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ABSTRACT

This paper is concerned with motion estimation in trans-
parent X-Ray image sequences. Most of these medical im-
ages can be divided into areas containing at most two mov-
ing transparent layers. We will call it bi-distributed trans-
parency. The first contribution of this paper is a motion
estimation framework for the two-layer transparency case,
able to handle noisy and low-contrasted X-Ray image se-
quences. It involves three steps: block-matching, affine fit
and gradient-based parametric estimation. This estimation
scheme is then extended to the bi-distributed transparency
case. The second step is now formulated as a joint mo-
tion segmentation-estimation problem solved by the itera-
tive minimization of a MRF-based energy function. This
framework has been applied to synthetic and real image se-
quences with quite satisfactory results.

1. INTRODUCTION

This paper is concerned with motion estimation in X-Ray
image sequences. Their motion content is specific since
the image formation is ruled by the phenomenon of trans-
parency. We explicitly tackle the transparency issue using
the fundamental equation introduced in [1]. It states that,
considering two image layers moving respectively with ve-
locities u = (g, uy) and v = (v, vy) assumed to be con-
stant from time instant ¢ — 1 to ¢ + 1, we have:
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We propose in this paper an estimation scheme based on
(1) adapted to the noisy and low-contrasted X-Ray image
sequences. X-Ray medical image sequences can globally
involve several layers. In most cases however, they can be
divided in areas including at most two moving transparent
layers. We refer to this configuration as the bi-distributed
transparency.

Eq.1 can be extended to a higher number of layers but at
the cost of more constraining assumptions (constant motion

over a large time interval in particular). Instead, we believe
that it is sufficient to address the bi-distributed transparency
to be able to estimate motions present in a large majority of
X-Ray images, due to anatomical constraints.

This paper is organized as follows. Section 2 describes an
estimation scheme for two-layer transparent images, along
with simulations on synthetic images. Section 3 is devoted
to the motion estimation framework for images with bi-dis-
tributed transparency. Results on real clinical sequences are
reported in Section 4. Section 5 contains concluding re-
marks.

2. TWO-LAYER TRANSPARENCY CASE

2.1. Transparent motion estimation

To estimate motions in a two-layer transparent image se-
quence, we minimize:
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where 7(x,y, u’,v") is given by (1) and B; are small blocks
dividing the image.

Several methods have been proposed to solve (2), leading to
the computation of dense velocity fields ([2]) or block-based
displacements ([3]). A compromise has to be met between
measurement accuracy on one hand and robustness to noise,
computational load and sensitivity to the parameter setting
on the other hand.

Since the X-Ray images we are dealing with are noisy and
low-contrasted, we focus on a robust estimation scheme.
Block-matching techniques that test every possible displace-
ments in a given range supply interesting results. Applied
on 32x32 blocks, they proved to be able to handle large dis-
placements and to be robust to noise. Their main drawback
is their inability to process untextured blocks.
Gradient-based parametric estimation techniques, as pro-
posed in [4], are also well adapted to X-Ray clinical image
sequences. The considered motions (heart beating, lungs
dilation, diaphragm translation) can be modeled with 2D



polynomial models, such as the affine motion model. Para-
metric estimation methods are known to be fast and effi-
cient, while robust to noise and low contrast. They imply
an iterative minimization technique that is quite reliable if
properly initialized.

We propose to take advantage of these two approaches by
combining them. We perform a block-matching technique
first, which is applied on a multiresolution representation of
the X-Ray images for low computation time. Then, we fit
two affine motion models on the sets of translation vectors
estimated on every block, previously sorted into two groups
using a sliding scheme (i.e. successive of 3 x 3 blocks),
based on a K-NN technique. This step is carried out us-
ing a robust estimation method to discard false estimations
on homogeneous blocks. We finally consider the gradient-
based parametric estimation method on the whole image,
initialized with the two affine motion models computed at
the previous step.

The proposed scheme is summarized on Fig.1.

Block matching

!

‘ Sorting in two groups ‘

!

Gradient-based parametric motion estimation ‘

Fig. 1. Two-layer transparent motion estimation scheme

2.2. Results on synthetic images

This two-layer transparent motion estimation scheme was
applied to realistic synthetic images. Two high-radiation
images acquired with a GE Innova system were used as ref-
erence layers. They were moved with known affine motions
and multiplied together to generate the composite attenua-
tion map. Realistic image sequences were simulated out of
the latter using the model developed in [4]. It accounts for
the radiation and imaging chain, and integrates quantic and
electronic noises, the MTF (Modulation Transfer Function)
of the detector and the scattering effect.

