
1
TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Signal Processing � Transforms and Spectral Methods Group

Removal of signal-dependent noise:
the BM3D Þlter and optimized variance-stabilizing

transformations

Alessandro Foi

www.cs.tut.fi/~foi

INRIA Centre de Rennes Bretagne Atlantique, IRISA April 10, 2009

2Outline

1. Block-Matching and 3D Þltering (BM3D) algorithm
Grouping and collaborative Þltering, block-based algorithm and shape-adaptive PCA im-
plementation.

2.1 Variance stabilization
Introduction to the problem, examples, counterexamples, main results.

2.2 Optimization of variance stabilizing transformations
Stabilization functional; Optimization by recursive approximate integral stabilization; com-
parison with AVAS; Optimization by direct search; relaxation of monotonicity, examples.

3. Application to raw-data denoising
Noise modelling for raw-data of imaging sensors; clipping; doubly censored normal distrib-
utions; variance stabilization; Þltering; debiasing, declipping. Comparison of standard vs.
optimized stabilizers.

3Block-Matching and 3D Þltering (BM3D)
denoising algorithm

Generalizes NL-means and overcomplete transform methods.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �Image denoising with block-matching
and 3D Þltering�, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, Jan. 2006.

� , �Image denoising by sparse 3D transform-domain collaborative Þltering�, IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.

4Observation model for the image denoising problem

z (x) = y (x) + η (x) , x ∈ X ⊂ Z2,

z : X → R observed noisy image

y : X → R unknown original image (grayscale)

η : X → R i.i.d. Gaussian white noise, η (·) ∼ N ¡
0, σ2

¢
Notation

Given a function f : X → R, a subset U ⊂ X, and a function g : U → R, we denote by:

f|U : U → R the restriction of f on U , f|U (x) = f (x) ∀x ∈ U ;
g|X : X → R the zero-extension of g to X,

¡
g|X

¢
|U = g and g

|X (x) = 0 ∀x ∈ X \ U ;
χU = 1|U|X the characteristic function (indicator) of U ;

|U | the cardinality of U (i.e. the number of its elements of U);

~ the convolution operation.

5Block-matching

Let x ∈ X and denote by �Bx ⊂ Z2 be the square block of size l × l �cen-
tered� at x. Let B be the collection of all such blocks which are entirely contained

in X, B =
n
�Bx : x ∈ X, �Bx ⊂ X

o
. Equivalently, deÞne XB =

n
x ∈ X : �Bx ∈ B

o
=n

x ∈ X : �Bx ⊂ X
o
⊂ X.

For each block �Bx ∈ B, (i.e. for each point x ∈ XB), we look for �similar� blocks �Bx0 whose
range distance dz (x, x0) with respect to �Bx,

dz (x, x
0) =

°°°z| �Bx − z| �Bx0

°°°
2
,

is smaller than a Þxed threshold τmatch ≥ 0.

Thus, we construct the set Sx that contains the central points of the found blocks:
Sx = {x0 ∈ XB : dz (x, x0) ≤ τmatch} .

The threshold τmatch is the maximum dz-distance for which two blocks are considered
similar.

In case of heavy noise, we embed a coarse preÞltering within dz (e.g., 12-distance of thresh-
olded spectra). Otherwise, we need to increase l.

6Block-matching

To a Þxed �reference� block �BxR ∈ B associate a collection (disjoint union) eBxR of neigh-
borhoods: eBxR =

a
x∈SxR

�Bx =

=
n³
�Bx, x

´
: x ∈ SxR

o
⊂ X × SxR ⊂ X ×X.

7Group

collection of the noisy patches z| �Bx ,
�Bx ∈ eBxR

(Compact notation) ZxR :
eBxR → R.

The patches can be stacked together into a 3-D data array
deÞned on the square prism B × {1, . . . , |SxR |}.

8Why groups are good and why do we need to be careful

Groups are characterized by both:
¦ intra-block correlation between the pixels of each grouped block (natural images);
◦ inter -block correlation between the corresponding pixels of different blocks (grouped
block are similar);

Warnings:
¦ blocks are not necessary ßat or smooth but can be anything;
◦ �similar� does not mean �identical�.

