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Manifold of Cartoon Images

NON-LOCAL SPECTRAL BASES 5

Fig. 1.2. Left: a cartoon image. Right: 3D representation of the set M as samples of the edge manifold
M̃ (depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches extracted along the two
lines in the image.

2. Diffusions and Laplacians on a Manifold. In order to process an image f ∈ !2(Λ), this
paper uses tools from graph theory and calculus on manifolds in order to modify the associated
mapping f̃ ∈ !2(M) defined over the discretized manifold M. This section reviews several linear
operators that can be applied to elements of !2(M).

2.1. Discrete Diffusion Operators on Graphs. In the three processing modes, the set M
is embedded in the Euclidean space Rd with d = 2 for local computations, d = 3 for semi-local
computations and d = τ2 for non-local computations. As shown in section 1.3, in some special
case, the set M is close to a low dimensional smooth manifold M̃. It thus makes sense, for close
enough features p, q ∈ M to consider their extrinsic distance ||p − q|| computed over Rd as an
approximation for the geodesic distance dM̃(p, q) over M̃ which is usually not available.

Diffusion kernel. In order to process a manifold mapping g ∈ !2(M) (such as for instance f̃
itself or other mappings), one defines a symmetric isotropic kernel on pairs of points of the discrete
manifold

∀ p, q ∈M, W0(p, q) def.= exp
(
− ||p− q||2

2σ2

)
. (2.1)

The parameter σ is supposed to be small enough so that the extrinsic computation of ||p − q||
approximates the geodesic distance dM̃(p, q) for close pair of points (p, q) ∈ M2. In practice, σ
should be adapted for specific image processing applications.

The normalized filtering kernel is defined as

W (p, q) def.=
1

D(p)
W0(p, q) where D(p) def.=

∑

q∈Λ

W0(p, q). (2.2)

The kernel W defines an operator on mappings g ∈ !2(M)

∀ p ∈ Λ, Wg(p) def.=
∑

p∈M
W (p, q)g(q). (2.3)

This can be thought as a low-pass filtering of g since this operator does not modify constant
functions: W1 = 1. This filtering can be very different with respect to traditional isotropic
filterings when one considers semi-local or non-local embeddings. The left images of figure 2.1
show the diffusion of a Dirac W δ located in the center of the image. This diffusion is performed
using the operator W corresponding to the three computation modes (local, semi-local and non-
local). One should note that although W δ ∈ !2(M) is defined on the set M, it can be equivalently
displayed as a standard 2D image.

Linear operators such as W acts on elements of !2(M) which can be represented as discrete
vectors in Rn where n = |M| is the number of pixels in the input image f . These operators can
thus be considered as n× n matrices.

Laplacian operators. The Laplacian operator L and its symmetrized version L0 are defined as

L
def.= Id−W and L0

def.= D1/2LD−1/2 = Id−D−1/2W0D
−1/2, (2.4)



transform of p

p̂(ω) def.=
∫

h(t)p(t) exp(−iωt)dt.

Following Delprat et al. [44] (see also [38]), the projection of p is then given
as

ProjM(p) ≈ P(A,ρ,δ) where






ρ def.= argmax
ω!0

|p̂(ω)|

p̂(ρ) = A exp(iδ).
(21)

A 1D signal f defines a 1D curve c̃f ⊂M traced on the manifold and a 1D
curve C̃f in 3D parameter space

C̃f = ((A(x), ρ(x), δ(x)))x∈[0,1] where P(A(x),ρ(x),δ(x)) = ProjM(px(f)).

Figure 13 shows examples of a locally stationary oscillating signal together
with its spectrogram and the corresponding curve C̃f over the parametric
space.

Fig. 13. Upper-left: 1D signal of a bird singing, bottom left: the corresponding
log-spectrogram log(|p̂x(f)(ω)|) (the blue curve is the maxima curve (x, ρ(x))), right:
the 2D curve (A(x), ρ(x)). For the display, the curve has been disconnected in areas
where the bird stop singing (characterized by a low value of A(x)).