The estimation scheme was applied to 250 such image se-
quences, generated with random affine motions inducing
motions of magnitude smaller than 8 pixels. Images similar
to record exams (high-dose diagnostic images, ¢ = 10 on
12 bits images, 20% scatter) as well as to fluoroscopic im-
ages (low-dose interventional images, o = 20, 20% scatter)
were processed. Tab.l contains the mean differences be-
tween the estimated velocities and the ground truth.

Results without MTF simulation are excellent. They are
still very accurate for record images with MTF, and remain
good for the difficult images corresponding to fluoroscopic
exams. The required accuracy can depend on the targeted
application of the motion estimation.

Noise 10 20
NoMTF | 0.32 0.59
MTF 047 1.65

Table 1. Mean motion estimation errors in pixels for dif-
ferent noise levels, without and with MTF simulation, for
two-layer transparent image sequences (see main text).

3. MOTION ESTIMATION WITH
BI-DISTRIBUTED TRANSPARENCY

3.1. Motion estimation framework

We consider here images that can be segmented into ar-
eas which contain at most two moving transparent layers
(Fig.2). Most of the clinical X-Ray sequences belong to
such configuration, since three anatomies undergoing co-
herent motions rarely superimpose.

We will follow the same scheme as in Section 2 (Fig.1). The
block-matching step still works correctly on bi-distributed
transparent images, except for the (rare) blocks located over
borders between two regions.

However, we will modify the second step of the algorithm:
the affine motion fit. Instead, the translational vectors esti-
mated by the block-matching step will be exploited to seg-
ment the image into two-layer regions and improve the mo-
tion estimations as explained in subsection 3-2. Finally,
the gradient-based parametric estimation scheme will be ap-
plied on the segmented image.
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Fig. 2. Example of a bi-distributed transparency situation.
On the left, the translation vectors estimated on each block.
On the right, the true velocities and different regions that we
aim at extracting. (Here, two two-layer regions for a total of
three moving layers in the image)

3.2. Segmentation framework

We propose a joint segmentation and estimation scheme ba-
sed on a Markov Random Field (MRF) modeling. In [5], a
relatively similar problem is addressed and a mechanism is
proposed to compute multiple transparent motions and their
corresponding spatial supports. A dense velocity field is es-
timated based on (1), and then a EM-algorithm is used to fit
parametric models to the velocity estimates and to segment
the image. This method proceeds in a sequential way.

In contrast, we propose a joint segmentation and motion es-
timation framework. Such an approach allows us to cope
with noisy low-contrasted medical image sequences. In-
deed, a regularization framework is required to estimate trans-



parent motions in that context. This implies a segmentation
stage associated with an alternate estimation scheme.

We aim at labeling the set of S blocks according to the pair
of layers they are belonging to. Let e = {e,} denote the
label field with es = {es(1), es(2)}. Let us assume that the
image comprises a total of K transparent layers. To each
layer is attached a motion model of parameters 6}, (six pa-
rameters). Let © = {0;,k =1, K}.

The global energy function is defined by:

F(e,0) = Zp(rs(&s(l)a 965(2>))

seS

30 (1= 8les(1), e(1)) (1= (es(1), en(2)))

s, teC
(1= d(es(2)e(1) (L= b(en(2)e0(2)) )

The first term of Eq.3 makes Eq.1 be verified on each block
s with two affine motion fields of parameters 6. () and
0. (2) respectively. We use the robust Tukey function p(.)
to discard outliers. The second term enforces the segmenta-
tion to be reasonably smooth, J(.,.) being equal to 1 if the
two labels are the same and 0 otherwise. The p parameter
weights the relative influence of the two terms.

In other words, a penalty p is added when introducing a
region border involving a change in one layer only, and a
penalty 2, when both layers are different. According to the
targeted application, i can be set either to favor data-driven
velocity estimations (small 1), or to favour smooth segmen-
tation (high p). We have determined y in a content-adaptive
way: [t = medses (T‘S(Ges(l), 9(35(2))).

Eq.3 is minimized iteratively, using the IRLS method to es-
timate the parameters of the motion models when the labels
are fixed, and the ICM technique to estimate the labels once
the motion parameters are fixed. The former stage stops ei-
ther when the update on the velocities is below a threshold,
the latter stops when no labels have been changed. There
is also a limit on the iterations. Such an alternate iterative
minimization method converges if properly initialized.