Goals:
¦ exploit intra-block correlation whenever possible, without smoothing away the unex-
pected;

◦ exploit similarity in the forms in which it exists, without forcing dissimilar blocks to
become identical.

9Collaborative Þltering

� each grouped block collaborates for the Þltering of all others, and vice versa.
� provides individual estimates for all grouped blocks (not necessarily equal).

Realized as shrinkage in a 3-D transform domain.

Typically separable transform: T 3D = T 2D ◦ T 1D .

E.g.: 2D-DCT ◦ DCT = 3D-DCT
or, restricting h and |SxR | to powers of two,

biorth. 2D-DWT ◦ Haar 1D-DWT
shrinkage: hard-thresholding

bYxR = T
3D−1 (shrink (T 3D (ZxR)))

The group estimate bYxR :
eBxR → R is composed of

slices with local block estimates �yx,xR :
�Bx → R for each �Bx ∈ eBxR .

Total variance of bYxR can be estimated as tsvar
nbYxR

o
≈ σ2Nhar

xR ,

Nhar
xR is number of coefficients of T 3D(ZxR) that survive thresholding

(so-called �number of harmonics�).

10Collaborative Þltering

11Aggregation

For each reference point xR ∈ X, grouping and collaborative Þltering generate a groupbYxR of |SxR | distinct local estimates of y.

Overall, we have a highly redundant and rich representation of the original image y com-
posed of the estimates a

xR∈X, x∈SxR
�yx,xR , where �yx,xR :

�Bx → R.

Note: different groups ZxR and Zx0R can lead to different estimates �yx,xR and �y
x,x0

R
even

when these estimates are deÞned on the same block �Bx !

In order to obtain a single global estimate �yht : X → R deÞned on the whole image
domain, all these local estimates are averaged together using adaptive weights wxR > 0 in
the following convex combination:

�yht =

X
xR∈X

X
x∈SxR

wxR �yx,xR
|XX

xR∈X

X
x∈SxR

wxRχ �Bx

wxR =
1

σ2Nhar
xR

.

12Wiener Þltering stage

Denoising can be improved by performing matching within this estimate and replacing
hard-thresholding by empirical Wiener Þltering in the collaborative shrinkage.

Block-Matching

Noise in �yht is signiÞcantly attenuated: more accurate matching by replacing the distance
dz by a distance d�yh t :

d�yh t (xR, x) =
°°°�yht | �BxR

− �yht | �Bx
°°°
2
,

The sets SxR are redeÞned as
SxR =

©
x ∈ XB : d�yh t (xR, x) ≤ τmatch

ª
.

These new sets SxR lead to new collections (disjoint unions) of blocks eBxR = `
x∈SxR

�Bx.

Grouping: two groups

ZxR :
eBxR → R, built by stacking together the noisy patches z| �Bx

, �Bx ∈ eBxRbYht
xR :

eBxR → R, built by stacking together the estimate patches byht| �Bx , �Bx ∈ eBxR

13Collaborative Wiener Þltering

Group Wiener estimate bYxR = T
3D−1 (WxRT

3D (ZxR))

Wiener attenuation factors WxR =
(T 3D (!Yh t

xR
))

2

(T 3D (!Yh t
xR
))

2
+σ2

Estimate of total variance tsvar
nbYxR

o
≈ σ2 kWxRk22.

Aggregation

Global estimate �ywie =

P
xR∈X

P
x∈SxR wxR �yx,xR

|XP
xR∈X

P
x∈SxR wxRχ �Bx

, wxR =
1

σ2 kWxRk22
.

14BM3D ßowchart

B Process overlapping blocks in a raster scan. For each such block, do the following:
(a) Use block-matching to Þnd the locations of the blocks that are similar to the cur-

rently processed one. Form a 3D array (group) by stacking the blocks located at
the obtained locations.

(b) Apply a 3-D transform on the formed group.
(c) Attenuate the noise by shrinkage the 3-D transform spectrum.
(d) invert the 3-D transform to produce Þltered grouped blocks.