6.2 Manifold of Locally Parallel Textures

Some natural textures are composed of nearly parallel stripes that can be
modeled as local oscillations. This model of locally parallel textures is the
extension to images of the model of locally stationary sounds presented in
section 6.1. This model is studied Ben-Shahar and Zucker [45] who emphasis
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Fig. 12. Compressive sampling reconstruction results on a geometrical image with
sparsity prior in wavelets and with the manifold model of affine edges. The number
of sensed vectors is n0 = n/8 where n is the number of pixels.

6 Manifold of Oscillating Patterns

6.1 Manifold of Locally Stationary Sounds

Natural sounds are usually modeled as highly oscillating signals with a phase
that is slowly varying. Such a signal can be written as

f(x) = A(x) cos(Ψ(x)),

where A(x) ! 0 is the local amplitude, and Ψ′(x) ! 0 the local phase of the
oscillations. Such a decomposition is however non uniquely defined and one
usually assumes that A and Ψ′(x) are slowly varying with respect to the signal
sampling so that they can be reliably estimated. This leads to the following
signals ensemble

Θ def.= {x !→ f(x) = A(x) cos(Ψ(x)) \ ||A′||∞ " Amax and ||Ψ′′||∞ " Ψmax.}

This model of locally stationary signals leads to the manifold of constant
oscillations

M =
{
P(A,ρ,δ) \ A ! 0 and ρ ! 0 and δ ∈ S1

}

where P(A,ρ,δ)(x) def.= A cos(ρx + δ).

The parameterization (A, ρ, δ) !→ P(A,ρ,δ) shows that M is equivalent to Ω =
R+ × R+ × S1.

The projection of a patch p ∈ L2([−τ/2, τ/2]) on M can be carried over
approximately using a windowed Fourier transform. One uses a smooth win-
dow function h supported on [−τ/2, τ/2] and defines the windowed Fourier
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Non-adaptive Manifold Energy Minimizationsince x ∈ [0, 1]2. This distance corresponds to the Euclidean distance over the
cube ϕ−1(M), but since c̃f has a complex convoluted geometry, this distance
is not Euclidean when displayed as a 2D image.

Image f Surface c̃f Distance dM
Fig. 2. Manifold of smooth images.

4.3 Numerical Experiments

Figure 3 shows iterations of the algorithm 1 to solve the inpainting problem
on a smooth image using a manifold prior with 2D linear patches, as defined in
16. This manifold together with the overlapping of the patches allow a smooth
interpolation of the missing pixels.

Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image.

5 Manifold of Step Discontinuities

In order to introduce some non-linearity in the manifoldM, one needs to go
beyond the Fourier world of uniformly regular functions and consider signals
and images with discontinuities.

13
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Figure 1: Parameterization of the dictionary of edge patches and some examples.

Figure 2: Iterations of the synthesis algorithm with the dictionary of edges (sparsity s = 2).

Dictionary of local oscillations. In order to synthesize highly oscillating textures, we consider
the following set of functions

ϕλ(t) = sin
(
Rθ(t− (δ, 0))/ν

)
, and λ = (θ, δ) ∈ [0, 2π)× R+. (15)

The local frequency ν controls globally the width of the oscillations whereas θ is the local orientation
of these oscillations.

Dictionaries of lines. Similarly to the edge dictionary (14), a dictionary of lines is obtained by
rotating and translating a straight line

ϕλ(t) = 'θ,δ,σ(t) = exp
(

1
2σ2

||Rθ(t− (δ, 0))||2
)

, (16)

where λ = (θ, δ) ∈ [0, 2π)× R+ and where σ control the width of the line pattern.

