are then merged into clusters consistent for both color and motion (section

3), using mean shift filtering algorithm [14]. From the clusters, the complete pixel-wise segmentation

of moving objects is found using a MAP-MRF framework (section 4). Finally, section 5 presents

some experimental results.

INRIA
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t = 15 t = 16 t = 17

Figure 1: Exemple of a driver sequence

2 Point selection and description

In this paper, similarly to [65] and [56], the moving objectsdetection will only be performed on

several points and their neighborhood. We have preferred the computational lightness and the noise

robustness of these methods to the accuracy of the pixel-wise approaches. The first step of our

algorithm is then to build a sub-grid of moving pixels and to select a descriptor for these pixels. This

section is organized as follows. First we explain what are the moving pixels. Next we discuss the

construction of the grid of points and finally we present the selected descriptors.

First, let us introduce the notations. In all the paper,P will denote the set ofN pixels of the frame

It at timet from an input sequence of images. To each pixels = (x, y) of P is associated a feature

vectorzt(s). In case of color sequences,zt(s) = (z
(G)
t (s), z

(C)
t (s), z

(M)
t (s)), wherez(G)

t (s) is a one

dimensional vector of grayscale value,z
(C)
t (s) a 3-dimensional vector of color values andz

(M)
t (s) a

2-dimensional vector characterizing the apparent motion.The computation ofz(M)
t (s) is explained

in section 2.3.1 and the one ofz
(C)
t (s) in section 2.3.2. In case of grayscale sequences, the feature

vector only contains two elements:zt(s) = (z
(G)
t (s), z

(M)
t (s)).

2.1 Sensor motion

Moving pixels are the pixels not belonging to the camera motion. We only work on moving pixels

because we aim at detecting moving objects. We assume that the apparent motion induced by the

physical motion of the camera is dominant in the image (amongvarious movements in the image

field, it is the one that concerns the larger number of pixels)and is well approximated by a 2D affine

motion field. The parametric flow vectorwθ(s) at locations = (x, y) reads:

wθ(s) =

(
a1

a4

)
+

(
a2 a3

a5 a6

)
.

(
x

y

)
. (1)
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8 Bugeau & Ṕerez

Different methods are available to estimate the parametersof such a model [6, 42, 51]. We

use the robust real-time multiresolution algorithm described in [42]. The parameter vectorθ =

(a1, a2, a3, a4, a5, a6) is estimated between two consecutive framesIt+1 andIt as follows:

θ̂ = arg min
θ

∑

s

ρ
(
z
(G)
t+1(s + wθ(s)) − z

(G)
t (s) + ζt

)
, (2)

whereρ(x) is an M-estimator andζt is a global intensity shift that accounts for global illumination

changes. The minimization is done through a multiscale Gauss-Newton method that yields a suc-

cession of reweighted least-squares problems. The auxiliary weight maps of the M-estimator will be

denoted asWt (Wt(s) ∈ [0, 1]). The final map indicates if a pixel participates to the final robust

motion estimate (Wt(s) close to 1) or is more considered as an outlier (Wt(s) close to 0). A simple

pixel-wise motion detector can be built using this map. A pixel is considered as ”moving” at timet if

it is an outlier to the dominant motion at timest andt − 1:

Mt(s) =

{
1 if Wt(s + wθ,t−1(s))) + Wt−1(s) = 0,

0 else .
(3)

If Mt(s) = 0, pixels is considered as a motionless pixel, and it will not be used for the clustering

step of the algorithm. The choice of pure outliers to dominant motion for moving pixels can seem

drastic. However experiments have shown that no moving object is lost using such method. This

choice has been made to avoid false labeling of pixels. Furthermore, it permits to deal with occlusion

and disocclusion of the scene background. Figure 2 shows a result of this pixel-wise motion detector.

It is easy to see that this preliminary step is not sufficient to detect interesting moving objects. In this

sequence, we are willing to detect the water skier. The motion in the water is complex, not repetitive,

and so can not be estimated directly. A drawback of dominant motion estimation can appear in the

presence of large uniform objects moving slowly. Inner portions of such objects often appear to

belong to the dominant motion (see the person on figure 3). Ouralgorithm will handle this loss of

moving pixels thanks to the segmentation step where the whole pixel grid is considered (see section

4).

2.2 Grid construction

The goal of the algorithm is to build groups of pixels consistent both for motion and for some pho-

tometric or colorimetric features. These groups must correspond to interesting moving objects. In

[69], moving objects are found using corners, detected withthe Harris corner detector. The authors

justify the use of corners by claiming that a moving object contains a large number of corners. In

our experiments, we have observed that the number of cornersbelonging to a moving object can be

much lower than the number of corners belonging to the background (figure 4). Besides, if variations

in the background are fast and if parallax changes, the number of corners and their neighborhoods

can be signicatively different from one frame to the other. Finally, corner detection adds one stage of

calculation and requires two thresholds.

INRIA
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(a) (b) (c)

(d) (e) (f)

Figure 2: Motion maps for the water skier sequence. (a)-(c) Initial grayscale frames 107 to 109. (d)

Displaced frame difference at timet. (e) Displaced frame difference at timet + 1. (f) ResultMt of

the pixel-wise motion detector.

(a) (b)

Figure 3: Motion maps for the person walking in front of watersequence. (a) Initial grayscale frame

(b) ResultMt of the pixel-wise motion detector.

