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ABSTRACT

A new framework dealing with motion estimation in trans-
parent images is presented. It relies on a block-oriented es-
timation with efficient multiresolution function minimiza-
tion. A downhill simplex method provides an appropriate
initialization to this scheme. The estimated velocity vectors
are greatly improved by an original postprocessing stage
which performs a single motion estimation on differences
of warped images. Finally, a regularization step is carried
out. It is demonstrated on a large set of simulations that a
quarter pixel precision can be attained on noise-free images.
The case of noisy images is also addressed and provides sat-
isfactory results, even in the case of low-contrasted medical
images. An example on real clinical images is also reported
with promising results.

1. INTRODUCTION

Medical images sequences acquired by a X-ray device in-
volve specific motion contents since the image formation
process is ruled by the phenomenon of transparency. Unlike
in usual video images, there is no apparent occlusion when
an object covers another but a grayvalue addition. Any at-
tempt to apply classical motion assumptions and models to
such images is useless. We have to explicitly tackle the
transparency issue. This paper is concerned with the esti-
mation of transparent motions. We will focus on the two
layers case and we will discuss a novel approach involving
parametric motion models and multiresolution motion esti-
mation.
The issue of computing transparent motions has already been
investigated, but mostly for video sequences and particu-
lar transparent effects: images in a mirror, water reflection,
moving object observed through a curtain or a fence...
A first class of methods adapts usual motion estimation tech-
niques to the transparent case [1]. A second category of so-
lutions explicitly model transparency using the fundamental
equation introduced by Shizawa and Mase [2]. It states that,
considering two image layers I1 and I2 moving respectively
with velocities u = (ux, uy) and v = (vx, vy) assumed to
be constant from time instant t − 1 to t + 1, we have:

r(x, y, u, v) =

I(x + ux + vx, y + uy + vy, t − 1) + I(x, y, t + 1)

−I(x + vx, y + vy, t) − I(x + ux, y + uy, t) = 0 (1)

Different methods have been proposed to estimate the trans-
parent motions from this equation using three successive
images: minimizing a global energy function with regu-
larization [3], adapting wavelets or B-spline decomposition
[4], using Markov random fields or block-matching [5]. An-
other way is to formulate the problem in the frequency do-
main [6], but the time interval over which motion has to be
assumed constant is then much larger.

The paper is organized as follows. Section 2 describes
the main aspects of the designed multiresolution estimation
stage. Section 3 presents an important post-processing stage
and experimental results are reported in Section 4.

2. TRANSPARENT MOTION ESTIMATION

2.1. Transparent motion constraint

We start from equation (1). Actually, it is correct only if it is
assumed that I1 is moving with the velocity u at p = (x, y),
and also at location p + v at time t − 1. The same holds for
I2 at p and p + u. This constraint on the velocities of the
two layers practically implies that (1) is rigourously verified
only when translational motions are concerned (at least in a
given region).
Therefore, to be able to handle more complex motions, we
divide the image into small blocks where the motion is as-
sumed to be translational. The expression to be minimized
over each block Bi is given by:

J(ui, vi) =
∑

(x,y)∈Bi

r(x, y, ui, vi)2 (2)

where r(x, y, ui, vi) is given by equation (1)

Two plots of the function J(u, v) are displayed in Fig.1 to
illustrate its properties. Three images were constructed by
considering two layers moving with known velocities in the



x direction. Then, the plot can be restricted to the (ux, vx)
space. Let us point out that these plots exhibit two symmet-
rical minima since u and v are playing reverse roles as it can
be observed in equation (1). This ambiguity is not a prob-
lem yet, since we do not need to associate the velocities u

and v with a specific layer.

Fig. 1. Two plots of the function J(u, v) restricted to the
(ux, vx) subspace. True velocities: left: u = (3, 0), v =
(−4, 0), right: u = (3, 0) and v = (5, 0)

2.2. Multiresolution transparent motion estimation

Given three consecutive images involving two transparent
motions, we estimate the velocity of the two layers by min-
imizing J(u, v). If the velocity magnitudes were small, we
could consider a linearized version of J , and then minimize
it using an efficient iterative minimization scheme.
Since large motions can be encountered, we introduce a
multiresolution framework exploiting Gaussian pyramids of
the three consecutive images. At its coarsest level L, mo-
tions are small enough to allow a minimisation using the
conjugate gradient algorithm of the function J(u, v) lin-
earized around (0, 0), which supplies first estimates of the
two motions, denoted (uL, vL). Then, we proceed the same
way on the next resolution level L − 1 but by linearizing J

around (2.uL, 2.vL). The method is then iterated through
the successive resolution levels until the finest one.
Actually, we have stated that the estimates are more accurate
if this scheme (linearization and minimization) was iterated
a few times at a given resolution level.