Dictionaries of crossings. A dictionary of crossings is obtained by considering atoms which
contain two overlapping lines

ϕλ(t) = max ('θ1,δ1,σ(t), 'θ2,δ2,σ(t)) where λ = (θ1, δ1, θ2, δ2). (17)

Figure 3 shows examples of synthesis for the four dictionaries generated by the set of functions
(14), (15), (16) and (17).

3 Strict Sparsity and Non-local Expansions

Most approaches for texture synthesis in computer graphics [18, 53, 19, 28, 3, 30, 27] perform a
recopy of patches from an original input texture f in order to create a new texture f̃ with similar
structures. These processings can be casted into the sparsity framework presented in this paper.
This section indeed considers our texture model in a restricted case where one seeks a strict sparsity
with s = 1 in a highly redundant dictionary.
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Figure 3: Examples of synthesis for two sparsity levels s for the four kinds of dictionaries consid-
ered.
3.1 Strict Sparsity Model

Considering the extreme case where s = 1 means that one wants each patch of the synthesized
image f to be close to a patch in the original exemplar texture f̃ . Within this assumption, one
can consider as a dictionary the set of all the patches extracted from the exemplar

D = (pxi(f̃))N−1
i=0 = Φ(f̃). (18)

This dictionary is highly redundant and the synthesis algorithm looks for a perfect match

∀ i, pxi(f) = λi pϕ(xi)(f̃), where λi ∈ R, (19)

and the warping function ϕ : {0, . . . ,
√

N − 1}2 → {0, . . . ,
√

N − 1}2 maps the pixel locations of
the synthesized f to the pixel locations of f̃ .

A further simplifying assumption done frequently in computer graphics assumes that λi = 1,
which leads to the following definition of the mapping ϕ

∀x, ϕ(x) def.= argmin
y

||px(f)− py(f̃)||. (20)

In this setting, the algorithm 2 iterates between the best-fit computation (20) (step 3) and the
averaging of the patches (step 4). This is similar to the optimization procedure of Kwartra et al.
[27].

One can apply the iterative algorithm described in listing 2 in order to draw a random texture
that minimizes ED. Figure 4 shows the iterations of texture synthesis with this highly redundant
dictionary. For these examples, the size of the patches is set to τ = 6 pixels. Figure 6 shows other
examples of synthesis and compares the results with texture quilting [19]. Methods based on pixels
and regions copy like [19] tend to synthesize images very close to the original. Large parts of the
input are often copied verbatim in the output, with sometime periodic repetitions. In contrast,
and similarly to [27], our method treats all the pixels equally and often leads to a better layout of
the structures, with less global fidelity to the original.
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Figure 2: Iterations of the synthesis algorithm with the dictionary of edges (sparsity s = 2).

Dictionary of local oscillations. In order to synthesize highly oscillating textures, we consider
the following set of functions

ϕλ(t) = sin
(
Rθ(t− (δ, 0))/ν

)
, and λ = (θ, δ) ∈ [0, 2π)× R+. (15)

The local frequency ν controls globally the width of the oscillations whereas θ is the local orientation
of these oscillations.

Dictionaries of lines. Similarly to the edge dictionary (14), a dictionary of lines is obtained by
rotating and translating a straight line

ϕλ(t) = 'θ,δ,σ(t) = exp
(

1
2σ2

||Rθ(t− (δ, 0))||2
)

, (16)

where λ = (θ, δ) ∈ [0, 2π)× R+ and where σ control the width of the line pattern.

Dictionaries of crossings. A dictionary of crossings is obtained by considering atoms which
contain two overlapping lines

ϕλ(t) = max ('θ1,δ1,σ(t), 'θ2,δ2,σ(t)) where λ = (θ1, δ1, θ2, δ2). (17)

Figure 3 shows examples of synthesis for the four dictionaries generated by the set of functions
(14), (15), (16) and (17).