As noa priori is assumed on the shape and texture of objects, we have chosento use points of

arbitrary type. Hence, we only use a grid of points regularlyspread on the image. As the purpose is

to detect moving objects, the simple pixel-wise motion detector from previous subsection is used to

restrict this step to the grid subset:

G =
{

s =
(k.w

NG
,

l.h

NG

)
, k = 0 · · ·NG , l = 0 · · ·NG | Mt(s) = 1

}
, (4)
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10 Bugeau & Ṕerez

Figure 4: Result of the Harris corner detector on frame 16 of the driver sequence and frame 108 of

the water skier sequence.

wherew andh are the dimensions of the image andN2
G the size of the grid before pruning. We have

arbitrarily chosen to use the same number of points in the x and y axes. The value of the parameter

NG is important. It controls the balance between computational cost (regional methods) and accuracy

(local methods). Next step of the algorithm can become computationally expensive if the number of

points of the grid is too large. An important thing to note is thatNG may depend on the numberm of

“moving” pixels in the image,m =
∑

s∈P Mt(s). To limit the computational cost for clusters creation,

we fix the number of moving points tonG (500 in our experiments) that will be approximatively kept

in further steps of the algorithm. The sizeNG of the grid is then set asNG = ⌊
√

w ∗ h ∗ nG/m⌋,
where⌊•⌋ is the integer part of•.

2.3 Description of the selected points

Now that the points are chosen, the features that will be usedto create clusters corresponding to

objects need to be defined. It is necessary to chose only few discriminant features. An object is

defined as a moving and compact area over which the values of displacement and photometry are

nearly constant. Color is not sufficient because the contrast between an object and the background

can be small, nor is flow in case of similar motion between an object and the background. Hence

the descriptor is formed by three different groups of features. The first group is composed of the

coordinates of the point. The second group contains its motion, and the last one contains discriminant

photometric features.

2.3.1 Motion features

As we try to detect moving objects, an essential feature is the displacement of the selected points.

Several types of methods exist for computing optical flow. Good reviews are given in [3, 4]. We

concentrate on the Lucas and Kanade algorithm [37], with an incremental multiscale implementa-

INRIA



Detection and segmentation of moving objects in complex scenes 11

tion. The reasons for such a choice are that we want an efficient approach and that we do not aim

at computing the flow on the whole image but only on several points (which are not particular fea-

ture points). In order to use classical notations, in this subsectionI denotes the intensity function,

I(x, y, t) is the intensity value at points = (x, y) and at timet, anddx anddy are the horizontal and

vertical components of the apparent displacement between instantst andt + 1. The initial assump-

tions are that image intensities are approximatively constant under motion for at least a short period

of time and that motions are small:

I(x + dx, y + dy, t + 1) ≃ I(x, y, t) . (5)

Using a Taylor approximation, previous equation leads to the brightness constancy equation:

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
= 0 . (6)

This equation has two unknowns and is thus insufficiently constrained. This is the aperture problem:

edges parallel to the motion do not convey motion information. Only the motion component in the

direction of the local gradient of the intensity function can be computed. To find the optical flow some

additional constraint must be added. The solution of Lucas and Kanade is to use a local neighborhood

V(x, y) and to assume that the flow is constant in this small region of size n. This leads to an over-

determined system of equations solved using a least squaresmethod. The flow is then obtained by

solving:

argmin(dx,dy)

∑

(xi,yi)∈V(x,y)

[∂I

∂x
(xi, yi, t)dx +

∂I

∂y
(xi, yi, t)dy +

∂I

∂t
(xi, yi, t)

]2
. (7)

Unfortunately the associated 2x2 linear system is regular and well conditioned only for ”textured”

neighborhoods. Therefore we will not use the points for which the intensity gradient is very low in

all the region. These points will not be considered in next steps of the algorithm and are therefore left

apart from the grid:

G =
{
s =

(k.w

NG
,
l.h

NG

)
| Mt(s) = 1 & ∃(xi, yi) ∈ V

(k.w

NG
,

l.h

NG

)
, |∇I(xi, yi)| 6= 0

}
. (8)

The brightness constancy equation is only valid for small motion. In order to access large motions,

an incremental multiscale approach can be used. A Gaussian pyramid is derived from each image.

The optical flow constraint holds for coarsest scales of the pyramids even when the motion is large.

Estimated motion for large scales are used as initial estimates for lower scales.

The whole procedure can be applied, independently, to the different locations of any pixel set. No

spatial consistency is enforced over estimates at neighboring locations. We could instead have used

Horn and Schunk algorithm [23] that adds a smoothness term toregularize over the whole image or

the robust estimation of Black and Anandan [5] to get a betterestimation. However these algorithms

are more computationally expensive and we do not aim at having a dense and very precise estimation

over the whole image.

RR n° 6282



12 Bugeau & Ṕerez

The computation of flow using gradient based methods fails when the brightness constancy is not

satisfied and when a point does not move as its close neighbors. Indeed, the two basic assumptions

are not valid in such cases. Instead of using a more robust method to compute optical flow, we have

chosen to keep Lucas and Kanade algorithm, which is easy to implement, not expensive, robust to

noise, and we verify afterwards if the flow vectors are good ornot. To validate values of displace-

ment, a comparison is done between the neighborhood of pixels = (x, y) in image at timet (data

sampleX), and the neighborhood of the corresponding points′ = (x + dx, y + dy) at timet + 1 (data

sampleY ). The linear relationship between intensity values ofX andY is often estimated by com-

puting the normalized cross correlationγ. This coefficient is also known as Pearson product-moment

correlation coefficient by statisticians. A value near zeroindicates that the two samples are uncorre-

lated. Unfortunately, the correlation does not take into account the individual distributions ofX and

Y . Hence it is a poor statistics for deciding whether or not twodistributions are really correlated.