B Return the Þltered blocks to their original locations in the image domain and compute
the resultant Þltered image by a weighted average of these Þltered blocks (aggregation).

15BM3D with Shape-Adaptive PCA (BM3D-SAPCA)

Main ingredients:

� Local Polynomial Approximation - Intersection of ConÞdence Intervals
(LPA-ICI) to adaptively select support for 2-D transform;

� Block-Matching to enable non-locality;
� Shape-Adaptive PCA (SA-PCA);
� Shape-Adaptive DCT low-complexity 2-D transform on arbitrarily-shaped domains
(when SA-PCA is not feasible).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �BM3D Image Denoising with Shape-
Adaptive Principal Component Analysis�, Proc. Workshop on Signal Processing with
Adaptive Sparse Structured Representations (SPARS�09), Saint-Malo, France, April 2009.

16BM3D-SAPCA

At each pixel:
1. Group together square image blocks that are similar to the block centered at the current
pixel.

17BM3D-SAPCA

2. Obtain the anisotropic neighborhood at the current pixel using 8-directional LPA-ICI.
Apply its shape on each of the grouped blocks, producing a group of adaptive-shape
neighborhoods.

18BM3D-SAPCA

3. Use this group as training data for computing Shape-Adaptive PCA (SVD of the empir-
ical second-moment matrix estimated from the group of similar adaptive-shape neigh-
borhoods).

19BM3D-SAPCA

3b. Keep only the eigenvectors (PC) whose corresponding eigenvalues are greater than a
threshold proportional to the noise variance (trimmed PCA).
The overall 3-D transform is a separable composition of the PCA (applied on each
image patch) and a Þxed orthogonal 1-D transform in the third dimension.

20BM3D-SAPCA

4. Apply the 3-D transform on a group of adaptive-shape neighborhoods.
5. Attenuate noise by shrinakage (hard-thresholding or empirical Wiener Þltering).

21BM3D-SAPCA

6. Apply the inverse 3-D transform to obtain Þltered neighborhoods,
7. Return the Þltered neighborhoods to their original locations and aggregate in case of
overlapping.

22BM3D-SAPCA

The scheme is implemented in three iterations:
I: hard-thresholding, BM and PCA on noisy data
II: hard-thresholding, BM and PCA on estimate from I.
III: empirical Wiener Þltering, BM and PCA on estimate from II.

23Directional varying-scale LPA estimates
�yh,θk = z ~ gh,θk

scales: h ∈ {h1, . . . , hJ} = H
directions: θk =

(k−1)
4 π, k = 1, . . . , 8

ICI directional adaptive scales
{h+ (x, θk)}8k=1

Adaptive neighborhood of the origin
U+x = polygonal_hull

©
supp gh+(x,θk),θk

ª8
k=1

Adaptive neighborhood
of estimation point x
(mirror-translates)

�U+x =
= {v ∈X : (x−v)∈U+x }

24Intersection of ConÞdence Intervals (ICI) (Goldenshluger&Nemirovski, 1997)
(for each Þxed direction θk)

The estimates �yh(x) are calculated for a set H = {hj}Jj=1 of increasing scales. The ICI rule
yields a pointwise adaptive estimate �yh+(x), where for every x an adaptive scale h+ (x) ∈ H
is used such that �yh+(x) ≈ �yh∗(x)(x).
ICI rule: Consider the intersection of conÞdence intervals

Ij=
j\
i=1

Di, where Di =
h
�yhi(x) − Γσ�yhi , �yhi(x)+Γσ�yhi

i
and Γ>0 is a threshold parameter, and let j+ be the largest of the indexes j for which Ij
is non-empty, Ij+ 6=∅ and Ij++1=∅. Then, h+ is deÞned as h+=hj+ and the adaptive
estimate is �yh+(x).

25Block-matching

Adaptive neighborhoods can be too small for reliable matching!

Matching for �U+x needs to be carried out for a superset.

We use square blocks of size (2hmax − 1)× (2hmax − 1) centered at x, hmax = max {H}.