3 Strict Sparsity and Non-local Expansions

Most approaches for texture synthesis in computer graphics [18, 53, 19, 28, 3, 30, 27] perform a
recopy of patches from an original input texture f in order to create a new texture f̃ with similar
structures. These processings can be casted into the sparsity framework presented in this paper.
This section indeed considers our texture model in a restricted case where one seeks a strict sparsity
with s = 1 in a highly redundant dictionary.
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Synthesis with Sparse Manifold

Listing 5 Sparse texture synthesis algorithm.
(1) Initialization: set f at random.
(2) Sparse code: for all locations x, compute

sx ← ProjM(px(f)).

(3) Reconstruction: compute the texture f by averaging the patches

f(x) =
1

nτ 2

∑

|y−x|!τ/2

(Dsy)(x− y).

(4) Impose constraints: perform the histogram equalization of f with fe, see
[60].

(5) Stop: while not converged, go back to 2.

The corresponding algorithm is detailed in 5, and is equivalent to the iterative
projection algorithm of Peyré [60]. This iterative algorithm can be seen as an
extension of classical texture synthesis methods such as [18,61]. These com-
puter graphics approaches use the highly redundant dictionary D = (px(fe))x

of all the patches of the exemplar fe and enforce a perfect recopy by asking a
strict sparsity k = 1.

The texture model Θ captures a compact set of parameters through the dic-
tionary D. This model shares also similarity with statistical approaches to
texture synthesis such as [62–64] where some transform domain randomiza-
tion is performed. Whereas these approaches use a fixed wavelet transform
[62,64] or filters optimized from a fixed library [63] we learn this transform in
a non-parametric fashion.

Figure 21 shows examples of texture synthesis for various values of the param-
eters m and k. Increasing the size of the dictionary allows for a more realistic
synthesis and increasing the redundancy creates more blending between the
features.

Original m/n = 1, k = 2 m/n = 1, k = 8 m/n = 2, k = 2

Fig. 21. Examples of texture synthesis for various redundancy m/n an sparsity.

Inverse problems. Figure 22 shows a reconstruction from compressive

30
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Figure 10: Iteration of the synthesis process for s = 2.

The redundancy m/n of the dictionary. More redundancy provides more geometric fidelity during
the synthesis since patches of the original texture f̃ will be better approximated in D. In contrast,
using a small m leads to a compact texture model that compresses the geometric characteristics
of the original texture within a few atoms. Such a model allows good generalization performance
for task such as texture discrimination or classification when the data to process is unknown but
close to f .
The sparsity s ! 1 of the patch expansion. Increasing the sparsity s is a way to overcome the
limitations inherent to compact dictionary (low redundancy m/n) by providing more complex
linear combination. In contrast, for very redundant dictionaries (such as the non-local expansion
presented in section 3) one can even impose that s = 1. Increasing the sparsity also allows to have
blending of features and linear variations in intensity that leads to slow illumination gradients
not present in the original texture.

Figure 11 shows the influence of the sparsity parameter.
In order to capture features of various sizes, one can perform a progressive synthesis with

various sizes of patches τ . This leads to a multiscale synthesis algorithm that follows the one
already presented in listing 3. Note that this synthesis algorithm implicitly considers a set Dj of
highly redundant dictionaries at various resolution. Other approaches have been proposed to learn
a multiscale dictionary, see for instance [45, 35].

s
=

2
s

=
4

s
=

8

r = 0.2 r = 0.5 r = 1 r = 2 r = 4

Figure 11: Influence of the redundancy r = m/n and sparsity s.
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8 G. Peyré, S. Bougleux and L. Cohen

[39] also progressively builds an adapted operator (parameterized by a tensor
field) but they solve a PDE and not a regularization as we do.

Figure 1 shows some numerical examples of inpainting on images where 80%
of the pixels have been damaged. The wavelets method performs better than
total variation in term of PSNR but tends to introduce some ringing artifact.
The non-local total variation perform better in term of PSNR and is visually
more pleasing since edge are better reconstructed.