2.3. Initialisation with a simplex algorithm

Such a minimization scheme is efficient and fast, however it
is also sensitive to the initialization, especially since we are
dealing with medical X-ray images involving low contrast
and high noise.
To properly initialize the multiresolution iterative estima-
tion method, we resort to the downhill simplex method. This
minimization technique can be applied to nonlinear func-
tions. For a function defined on a space of dimension n,

it selects n + 1 points in that space. In our case, to mini-
mize J in the four-dimensional space (u, v), it will consider
five samples of velocities (u, v). At each iteration, it sub-
stitutes for the point corresponding to the highest value of
J a new point sought on a line perpendicular to the hyper-
plane containing the other n test points [7]. This provides
an appropriate initialization for the considered minimiza-
tion problem. Computational load is limited since we use
the simplex algorithm at the coarsest image resolution only.

3. POSTPROCESSING STAGE

3.1. Warping and single motion estimation

It can be stressed from the plots of the function J in Fig.1,
that the global minimum might be difficult to attain when
the two layers velocities are close (example on the right of
Fig.1). (By the way, if the velocities are very similar, then
the transparent motion issue vanishes and comes to a single
motion situation!) To overcome this problem, we have de-
signed a postprocessing stage as explained below.
The multiresolution estimation stage delivers the estimated
velocities (ûme, v̂me). If for instance ûme is a correct es-
timation, we can make the corresponding layer (let us say
I1) implicitly disappear without identifying it. To do so,
we compensate one layer motion using ûme so that it ap-
pears static, and we compute the differences of the succes-
sive warped images:

∆Iûme,t+1(x, y, t)

= Ĩ ûme(x, y, t) − Ĩ2.ûme(x, y, t − 1)

= Ĩ2

ûme

(x, y, t) − Ĩ2

2.ûme

(x, y, t − 1) (3)
∆Iûme,t(x, y, t + 1)

= I(x, y, t + 1) − Ĩ ûme(x, y, t)

= I2(x, y, t + 1) − Ĩ2

ûme

(x, y, t) (4)

with Ĩw(x, y, t) = I(x + wx, y + wy, t) the image warped
using w.
∆Iûme,t+1(x, y, t) stands for a one-layer sequence moving
with s = ûme + v. Its motion can be estimated using a sin-
gle motion estimation method, and we can reestimate v as
v̂pp = ŝ − ûme. A similar development can be inferred to
get a new estimate of u, denoted ûpp from t = u + v̂me.
Thus, if one of the two velocities is correctly estimated, this
scheme offers a way to compute the second one.
To summarize, we build the images Ĩ warped with ûme and
v̂me respectively, we compute the successive images ∆I

from relations (3) and (4), we estimate the velocities s and t

using the robust multiresolution motion estimation method
described in [8] (with a constant motion model), and we re-
cover ûpp and v̂pp.
We have now to select the best estimates out of the four pos-
sible pairs (ûme, v̂me), (ûme, v̂pp), (ûpp, v̂me) and (ûpp, v̂pp).



3.2. Choice strategy

An intuitive strategy to select the final estimates of u and v

would be to compute the value of J(u, v) for the four pairs
and to keep the pair providing the smallest value. This could
be relevant for noise-free images, but does not work as soon
as noisy sequences are involved.
The expression of J(u, v) is formed by the algebric sum
of four images. If the original images were corrupted by a
noise of variance σ2, J(u, v) would be affected by a noise
of variance 4.σ2, and make the selection unreliably.
We propose instead to apply a regularization scheme. We
want to keep at the end of this stage the two velocities in
each block which minimize (2) correctly, while being co-
herent with the velocities of the neighboring blocks.
To achieve that, we have defined an alternate estimation pro-
cess. First, we compute the two affine motions for the two
moving layers of the image, and then we select in each block
the pair of velocities which is the most coherent with the es-
timated motion models.
The two affine motions models are computed from the ve-
locity vectors selected at the previous iteration, using a ro-
bust estimation technique in order to discard the outliers if
any. In each block, the two mean displacements correspond-
ing to the two estimated motion models are evaluated and
compared (using the L2 norm) to the four candidate pairs,
and the closest pair is selected.
Once again, this iterative algorithm works correctly if it is
properly initialized. The experiments we have carried out
have led us to initialize the velocity field of the two transpar-
ent layers with (ûme, v̂me) in each block. The velocities are
first organised in two groups {ûme} and {v̂me} supposed
to correspond to the two involved layers using a clustering
technique. This operation is necessary to make sure that u

and v are referring to the same layers from block to block.
The overall framework is summarized in Fig.2.