In statistics, a result is called significant if it is unlikely to have occurred by chance. Statistical

tests exist to assess this correlation. They are based on twoprincipal notions: the null hypotheses

and the alpha risk (or fixed level testing). In 1928, Neyman and Pearson [41] argued that rather

than having a single hypothesis that should be rejected or not, it is better to choose between two

hypotheses. One of them is the null hypothesis and the other one is the alternative hypothesis. The

goal of statistical tests is then to decide if the null hypothesis should be rejected. An alpha risk can be

attached to the null hypothesis. This risk is defined as the risk of rejecting the null hypothesis when in

fact it is true. It is stated in terms of probability and corresponds to the confidence level of a statistical

test. In our case, the null hypothesisH0 asserts that the two data samplesX andY are uncorrelated.

A statistical test related to the linear correlation is the so-called “p-value” (or observed signifi-

cance level). To get the p-value, the T-statistics (orStudent’s statistics) has to be computed:

T = γ

√
n − 2

1 − γ2
. (9)

The parametern is the size of the sampleX andY andγ the normalized cross correlation. A T-

statistics near zero is evidence under the null hypothesis that there is no correlation between the two

samples. Assuming thatH0 is true,T is well represented by a Student’s distribution defined by:

A(x) =
1√

n − 2 B(1
2 , n−2

2 )

∫ x

−x

(
1 +

y2

n − 2

) 3−n
2 dy , (10)

whereB is the beta function given by:

B(a, b) = B(b, a) =

∫ 1

0

xa−1(1 − x)b−1dx . (11)

The p-value is finally the probability, when the null hypothesis is true, that the absolute value of the

T-statistics would exceed the alpha risk. It is equal toA(|T |). A small p-value means that the null

hypothesis is false and that the two data samples are in fact correlated. If one wants to limit to5% the

alpha risk, then data are assumed correlated if the p-value is lower than0.05. For more information

on the theory and the implementation of the p-value, we referto [45].

INRIA
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If the p-value obtained for a points is larger than0.05, the flow for this point is considered as non

valid. The points will then not be processed in next steps of the algorithm. Finally, recalling that

s′ = (x + dx, y + dy), a new grid

G =
{

s =
(k.w

NG
,

l.h

NG

)
|Mt(s) = 1 & ∃(xi, yi) ∈ V

(k.w

NG
,

l.h

NG

)
, |∇I(xi, yi)| 6= 0 & p-value(s, s′) < 0.05

}

(12)

is obtained with a flow vectorz(M)
t (s) = (dx, dy) associated to each of its points. The size of the

gridG will be denoted as|G|.
The influence of the p-value is shown on figure 5.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5: Result of grid construction (second row) and associated motion fields (third row) on frame

16 of the driver sequence. (a) Original image. (b) Moving pixels. (c) Final grid without flow vectors

validation (associated motion field is shown on image (f)). (d) Final grid obtained by a correlation

validation with correlation threshold at 0.5. (associatedmotion field is shown on image (g)). (e) Final

grid obtained by using the p-value (associated motion field is shown on image (h)).
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The first row shows the original image and the set of moving pixels. The second row shows the

final grid obtained without using a validation step (Figure 5c), when keeping only vector flows for

which the correlation coefficient is higher than 0.5 (Figure5d) and the final grid obtained with the p-

value test (Figure 5e). The third row presents the associated motion fields, as estimated by multiscale

Lucas-Kanade technique at each point of the various grids. The parameters that yield these grids are

the following: the number of moving pixelsm is 10845, the size of the image is 240x320 and the

parameterNG is equal to 5. The grid finally contains 420 pixels when no validation is used, 184

pixels for a correlation test and 277 with the use of p-value.The p-value enables to keep more points

than the correlation, especially important points on the arm of the driver.

2.3.2 Photometric features

The last features concern the photometry at selected locations. They are different for grayscale and

color sequences. To be robust to noise, the features are computed over the neighborhood of each

point of the grid defined in previous subsection.

Grayscale sequences:

In case of grayscale sequences, the first photometric feature is the intensity itself, and more precisely

the meanz(G)
t (s) of the luminance on a 3x3 window around the points = (x, y). As the contrast

between the object and the background can be small, this feature is not sufficient. Another interest-

ing information is the texture. A lot of definitions and characterizations of texture can be found in

literature. Here it will be simply associated to the quantity or the strength of edges present in the

studied area. The feature that we introduce to capture the texture is the standard deviationσ
∆z

(G)
t (s)

to the mean of the Laplacian of intensity on a 3x3 window around the point. To include some simple

temporal consistency, we add image intensity and texture values at timet + 1 for the displaced point

s′ = s + (dx, dy). Finally, for grayscale sequences, the descriptor at each individual valid point

s = (x, y) of the grid, indexed byi (i = 1 . . . |G|), is:

x
(i) = (x

(i)
1 ,x

(i)
2 ,x

(i)
3 ), (13)

where

x
(i)
1 = (x, y) , x(i)

2 = (dx, dy) , x(i)
3 = (z

(G)
t (s), σ

∆z
(G)
t (s)

, z
(G)
t+1(s

′), σ
∆z

(G)
t+1(s′)

) ,

ands′ = (x + dx, y + dy).