Adaptive neighborhoods �U+x ∀x ∈ X
Blocks �Bx ∀x ∈ XB (X

To every x ∈ X we associate xB ∈ XB such that kδB (x)k2 of δB (x) = xB − x is minimal.
The mapping x 7→ xB and δB (x) are univocally deÞned (for convex X).

δB (x) 6= 0 only for x sufficiently close to the boundary ∂X of X.

26Shape-adaptive grouping

For given points x, xR deÞne the translate of �U+xR
�U+x,xR =

©
v ∈ X : (x− v) ∈ U+xR

ª
=
n
v ∈ X : (xR − x+ v) ∈ �U+xR

o
.

�U+x,xR is an adaptive neighborhood of x which uses the
adaptive scales of the �reference point� xR.

It can happen that �U+x,xR 6= �U+x .

To a given �reference� point xR we can now associate not only its own adaptive neighbor-
hood �U+xR , but a collection (disjoint union)

eUxR of neighborhoods deÞned aseUxR = a
x+δB (xR)∈SxR+δB (xR)

�U+x,xR =
n
�U+x,xR : x+ δB (xR) ∈ SxR+δB (xR)

o
,

where SxR+δB (xR) is the result of block-matching for
�BxR+δB (xR).

All neighborhoods in eUxR have the same shape, completely determined by adaptive scales
{h+ (xR, θk)}8k=1 at xR.

27Shape-Adaptive PCA

28Shape-Adaptive Discrete Cosine Transform (SA-DCT) (Sikora et al., 1995)

Shape-Adaptive Discrete Cosine Transform (SA-DCT) and its inverse. Transformation
is computed by cascaded application of one-dimensional varying-length DCT transforms,
along the columns and along the rows.

29Shape-Adaptive Discrete Cosine Transform (SA-DCT)

� direct generalization of the classical block-DCT (B-DCT);
� on rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
� the same computational complexity as the B-DCT (separable);
� SA-DCT is part of the MPEG-4 standard;
� efficient (low-power) hardware implementations available;

� shape must be coded separately (constitutes some overhead).

Orthonormal SA-DCT does not have a DC term and works best if applied on zero-mean
data: �Orthonormal SA-DCT with DC separation and ∆DC compensation�, Kauff et al.
1997.

30

SA-DCT (forward transform)
[as used in Pointwise SA-DCT denoising algorithm (Foi et al., IEEE TIP 2007)]

Shape-adaptive collaborative Þltering (forward transform)

31Experimental comparison

32Experimental comparison

33Experimental comparison

34

Original Noisy, σ = 35 BM3D (27.82, 0.8207)

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)

35

2.1. Variance stabilization

36One-parameter families of distributions
Let z ∈ Z ⊆ R be a random variable distributed according to a one-parameter family of
distributions DDDDDDDDD = {Dθ}, where θ ∈ Θ ⊆ R denotes the parameter.

µ (θ) = E {z|θ} and σ (θ) = std {z|θ}
conditional expectation and standard deviation of z given as functions of the parameter θ.

Example:
DDDDDDDDD Poisson distributions with mean θ ∈ Θ = [0,+∞), Pr [z = ζ|θ] = e−θ θζζ! , ζ ∈ N.

We have µ (θ) = θ and σ (θ) =
√
θ.

σ (θ)

µ (θ) = θ

37One-parameter families of distributions
Dθ µ (θ) σ (θ)

Poisson
Pr [z = ζ|θ] = e−θ θ

ζ

ζ! , ζ ∈ N, θ ∈ [0,+∞) θ
√
θ

Scaled Poisson (scale χ > 0)
Pr
"
z = ζ

χ |θ
#
= e−θ θ

ζ

ζ! , ζ ∈ N, θ ∈ [0,+∞) θ
χ

√
θ
χ =

$
µ(θ)
χ

Binomial (n trials)
Pr [z = ζ|θ] = %n

ζ

&
θζ (1− θ)n−ζ , ζ ∈ N, θ ∈ [0, 1] nθ

'
nθ (1− θ) =

$
µ(θ)(n−µ(θ))

n

Scaled binomial (n trials, scale n)
Pr
"
z = ζ

n |θ
#
=
%n
ζ

&
θζ (1− θ)n−ζ , ζ ∈ N, θ ∈ [0, 1] θ

$
θ(1−θ)

n

Negative binomial (exponent k)
Pr [z = ζ|θ] = Γ(ζ+k)