Input y Wavelets TV Non local

25.70dB 24.10dB psnr=25.91dB

24.52dB 23.24dB 24.79dB

29.65dB 28.68dB 30.14dB
Fig. 1. Examples of inpainting where Ω occupates 80% of pixels. The original images
f are displayed on the left of figure 3.

3.2 Super-resolution

Super-resolution corresponds to the recovery of a high-definition image from
a filtered and sub-sampled image. It is usually applied to a sequence of images
in video, see the review papers [41, 42]. We consider here a simpler problem
of increasing the resolution of a single still image, which corresponds to the

Inpainting Results
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inversion of the operator

∀ f ∈ Rn, Φf = (f ∗ h) ↓k and ∀ g ∈ Rp, ΦTg = (g ↑k) ∗ h

where p = n/k2, h ∈ Rn is a low-pass filter, ↓k: Rn → Rp is the sub-sampling
operator by a factor k along each axis and ↑k: Rp → Rn corresponds to the
insertion of k − 1 zeros along horizontal and vertical directions.

Input y Wavelets TV Non local

21.16dB 20.28dB 21.33dB

20.23dB 19.51dB 20.53dB

25.43dB 24.53dB 25.67dB
Fig. 2. Examples of image super-resolution with a down-sampling k = 8. The original
images f are displayed on the left of figure 3.

Figure 2 shows some graphical results of the three tested super-resolution
methods. The results are similar to those of inpainting, since our method im-
proves over both wavelets and total variation.

3.3 Compressive-sampling

Compressive sensing is a new sampling theory that uses a fixed set of linear
measurements together with a non-linear reconstruction [43, 44]. The sensing

Super-resolution Results
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Original f Wavelets TV Non local

24.91dB 26.06dB 26.13dB

25.33dB 24.12dB 25.55dB

32.21dB 30.47dB 32.20dB
Fig. 3. Examples of compressed sensing reconstruction with p = n/8.
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6 G. PEYRÉ

(a)

(b)

(c)

Fig. 2.1. Left: original image f . Right: heat diffusions with an increasing time for: (a) local embedding
x !→ x, (b) semi-local embedding x !→ (x, λf(x)), (c) non-local embedding x !→ px(f).

where D is the diagonal operator D = diagp∈M(D(p)).
The normalized Laplacian L0 corresponds to a discrete graph Laplacian as defined for example

by Chung [15]. For computer graphics purposes, other discretizations of the Laplacian are available
[44, 56] that make use of a triangulation data-structure. On real image data-sets, finding such a
triangulation is however non-trivial although some methods are emerging [11].

Gradient operators. The gradient operator maps g ∈ !2(M) defined on the discrete setM to
a measure of similarity on each couple of points ofM×M

∀ (p, q) ∈M×M, (Gg)(p, q) =
√

W0(p, q)

(
g(p)√
D(p)

− g(q)√
D(q)

)
. (2.5)

This gradient is thus a linear mapping G : !2(M) %→ !2(M ×M), which corresponds to a matrix
of n× n2 elements. One can also consider point-wise gradient vectors

∀ p ∈M, Gpg = ((Gg)(p, q))q∈M, (2.6)
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(a)

(b)

(c)

Fig. 2.1. Left: original image f . Right: heat diffusions with an increasing time for: (a) local embedding
x !→ x, (b) semi-local embedding x !→ (x, λf(x)), (c) non-local embedding x !→ px(f).

where D is the diagonal operator D = diagp∈M(D(p)).
The normalized Laplacian L0 corresponds to a discrete graph Laplacian as defined for example

by Chung [15]. For computer graphics purposes, other discretizations of the Laplacian are available
[44, 56] that make use of a triangulation data-structure. On real image data-sets, finding such a
triangulation is however non-trivial although some methods are emerging [11].