Color sequences:

For color sequences, the information given by the three channels have appeared to be sufficient during

our experiments. Hence, no texture information will be added. However, we observed that the three

color channels RGB do not give the best representation of ourimages. Indeed, they are highly cor-

related and this representation is sensitive to illumination changes. Therefore it is better to separate
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Detection and segmentation of moving objects in complex scenes 15

the luminance and the chrominance informations. Furthermore, most of our test sequences contain

human skin, which has a specific signature in the space of chrominance [33, 53]. Therefore, it is inter-

esting to use a color system representing the chrominance instead of the classical RGB system. Most

chrominance spaces give the same results on skin detection [55]. In this paper we use the YUV color

space. This choice proves appropriate for various types of sequences. Here again, to include some

simple temporal consistency, we add imaget + 1 chrominance values of the corresponding point.

Finally, for color sequences, the descriptor at each individual valid point indexed byi (i = 1 . . . |G|)

of the grid is:

x
(i) = (x

(i)
1 ,x

(i)
2 ,x

(i)
3 ), (14)

where

x
(i)
1 = (x, y) , x(i)

2 = (dx, dy) , x(i)
3 = (z

(C)
t (s), z

(C)
t+1(s

′)) ,

where the 3-dimensional color feature vector is:z
(C)
t (s) = (Yt(s), Ut(s), Vt(s)).
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3 Clustering points: mean shift for mixed feature spaces

Now that a grid of valid points has been chosen and described,we address the problem of grouping

the points into clusters. Many data clustering methods havebeen described in the literature. A good

review on classic clustering techniques can be found in [27]. An appealing technique to extract

the clusters is the mean shift algorithm, which does not require to fix the (maximum) number of

clusters. On the other hand the kernel bandwidth and its shape have to be chosen or estimated for

each dimension.

3.1 Fixed bandwidth mean shift partitioning

Mean shift is an iterative gradient ascent method used to locate the density modes of a cloud of points,

i.e. the local maximum of its density. This technique, which we now summarize, is well described in

[14].

Given a set ofn points{x(i)}i=1..n in the d-dimensional spaceRd, the non-parametric density

estimation at each pointx is given by:

f̂(x) =
1

n|H|1/2

n∑

i=1

K(H−1/2(x − x
(i)))

=
ck

n|H|1/2

n∑

i=1

k(‖H−1/2(x − x
(i))‖2)

(15)

whereK is a kernel with associated profilek, H is the bandwidth matrix andck is a strictly positive

normalization constant which makesK(x) integrate to one. Introducing the notation

g(x) = −k′(x)

the density gradient reads:

∇f̂(x) = H
−1 f̂(x) m(x) (16)

wherem is the ”mean shift” vector,

m(x) =

∑n
i=1 x

(i) g
(
‖H−1/2(x − x

(i))‖2
)

∑n
i=1 g

(
‖H−1/2(x − x(i))‖2

) − x . (17)

Using exactly this displacement vector at each step of an iterative search guaranties convergence to

the local maximum of the density [14]. With ad-variate Gaussian kernel, equation (17) becomes

m(x) =

∑n
i=1 x

(i) exp(− 1
2D2(x,x(i),H))

∑n
i=1 exp(− 1

2D2(x,x(i),H))
− x (18)

where

D2(x,x(i),H) ≡ (x − x
(i))T

H
−1(x − x

(i)) (19)

is the Mahalanobis distance fromx to x
(i).

A mode seeking algorithm, or mean shift filtering can be derived by iteratively computing the

mean shift vector. The final partition of the feature space isobtained by grouping together all the data

points that converged to the same mode.
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3.2 Variable bandwidth mean shift

Usual mean shift procedures use a fixed bandwidth for all the data set. However, variable bandwidths

are essential when local characteristics of the data vary significantly across the feature space. Two

density kernel estimators have been introduced to take intoaccount a bandwidth that is not fixed for

each point [61]. The first one is called ”balloon estimator” and makes the bandwidth vary at each

estimation point. It was first introduced by Loftsgaarden and Quensberry [36]. It is defined as:

f̂(x) =
1

n

n∑

i=1

KH(x)(x − x
(i))

=
1

n

n∑

i=1

1

|H(x)|1/2
K(H(x)−1/2(x − x

(i)))

(20)

whereH(x) is the bandiwth matrix varying at each estimation point. When applied globally, this

estimator typically does not integrate to 1 and thus is usually not itself a density, even whenK is.

In [54] the authors have investigated the degree of improvement that this estimator allows over fixed

kernel estimates. For data up to 3 dimensions, the improvement seems to be very modest. However

the balloon estimator becomes very efficient as soon as the number of dimensions becomes larger

than 3.

The second density kernel estimator is the ”sample point estimator” that makes the bandwidth

vary at each data point. In [54] the advantages and drawbacksof this estimator have been studied. The

major advantages are that it is a density and that a particular choice of the bandwidth can considerably

reduce the bias [22]. However, finding this value for multivariate data is a hard problem not yet solved.