To this end, we apply the Hough transform on the displace-
ments computed in the block-matching step. We choose
here a three-dimensional parameter space (i.e., a simplified
affine motion model, with two translational and one scale
components) that roughly matches the anatomic motions.
We resort to a continuous increment of the accumulation
matrix based on a confidence value depending on the com-
puted 2-layer displaced frame difference. The Hough trans-
form allows us to determine the number of moving layers
present in the image, and it provides us with a rough ini-
tialization of the affine motion models of the selected lay-
ers. This process is fast since it is carried out at the level of
blocks, and since we resort to pixel discretization. Then, the
label field is initialized by minimizing the first term of Eq.3
only (i.e., we consider a maximum likelihood criterion).

Noise 10 20
NoMTF | 0.48 0.96
MTF 0.59 1.85

Table 2. Mean estimation errors in pixels for different noise
levels, without or with MTF simulation for bi-distributed
transparent configurations (see main text).

3.3. Results on synthetic images

This joint motion estimation-segmentation framework for
bi-distributed transparency was applied to the same kind of
synthetic images as in Section 2. The first layer covers the
whole image, the other one is split in two parts undergo-
ing two different motions. Therefore, we have three moving
layers (K = 3) and two different two-layer regions. Tab.2
presents the mean estimation errors obtained on 150 gener-
ated examples. Results in terms of motion estimation ac-
curacy are quite satisfactory in every configuration. Let us
note that we get 33% of oversegmentation (K.s; > 3) and
6% undersegmentation (K.q; < 3).

4. RESULTS ON CLINICAL SEQUENCES

We report the results obtained on two different clinical se-
quences. The two first columns of Fig.3 show two images
of the sequence and the third one contains the motion esti-
mation results. In the fourth column, we plot the extracted
layers, and in the fifth one the segmentation in two-layer
regions. The framework runs in about 15 seconds with a PC
2.5MHz, 1Go of memory.

The first clinical sequence is a fluoroscopic exam with bi-
transparency, corresponding to a 5ecmx5cm area within lungs
(bright area on the left of the image) and heart (dark region
on the right) between ribs. The observed parts of the lungs
and heart are moving in a similar way in this area of the
anatomy, so that they should be considered as forming a
single layer. Their motion, as well as the static background
corresponding to the ribs, is correctly estimated by the al-
gorithm. As a result, the two-layer segmentation map only
contains one region over the whole image.

The second clinical sequence is a record sequence with bi-
distributed transparency. The diaphragm in the bottom part
translates up and down, the bright tissues of the lungs ex-
pand and contract, and the gray mass of the heart is beating
in the background. A guidewire drives a stent in a coronary.
Here again, the motion estimates match the visual obser-
vation. The dilation of the heart in the background corre-
sponds to the green layer. The motion of the diaphragm is
correctly estimated and corresponds to the red layer. The
lungs are static at this time of the cycle and thus are merged
with the static background. The obtained segmentation is
not perfectly coherent with the anatomy (since a part of the
heart is assigned to the red layer of the diaphragm) but it
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Fig. 3. Motion estimation and segmentation for clinical sequences. From left to right: Two images from the sequence,
estimated motions, layer boundaries and region segmentation (see main text). Top row (fluoroscopic sequence of 288x288
images): Frames 10 and 30 of the sequence, estimated motions at time 14 (the arrows length has been multiplied for visu-
alisation). Bottom row (record sequence 576x576): Frames 1 and 15 of the sequence, estimated motions at time 5 (arrows

length multiplied by 10).

reflects the observed motions.

Let us point out that the movement of the stent is correctly
handled though our modeling is not that adequate for thin
regions, and its motion has a high amplitude.

These results are promising in particular regarding motion
estimation. The segmentation is less accurate, but for appli-
cations such as motion-compensated image denoising this
information is not that important per se. Motion estimates
are wrong only when the assumption of motion constancy
between time instant ¢ — 1 and ¢ + 1 does not hold (which
is the case in 10% to 20% of the sequence length).

5. CONCLUSION

This paper has presented an original motion estimation frame-
work for image sequences with bi-distributed transparency,
designed for the noisy and low-contrasted X-Ray image se-
quences. It involves three steps: block-matching, MRF-
based segmentation and gradient-based parametric estima-
tion. The segmentation step results in iteratively minimizing
a MRF-based global energy function. It is properly initial-
ized with a Hough transform. This framework has been suc-
cessfully applied to synthetic and real image sequences.
We plan to extend our framework to identify regions for-
med by only one layer and those including three or more
layers. We also aim at better understanding the impact of
the noise correlation due to the MTF on the method perfor-
mance. Moreover, we want to develop motion-compensated

temporal denoising algorithms for X-Ray image sequences
using these motion estimation-segmentation framework.
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