Gradient operators. The gradient operator maps g ∈ !2(M) defined on the discrete setM to
a measure of similarity on each couple of points ofM×M

∀ (p, q) ∈M×M, (Gg)(p, q) =
√

W0(p, q)

(
g(p)√
D(p)

− g(q)√
D(q)

)
. (2.5)

This gradient is thus a linear mapping G : !2(M) %→ !2(M ×M), which corresponds to a matrix
of n× n2 elements. One can also consider point-wise gradient vectors

∀ p ∈M, Gpg = ((Gg)(p, q))q∈M, (2.6)

which corresponds to vectors in Rn.
This normalized gradient is different from the more classical un-normalized gradient, as intro-

duced for instance in [30, 29]

∀ (p, q) ∈M×M, (G̃g)(p, q) =
√

W0(p, q) (g(p)− g(q)) . (2.7)

Section 7.1 and in particular figure 7.4 studies the advantages of using the normalized formulation.
The Laplacian L0 and its un-normalized version D−W0 are symmetric operators than can be

decomposed as

L0 = GTG and D −W0 = G̃TG̃ (2.8)

where GT is the transposed matrix.
Approximate Operators. The diffusion and Laplacian kernels W0 and L0 are linear operators on

!2(M) ' Rn and are computed as matrices of size n× n acting on Rn. These matrices are defined
using the gaussian weights (2.1) and are thus full and difficult to use for intensive computations. In
order to speed up both filtering computations and eigenvectors extraction, one typically uses either

6 G. PEYRÉ
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This equation allows one to solve exactly for fh
t and offers a non-iterative alternative to (4.4)

to compute the solution of the heat equation at a fixed time t. The diffused function fh
t at a

time t has its spectral coefficients reduced by the factor e−λωt which is small for large t and for
high-frequencies ω.

On figure 4.1, one can see the magnitude of noisy coefficients 〈f̃ , uω〉 for the local and non-
local expansions. The energy of the image is more concentrated on the low frequency part of the
spectrum for the non-local Laplacian. This is a result of the adaptivity of the non-local Laplacian
to the geometric content of the image. The high frequency residual is mostly the projection of the
noise 〈ε̃, uω〉. This compaction of the energy makes the heat diffusion over the non-local manifold
much more efficient that over the local one, since the spectral attenuation efficiently removes the
high frequency noise.

Diffusion examples. Figure 2.1 shows the filtering fh
t of an impulse Dirac distribution fh

0 = δ.
On figure 4.2 one can see the time evolution of fh

t for the three computation modes, starting from
the noisy input fh

0 = f̃ .
The local embedding leads to the traditional Euclidean heat equation. This diffusion blurs the
image since the embedding does not take into account the geometric features of f .
Both the semi-local and the non-local embeddings correspond to a non-linear processing of f since
the Laplacian L takes into account the structures of the image. This leads to a diffusion that
does not blur the geometrical features. On geometrical images, these two diffusions give similar
results. On complex natural images, non-local diffusion often surpasses semi-local diffusion as
reported by Buades et al. [8], see section 7.
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Fig. 4.2. Heat flow fh
t with an increasing t for: (a) local embedding (traditional heat equation) (b) semi-local

embedding, (c) non-local embedding.

4.3. Time-dependant Manifold Diffusion. The manifold diffusion (4.3) use a fixed dis-
crete manifoldM computed from the noisy input f̃ . As defined in equation (3.2), it is possible to
consider a flow where the manifold is continuously updated during the diffusion

∀ t > 0,
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t (x) with

{
f h̃
0 = f̃ ,

Mt =
(
ϕf h̃

t
(x)

)

x∈Λ

(4.6)

NON-LOCAL SPECTRAL BASES 13

This equation allows one to solve exactly for fh
t and offers a non-iterative alternative to (4.4)

to compute the solution of the heat equation at a fixed time t. The diffused function fh
t at a

time t has its spectral coefficients reduced by the factor e−λωt which is small for large t and for
high-frequencies ω.