A disadvantage is that the estimate at a point may be influenced by observations very far away and

not just by points nearby. In [54] simulations have shown that this estimator has a very good behavior

for small-to-moderate sample sizes, but deteriorates in performance compared to fixed estimates as

the sample size grows.

In this paper we are working on data having more than 3 dimensions. Therefore, we will concen-

trate only on the balloon estimator. The mean shift technique using the balloon estimator has been

introduced in [10] for univariate and multivariate data.

3.3 Bandwidth selection for mean shift

A mode seeking algorithm can be derived by iteratively computing and applying the mean shift vector.

The partition of the feature space is obtained by grouping together all the data points whose associated

mean shift procedures converged to the same mode. The quality of the results highly depends on the

choice of the bandwidth matrixH.

The bandwidth selection can be based on statistical analysis or task-oriented. Statistical methods

compute the best bandwidth by balancing the bias and the variance of the density estimate. Task-

oriented methods rely on the stability of the feature space partitioning. In [13] a method that combines

the two different approaches has been introduced. This method is based on the maximization of the
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normalized mean shift vector. However, there is no theoretical result permitting to relate formally this

maximization to the quality of the clustering. In [10], a method based on the task oriented step of [13]

has been developed. It is dedicated to the variable bandwidth selection in mixed multi-dimensional

spaces. Here we briefly remind its principle.

The main idea underlying this bandwidth selection method isthat if one cluster can be represented

by a normal distribution, then the best cluster is the one forwhich the normal distribution is the most

stable. If few points are added to the cluster or if some are left apart, the associated distribution should

not change. Therefore by partitioning the data for several predefined bandwidths, one can identify

the best bandwidth as the one that gave the most stable partitions.

Assume that thed-dimensional data can be decomposed as the Cartesian product of P indepen-

dent spaces associated to different types of information (e.g. position, color), also called feature

spaces or domains, with dimensiondρ, ρ = 1 . . . P (where
∑P

ρ=1 dρ = d). The method in [10] pro-

poses to find iteratively for each feature spaceρ the best bandwidthΥ(i)
ρ for each estimation point

i. The iterative estimation of bandwidths is shown in algorithm 1. The final partition of the data

is obtained by applying a last time the mean shift partitioning using the balloon estimator with the

selected variable bandwidthsΥ(i) = diag[Υ
(i)
ρ , ρ = 1 . . . B].

The last point to discuss is how to choose the range of predefined bandwidths for our application

of moving object detection. It is obvious that this choice influences the results. One could use a

large sample of bandwidths but this would be very expensive as the number of mean shift partitioning

procedures would be very large. In our application of movingobject detection the data space is

divided inP = 3 feature spaces: the position, the motion and the color. In all our experiments we

have selected the same predefined bandwidth matrices. For all the feature spaces we have taken

Bρ = 9 bandwidths. For the position they depend on the size of the grid:

H
(b)
1 =

w

NG
(1 +

3b

B1 − 1
) H

(b)
2 =

h

NG
(1 +

3b

B1 − 1
) , b = 1 . . . B1 , (26)

whereB1 is the number of predefined bandwidths for the first feature space (hereB1 = 9). The range

of predefined matrices for color and motion is directly computed from images noises. We define

color, respectively motion, noises as the standard deviation over the whole grid of the color values

difference, respectively motion, between two neighboringpoints of the grid. IntroducingVG the set

of pairs of neighboring points of the gridG, |VG | its cardinal, the mean and standard deviation vectors

are:

αρ =
1

|VG |
∑

(i,j)∈VG

|x(i)
ρ − x

(j)
ρ | (27)

and

βρ =

√√√√ 1

|VG |
∑

(i,j)∈VG

(|x(i)
ρ − x

(j)
ρ | − αρ)2 . (28)
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Algorithm 1 Iterative estimation of mean shift bandwidths

Given n data pointsx(i) = (x
(i)
ρ )ρ=1...P , i = 1 . . . n. Given a set ofBρ predefined bandwidths

{H
(b)
ρ , b = 1 . . . B} for each feature spaceρ, the bandwidth selection is as follows.

Forρ′ = 1, . . . , P

• Evaluate the bandwidth at the partition level: For allb = 1, . . . , B

1. For allρ = 1, . . . , P, ρ 6= ρ′ , i = 1, . . . , n computeH̃(i)
ρ :

H̃
(i)
ρ =

{
1

Bρ

∑Bρ

b=1 H
(b)
ρ if ρ > ρ′

Υ
(i)
ρ else .

(21)

2. Define{H̃(b,i) = diag[H̃(i)
1 , . . . , H̃

(i)

ρ′−1H
(b)

ρ′ H̃
(i)

ρ′+1, . . . , H̃
(i)
P ], b = 1, . . . , Bρ′}.

3. Partition the data using the balloon mean shift partitioning. The result isk(b) clusters

denoted asC(b)
u , u = 1 . . . k(b). We introduce the functionc that associates thei − th data

point to its cluster:c(i, b) = u ⇔ x
(i) ∈ C(b)

u .