Fig. 2. Overall transparent motion estimation framework

4. EXPERIMENTAL RESULTS

We have generated realistic X-Ray image sequences to as-
sess the performance of our method with an available ground
truth. To do so, we have chosen two clinical images (standing
for the two layers) as measured on X-Ray imaging systems,
and moved them by known translational and affine motions.
The displacement values were randomly chosen while en-
suring an effective displacement at each pixel between −8
and 8 pixels per frame between two images. The images

Noise 0 10 20
ME 0.33 0.72 1.59
PP 0.3 0.77 1.69
RE 0.25 0.62 1.43
PR 0.20 0.34 0.87

Table 1. Mean estimation errors in pixels for different noise
levels and different versions of the estimator (see main text).

intensities were multiplied by a factor accounting for the
exposition mode simulated: the higher the X-Ray dose to
simulate, the higher the simulated images intensities and the
better the image contrasts.
Since X-Ray imaging physically involves multiplicative trans-
parencies, we have multiplied the two layers and passed the
composite image through a log operator to be able to work
with additive transparencies.
The final 12 bits images were corrupted by an independant
gaussian noise whose standard deviation depends on the
simulated dose. Our benchmark includes noise-free images
as a reference, images representative for high dose exams
(σ = 10, typical diagnostic exams) and for low dose exams
(σ = 20, typical interventional exams). The mean level of
the simulated images is about 500.
The experiments reported hereafter involve a first layer un-
dergoing affine motion, the other layer undergoing a trans-
lation. The whole estimation framework runs in about 10
seconds for 288*288 images on a Pentium IV 2.4 GHz and
1 Go of memory. Tab.1 contains the mean estimation er-
rors on the velocity vectors over the blocks for 250 random
image generations.

Fig. 3. Generation of transparent images

Four versions of the estimation method are compared to
evaluate the contributions of the different modules. ME just
accomplishes the first two steps: initialisation and multires-
olution estimation. PP goes also through the postprocessing
step but selects the best velocity pair candidate based on the
function J(u, v) only, without performing the regularisation
step. RE adopts the candidate selected at the end of the reg-
ularisation step (that is the complete framework proposed
in this paper), whereas PR just keeps the mean velocities in
each block corresponding to the two estimated affine mo-
tion models.
It can be observed that the postprocessing step improves the

quality of the estimates on noisy images, as soon as the final



estimate selection is made as explained in 3.2. The proposed
framework RE supplies very good estimations, reaching a
subpixelic precision on noisy images typical for fluoroscopic
exams.
But the very best strategy here adopts the velocity vectors
corresponding to the estimated affine motion models. It
should nevertheless be pointed out that these motions models
are here exact for the simulated images, which will not be
the case for real image sequences with transparent motions.
We have also applied our estimation framework to real med-
ical images. We present our results on a cardiac fluoro-
scopic sequence acquired at 30 Hz. It represents an area
about 5cm*5cm on the right of the heart. Two frames of
this sequence are presented on Fig.4 along with computed
transparent motions.

Fig. 4. Top: Images number 1 and 8 of the sequence. Bot-
tom: Regularized estimated velocities using the first three
frames. Left: Final estimation in each block using the RE
algorithm (two vectors are displayed per block), right: the
two estimated affine motion models (PR algorithm).

The heart (appearing dark here) is beating on the right
of the images over a static background corresponding to the
spine and ribs. The bright tissues of the lungs are following
the heart motion. The magnitude of the motion over a cycle
is 25 pixels. The images have a low contrast and are cor-
rupted by an important noise (σ ' 20).
Our estimations are coherent with the motions observed on
the sequence. Two motions have been found, which cor-
respond to the anatomic truth: the background, which is
static (and therefore does not appear on the arrow fields in
Fig.4) and the (affine) motion of the heart. The magnitude
of the estimated affine motion is correctly decreasing in the
lungs area with the distance to the heart. The images are
noisy, low contrasted and contain complex motions. More-
over, the motions are not perfectly constant over the three
consecutive images. Even in this complicated situation, the
proposed estimation framework gives promising results.

5. CONCLUSION

We have designed a complete and novel multiresolution
framework to estimate transparent motions for two layers.
In particular, it involves an efficient initialisation and an
original postprocessing stage to greatly improve the velocity
vectors estimated by the ME step. It was demonstrated on
a large set of simulations that a quarter pixel precision can
be attained on noise-free images. The processing of noisy
images was also adressed, and even in the case of low con-
strasted medical images, satisfactory results are obtained for
a reasonable amount of temporal noise. An example on real
clinical images was also reported with encouraging results.
More experiments on real X-ray image sequences will be
carried out, and we will also tackle situations involving more
than two transparent layers.
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