On figure 4.1, one can see the magnitude of noisy coefficients 〈f̃ , uω〉 for the local and non-
local expansions. The energy of the image is more concentrated on the low frequency part of the
spectrum for the non-local Laplacian. This is a result of the adaptivity of the non-local Laplacian
to the geometric content of the image. The high frequency residual is mostly the projection of the
noise 〈ε̃, uω〉. This compaction of the energy makes the heat diffusion over the non-local manifold
much more efficient that over the local one, since the spectral attenuation efficiently removes the
high frequency noise.

Diffusion examples. Figure 2.1 shows the filtering fh
t of an impulse Dirac distribution fh

0 = δ.
On figure 4.2 one can see the time evolution of fh

t for the three computation modes, starting from
the noisy input fh

0 = f̃ .
The local embedding leads to the traditional Euclidean heat equation. This diffusion blurs the
image since the embedding does not take into account the geometric features of f .
Both the semi-local and the non-local embeddings correspond to a non-linear processing of f since
the Laplacian L takes into account the structures of the image. This leads to a diffusion that
does not blur the geometrical features. On geometrical images, these two diffusions give similar
results. On complex natural images, non-local diffusion often surpasses semi-local diffusion as
reported by Buades et al. [8], see section 7.

(a)

(b)

(c)

Fig. 4.2. Heat flow fh
t with an increasing t for: (a) local embedding (traditional heat equation) (b) semi-local

embedding, (c) non-local embedding.

4.3. Time-dependant Manifold Diffusion. The manifold diffusion (4.3) use a fixed dis-
crete manifoldM computed from the noisy input f̃ . As defined in equation (3.2), it is possible to
consider a flow where the manifold is continuously updated during the diffusion

∀ t > 0,
∂f h̃

t

∂t
(x) = −LMtf

h̃
t (x) with

{
f h̃
0 = f̃ ,

Mt =
(
ϕf h̃

t
(x)

)

x∈Λ

(4.6)

NON-LOCAL SPECTRAL BASES 13

This equation allows one to solve exactly for fh
t and offers a non-iterative alternative to (4.4)

to compute the solution of the heat equation at a fixed time t. The diffused function fh
t at a

time t has its spectral coefficients reduced by the factor e−λωt which is small for large t and for
high-frequencies ω.

On figure 4.1, one can see the magnitude of noisy coefficients 〈f̃ , uω〉 for the local and non-
local expansions. The energy of the image is more concentrated on the low frequency part of the
spectrum for the non-local Laplacian. This is a result of the adaptivity of the non-local Laplacian
to the geometric content of the image. The high frequency residual is mostly the projection of the
noise 〈ε̃, uω〉. This compaction of the energy makes the heat diffusion over the non-local manifold
much more efficient that over the local one, since the spectral attenuation efficiently removes the
high frequency noise.

Diffusion examples. Figure 2.1 shows the filtering fh
t of an impulse Dirac distribution fh

0 = δ.
On figure 4.2 one can see the time evolution of fh

t for the three computation modes, starting from
the noisy input fh

0 = f̃ .
The local embedding leads to the traditional Euclidean heat equation. This diffusion blurs the
image since the embedding does not take into account the geometric features of f .
Both the semi-local and the non-local embeddings correspond to a non-linear processing of f since
the Laplacian L takes into account the structures of the image. This leads to a diffusion that
does not blur the geometrical features. On geometrical images, these two diffusions give similar
results. On complex natural images, non-local diffusion often surpasses semi-local diffusion as
reported by Buades et al. [8], see section 7.

(a)

(b)

(c)

Fig. 4.2. Heat flow fh
t with an increasing t for: (a) local embedding (traditional heat equation) (b) semi-local

embedding, (c) non-local embedding.