4. Compute the normal representationN (µ
(b)
u ,Σ

(b)
u ) of each cluster using:

µ
(b)
u =

(
µ

(b)
u,ρ

)

ρ=1...P
with µ

(b)
u,ρ =

1

|C(b)
u |

∑

i|c(i,b)=u

x
(i)
ρ , (22)

and

Σ
(b)
u =

(
Σ

(b)
u,ρ

)

ρ=1...P
with Σ

(b)
u,ρ =

1

|C(b)
u |

∑

i|c(i,b)=u

(x(i)
ρ − µ

(b)
u,ρ)(x

(i)
ρ − µ

(b)
u,ρ)

T
. (23)

5. Associate to each pointx
(i) the meanµ(b)

c(i,b) and covarianceΣ(b)

c(i,b) of the cluster it belongs

to. Denotep(i,b) the corresponding normal distribution.

• Evaluate the bandwidth at the data level: For each pointx
(i)

1. Select the scaleb′ giving the most stable normal distribution by solving:

b
′ = argminr=2,...,B−1JS(p(i,r−1)

, p
(i,r)

, p
(i,r+1)) (24)

whereJS is the Jensen Shanon divergence defined by:

JS(p(i,r−1)
, p

(i,r)
, p

(i,r+1)) =
1

2
log

| 1
3

∑r+1
b=r−1 Σ

(b)
c(i,b)|

3

√∏r+1
b=r−1 |Σ

(b)

c(i,b)
|

+
1

2

r+1∑

b=r−1

(µ
(b)
c(i,b) −

1

3

r+1∑

b=r−1

µ
(b)
c(i,b))

T (

r+1∑

b=r−1

Σ
(b)
c(i,b))

−1(µ
(b)
c(i,b) −

1

3

r+1∑

b=r−1

µ
(b)
c(i,b)) .

(25)

2. The best bandwidthΥ(i)
ρ′ is H

(b′)
ρ′ .
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Some experimentations have shown the range of predefined matrices for color (ρ = 2) and motion

(ρ = 3) can be defined as

H
(b)
ρ = βρ(0.5 +

1.5b

Bρ − 1
)Idρ

, b = 1 . . . Bρ , (29)

whereIdρ is the identity matrix of sizedρ. The clustering step decomposes the data into several

clusters, each corresponding to a moving object or a moving part. We retain only large enough

clusters (e.g., with more than 15 grid points). Finally we obtainkt clustersCu,t, u = 1 . . . kt.
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4 Segmenting the objects

In order to get the complete masks of objects, a final step is necessary. Segmenting the object associ-

ated to a given cluster amounts to assigning a labells, either “background” or “object”, to each pixel

s of the image. This problem can be reformulated into the graphcut framework as a bi-partitioning

problem. In recent years graph cuts have been increasingly used in image segmentation. The reason

for such a popularity is that the exact maximuma posteriori(MAP) of a two label pairwise Markov

Random Field (MRF) can be computed in polynomial time using min-cut/max-flow algorithms [20].

In seminal paper [9], Boykovet al. introduce an iterative foreground/background segmentation sys-

tem based on this principle, using hard constraints provided by the user. Here we can directly learn

some properties of the object from the points belonging to its cluster. These points are called inliers.

The energy function is defined so that its minimum should correspond to a good segmentation, in the

sense that it is guided both by the motion and color of the inliers (observed foreground) and by distri-

butions of color and motion built on the whole image. Also, boundaries of the segmentations should

preferably coincide with large photometric gradients. These various specifications are captured by

the following objective function:

Et(L) = − γc

∑

s∈P

ln(Pr(z
(C)
t (s)|ls)) − γm

∑

s∈G

ln(Pr(z
(M)
t (s)|ls))+

λ
∑

(s,r)∈V

exp
(
− ‖z(G)

t (s) − z
(G)
t (r)‖2

σ2

) 1

dist(s, r)
(1 − δ(ls, lr))

(30)

whereL is the set of all the labelsls, s ∈ P, dist is a distance measure, andV is the set of unordered

pairs(s, r) of neighboring elements ofP. The parametersγm, γc, λ are some weight constants dis-

cussed below. Since we are segmenting each object independently, there is one such energy function

to be minimized per cluster.

The two first terms of the cost function are based on pixel-wise modeling of color and motion

features distributions. Motion term only concerns the points of the grid. For both color and motion,

the object distribution is a mixture of Gaussians on the inliers. For the background, the mixture is

built as follows. For color it is computed on the whole image whereas for motion it is only computed

on the grid. In [7], authors have shown that it is possible to force some pixels to belong to the object

or to the background. Here we force inliers to belong to the object. This is done by rewriting the

energy function as:

Et(L) = − γc

∑

s∈P\Cu,t

ln(Pr(z
(C)
t (s)|ls)) − γm

∑

s∈G\Cu,t

ln(Pr(z
(M)
t (s)|ls))−

∑

s∈Cu,t

(
1 + max

s′∈P
λ

∑

r|(s′,r)∈V

V{s′,r}

)
δ(ls, ”object”) + λ

∑

(s,r)∈V

V{s,r}(1 − δ(ls, lr))
(31)

whereu is the object or cluster we are trying to segment andV{s,r} = exp
(
−

‖z
(G)
t (s)−z

(G)
t (r)‖2

σ2

)
1

dist(s,r)
.
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Because for motion we only consider points of the grid, we chose to set the parametersγc andγm

such thatγc = 1 and

γm = N2
G . (32)

This choice permits to give more influence to the points having a valid motion. Ifγm andγc were

equal, the motion would have only a very small influence to thesegmentation result.

The parameterσ in the third energy term can be related to noise [50]:

σ = 2 ∗ 〈(z(G)
t (s) − z

(G)
t (r))2〉 (33)

where〈.〉 denotes expectation over the whole image. The value of parameterλ has not been really

studied in literature. To avoid a possible saturation of allbinary edges in the max-flow procedure, we

fix here its value as:

λ =
1

N

(
− γc

∑

s∈P

∑

ls=”bkg”,”obj”

ln(Pr(z
(C)
t (s)|ls)) − γm

∑

s∈G

∑

ls=”bkg”,”obj”

ln(Pr(z
(M)
t (s)|ls))

)
.

(34)

After the minimization, all pixels labeled as “object” formthe final mask of the moving object.
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5 Experimental results

This section presents several experimental results on different kinds of sequences. These videos have

been shot by a moving or a non moving camera, and they exhibit rather different types of motions.

Also we tested our method on both grayscale and color sequences. For all the tests, exactly the same

parameters were used. The size of the grid as well as the predefined matrices for bandwidths selection

are set as detailed in the paper. This section is decomposed in two parts. First we present the results

obtained for both the clustering and the segmentation step.In a second part we see the final output

(set of all segmented objects) of our algorithm as a motion detection mask in order to compare our

approach with other methods mainly based on background modeling.

5.1 Sequences taken by a moving camera

We start by showing the results of the clustering and the segmentation on three different video se-

quences. For visualization purpose, an arbitrary individual color is assigned in each frame to each

segmented object. This color only depends on the arbitrary order in which the objects were handled.

Hence there is no temporal consistency and the same object can be represented by different colors

along the sequence.

The two following results are on color sequences shot by a moving camera. The first one is

the water skier sequence already discussed in section 2. This sequence is hard because a lot of

moving pixels are present in the water. On figure 6 we show the original images (first column), the

moving pixels maps (second column), the results of the clustering steps (third column) and finally

the segmented moving objects (fourth column). The water skier is most of the time well detected

and segmented while no objects are found on the water. On the frame at timet = 124, the skier is

not detected since, at this instant, his apparent motion is similar to the dominant motion estimated on

the scene (see the mask of moving pixels). Note also that on the same frame, part of the water was

detected as a moving object at the end of the clustering step.This happened several times during the

sequence. However most of the time there is no correspondingmoving object. The reason is that the

water occupies a large part of the image, making the probability to belong to the background almost

the same as the one to belong to the object. At the end of the energy minimization, all the pixels in the

water are labeled as background, except for the inliers thatwere forced to belong to the object. These

inliers are only visible by zooming on the segmentation image. In frame number 214, the cluster

covers both the skin (arm, face, legs) and the body of the skier. This comes from the automatic

bandwidth selection for the mean shift partitioning. The chrominance values corresponding to these

different parts are very close. However it is not the case forthe Y channel, corresponding to the

intensity. The range of predefined bandwidths we are using islarge, and the preferred bandwidth for

the intensity turned out to be large.
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The next sequence is the difficult driver sequence presentedin the introduction. In this sequence

we have to deal with the high dynamic background (behind the window), the low contrast between the

shirt and the guardrail, some drastic illumination changes. Furthermore the motion of the hand and

the trees behind the window are sometimes rather similar. The clusters corresponding to the moving

objects and the segmentations can be seen on figure 7. Despitethe number of moving pixels found

behind the window, no objects are detected in this part of theimage. The hand is very well detected

in the three frames shown. However the arm is not detected in the last frame because not enough

moving pixels with similar motion are found. Unfortunatelya part of the passenger compartment and

the guardrail are detected as moving objects. The clusters found there were small but as there is no

strong enough contours, the segmentation spills over. We believe that detecting this area is not such a

big problem. Indeed, it is not moving during several successive frames. Hence, adding some temporal

consistency and/or tracking that would reject static objects would probably allow the removal of such

spurious detection. On figure 8, we show another part of this sequence with a different background.

The results obtained, although not perfect, are rather encouraging for such a difficult sequence.

The last results presented in this subsection were obtainedon a grayscale sequence with a non

moving camera showing some cars and pedestrians moving in a street. The difficulty here comes

from the high level of noise and the low contrast present along the sequence. Furthermore, there

is a large number of small moving objects. If, for these reasons, the segmentation (not shown) are

disappointing, the detected clusters are nonetheless interesting. In figure 9 we show the bounding

boxes corresponding to these clusters. Another difficulty faced by the segmentation part lies in the

small number of pixels available in each cluster for learning the foreground distributions used in the

energy functions. Most of the largest pedestrians are detected. The one on the right and the middle

is not most of the time, because there are not enough moving pixels with valid optical flow vectors

on him. Also, some clusters corresponding to noise are sometimes detected. However, as there is

not any constancy in their detection, once again, a temporalconsistency or a tracking scheme would

probably flag these objects as false detections.

In this subsection we have shown promising results on three different kinds of sequences. To

extend the validation of our method, comparisons with othermotion detection methods are presented

in the sequel.

5.2 Comparison with other motion detection methods

We now compare our algorithm to the background modeling method of Grimson and Stauffer [21]

and the non parametric background modeling of Elgammalet al. [17]. We also show the masks of

moving pixels resulting from the robust estimation and the compensation of the dominant motion

with the technique of Odobez and Bouthemy [42]. In order to get motion detection results as binary

maps, all the objects segmented by our approach are set as themoving areas of the image (white

INRIA



Detection and segmentation of moving objects in complex scenes 25

pixels). Also note that the sequences used here were taken bya fixed camera so that the background

modeling methods can be applied.