4.3. Time-dependant Manifold Diffusion. The manifold diffusion (4.3) use a fixed dis-
crete manifoldM computed from the noisy input f̃ . As defined in equation (3.2), it is possible to
consider a flow where the manifold is continuously updated during the diffusion

∀ t > 0,
∂f h̃

t

∂t
(x) = −LMtf

h̃
t (x) with

{
f h̃
0 = f̃ ,

Mt =
(
ϕf h̃

t
(x)

)

x∈Λ

(4.6)



NON-LOCAL SPECTRAL BASES 9

(a)

(b)

(c)

Fig. 2.2. Some eigenvectors uω of Laplacians for (a) the local Laplacian (Fourier basis), (b) the semi-local
Laplacian, (c) the non-local Laplacian. The image f used to compute the discrete manifold is shown on figure 1.1,
left.

3. Denoising: PDE Flows, Variational Minimization and Thresholding. Denoising
is modeled in a probabilistic way as an inverse problem where one wishes to recover an image f
from a noisy observation f = f0 +ε where ε is a white noise of variance |ε|2. A denoising algorithm
builds an estimator f̄ ∈ Rn of the true data f0 that depends only on the observed f . This estimator
is a random vector that depends on the gaussian noise ε and its efficiency is measured using the
expectation of the error E(||f0 − f̄ ||2).

This section reviews three important classes of estimators, which are all based on taking
advantage of a well chosen energy Ef (g) that should be small for typical images one wishes to
recover. It is important to note that the energy Ef might depend on the noisy input f itself, which
makes some of the proposed methods adaptive to the content of the image.

Sections 4, 5 and 6 specialize these three kinds of estimators to computations on a discrete
manifold M. They use either operators such as the gradient and the Laplacian on M (defined in
section 2.1) or the manifold spectral basis (introduced in section 2.3) to define the energy Ef .

Two approaches are usually considered in the literature. The first one uses tools from vari-
ational calculus and partial differential equations, while the other one exploits decompositions of
harmonic analysis with thresholdings in orthogonal bases. All the proposed estimators f̄ = ft

depend on some scale t > 0 that controls the degree of regularization one imposes on the solution.
This scale is adapted to the noise level more or less automatically.

3.1. PDE Flows. A PDE-flow regularizes the original noisy input f by a gradient descent
of the energy

∀ t > 0,
∂ft

∂t
= −gradft

(Ef ) with f0 = f. (3.1)

If the original energy Ef is quadratic, this leads to a linear differential equation, otherwise it can
be non-linear. For instance, the heat equation and the total variation flow are derived formally
from

Ef (f) =
{

1
2

∫
|∇xf |2dx,∫

|∇xf |dx
=⇒ ∂fh

t

∂t
(x) =

{
∆ft

div
(
∇ft

||∇ft||

)
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Sections 4, 5 and 6 specialize these three kinds of estimators to computations on a discrete
manifold M. They use either operators such as the gradient and the Laplacian on M (defined in
section 2.1) or the manifold spectral basis (introduced in section 2.3) to define the energy Ef .

Two approaches are usually considered in the literature. The first one uses tools from vari-
ational calculus and partial differential equations, while the other one exploits decompositions of
harmonic analysis with thresholdings in orthogonal bases. All the proposed estimators f̄ = ft

depend on some scale t > 0 that controls the degree of regularization one imposes on the solution.
This scale is adapted to the noise level more or less automatically.

3.1. PDE Flows. A PDE-flow regularizes the original noisy input f by a gradient descent
of the energy

∀ t > 0,
∂ft

∂t
= −gradft

(Ef ) with f0 = f. (3.1)

If the original energy Ef is quadratic, this leads to a linear differential equation, otherwise it can
be non-linear. For instance, the heat equation and the total variation flow are derived formally
from

Ef (f) =
{

1
2

∫
|∇xf |2dx,∫

|∇xf |dx
=⇒ ∂fh

t

∂t
(x) =

{
∆ft

div
(
∇ft

||∇ft||

)

Manifold Spectral Basis