The first sequence is a grayscale sequence of a pedestrian walking in front of water (figure 10).

This is not a very difficult sequence for our algorithm as there are not many moving pixels detected

in the water (second row of figure 10). While our method detects and segments well the person, the

bike and the small cars moving on the bridge, the other methods detect several moving pixels in the

water while there are many holes on the person masks. The problem of holes in the detection mask

(moving pixels) was mentioned in section 2. Here they resultfrom the fact that the coat of the person

is not highly textured and the person is walking slowly. Despite this lack of motion information at

places, the segmentation step enables to recover the whole person as one unique moving object.

The second sequence on which we compare our algorithm to others is a color sequence of two

pedestrians walking behind some waving trees. This sequence is hard because of the complex move-

ments of the trees and the frequent occlusions of the two persons. Grimson and Stauffer’s method

does not permit to distinguish the trees from the building behind. The results obtained by the non

parametric method and the detection of moving pixels methodare similar. These two methods do not

detect the buildings but find many spurious motions within the trees. Our method also detects few

objects within the trees but the segmentation permits to drop most of them. The masks of objects ob-

tained by our algorithm are not perfect though. The partial occlusions lead to many high contours on

the pedestrians which stop the flow. Also, due to these occlusions, the clusters are usually very small,

which does not permit to construct enough good distributions of the interesting objects. Still the re-

sults obtained by our method, as compared to other motion detection techniques, are very promising.
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6 Conclusion

A new technique to detect and segment moving objects in complex dynamic scenes shot by possibly

moving cameras has been presented in this paper. The algorithm can be divided into three main steps.

First, a set of points are selected and described in terms of color and motion, then these points are

clustered according to their descriptors and finally a segmentation is obtained from these clusters.

Each cluster corresponds to a moving area of the image. Several salient aspects of the contribution

can be emphasized. First we only work on “moving” pixels belonging to a grid regularly spread on

the whole image and with a motion estimate that passed a statistical test. Second, we use position,

color and motion to describe each point. Third, we use a variable bandwidth mean shift using the

balloon estimator and an automatic bandwidth selection to create the clusters. And finally, we use

sparse motion data in an optimization framework to get the final segmentations of moving objects.

Until now, we have segmented each object independently. We are now trying to segment all the

objects jointly by using a multilabel energy function that could be minimized using theα-expansion

algorithm [8, 9].

It is worth emphasizing that the parameters involved in the preliminary motion computations

(optic flow and parametric dominant motion) are fixed to the same values in all experiments, while

the other parameters (for clustering and segmentation) areautomatically selected.

Finally, the proposed method does not make use of any temporal consistency. We are now study-

ing the introduction of such a consistency either on a frame-to-frame basis or within a tracker whose

(re)initialization would rely on detection maps. To that end, we proposed in [11] a first method to

combine the tracking and the segmentation phase.

INRIA



Detection and segmentation of moving objects in complex scenes 27

References

[1] T. Aach and A. Kaup. Bayesian algorithms for change detection in image sequences using

markov random fields.Signal Processing: Image Communication, 7(2):147–160, 1995.

[2] S. Ayer and H. Sawhney. Layered representation of motionvideo using robust maximum-

likelihood estimation of mixture models and mdl encoding.Proc. Int. Conf. Computer Vision,

1995.

[3] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt. Performance of optical flow techniques.

CVPR, 1992.

[4] S. Beauchemin and J. Barron. The computation of optical flow. ACM Computing Surveys,

27(3):433–467, 1995.

[5] M.J. Black and P. Anandan. A framework for the robust estimation of optical flow.Proc. Int.

Conf. Computer Vision, 1993.

[6] M.J. Black and P. Anandan. The robust estimation of multiple motions: parametric and

piecewise-smooth flow fields.Computer Vision and Image Understanding, 63(1):75–104, 1996.

[7] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary and region segmentation

of objects in n-d images.Proc. Int. Conf. Computer Vision, 2001.

[8] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations. In

Proc. Conf. Comp. Vision Pattern Rec., 1998.

[9] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.

IEEE Trans. Pattern Anal. Machine Intell., 23(11):1222–1239, 2001.
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Original images Moving pixels maps Clusters Segmented objects

Figure 6: Results on the water skier sequence for frames 74, 124, 144, 214, 232, 236 and 242
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Original images Moving pixels maps Clusters Segmented objects

Figure 7: Results on the driver sequence for frames 15, 16, 17
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Original images Moving pixels maps Clusters Moving objects

Figure 8: Results on the driver sequence for frames 48, 49, 50
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t = 7 t = 21

t = 30 t = 61

t = 91 t = 109

Figure 9: Results on the traffic sequence. Bounding boxes of detected clusters are shown.
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Original images

Moving pixels (section 2)

Non parametrical method [17]

Grimson and Stauffer method[21]

Our method

t = 34 t = 59 t = 84

Figure 10: Detection masks on the person walking in front of water sequence for different methods.
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Original images

Moving pixels (section 2)

Non parametrical method [17]

Grimson and Stauffer method[21]

Our method

t = 108 t = 168 t = 235

Figure 11: Detection masks on the waving trees sequence for different methods.
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