ζ!Γ(k)

(
θ

θ+k

)ζ (k+θ
k

)−k
, ζ ∈ N, θ ∈ [0,+∞) θ

$
θ(θ+k)

k

Scaled negative binomial (exponent k, scale χ > 0)
Pr
"
z = ζ

χ |θ
#
=

Γ(ζ+k)
ζ!Γ(k)

(
θ

θ+k

)ζ (k+θ
k

)−k
, ζ ∈ N, θ ∈ [0,+∞) θ

χ

$
θ(θ+k)

χ2k
=
$

µ(θ)(µ(θ)χ+k)
χk

Multiplicative normal (scale χ > 0)

pdf [z|θ] (ζ) = χ

θ
√
2π
e
− (ζ−θ)2χ2

2θ2 θ θ
χ

Doubly censored normal with standard-deviation s (θ)
pdf [z|θ] (ζ) = Φ

(
−y
σ(y)

)
δ0(ζ) +

1
σ(y)

φ
(
ζ−y
σ(y)

)
χ[0,1] +

(
1− Φ

(
1−y
σ(y)

))
δ0(1− ζ)

38Variance stabilization problem

Find a function f : Z → R such that the transformed variable f (z)
has constant standard deviation, say, equal to c, std {f (z) |θ} = c.

� the (conditional) standard deviation does not depend anymore on the distribution pa-
rameter;

� heteroskedastic z turns into a homoskedastic f (z).

Constraints:

� !!! f should be independent of θ;
� !!! avoid pathological solutions (e.g., f identically constant);
� require, e.g., f to be monotone strictly increasing;
� the conditional distributions of f (z) possibly not too bad.

39Variance stabilization is typically impossible to achieve

Positive result: multiplicative normal
f (z) = log |z|

Negative result: Bernoulli
Binary samples z ∈ {0, 1} of the Bernoulli distribution with parameter θ = E {z|θ}

cannot be stabilized to the same constant variance for different values of θ:

E {g (z) |θ} = θg (1) + (1− θ) g (0)
var {g (z) |θ} = E

n
(g (z)−E {g (z) |θ})2 |θ

o
= (g (0)− g (1))2 θ (1− θ).

Exact stabilization is not possible for Poisson, Binomial, and most other families used in
applications.

In practice, we deal with either approximate or asymptotic stabilization.

40Variance stabilization: history and examples
Classic heuristic stabilizer as indeÞnite integral form

f (z) =

Z z 1

σ (θ)
dµ (θ) . (1)

Idea: consider a local Þrst-order expansion of f at µ (θ)
(i.e., assume σ (θ) locally constant),

f (z) ' f (µ (θ)) + (z − µ (θ)) ∂f
∂z
(µ (θ)) ,

We have

std {f (z) |θ} ' ∂f

∂z
(µ (θ))σ (θ) ,

then impose std {f (z) |θ} = c and obtain the indeÞnite integral (1).

Known and used already in the 1930�s (e.g., Tippett 1934, Bartlett 1936), often rediscovered
in signal processing (e.g., Prucnal&Saleh 1981, Arsenault&Denis 1981, Kasturi et al. 1983,
Hirakawa&Parks 2006).

Very rough, but useful as a Þrst guess: nearly all classical stabilizers can be seen as a slight
modiÞcation of (1).

41Variance stabilization: Poisson

f (z) =
R z 1

σ(θ)dµ (θ) =
R z 1√

θ
dµ (θ) = 2

√
z.

Bartlett 1936: 2
q
z + 1

2

Anscombe 1948: 2
q
z + 3

8 (Anscombe attributes the result to A.H.L. Johnson)

Freeman&Tukey 1950:
√
z +

√
z + 1

In the same way stabilizers were derived for the Binomial and Negative Binomial distrib-
ution families (�angular� transformations based on the arcsin and hyperbolic arcsin).

42Variance stabilization: Poisson

M. Freeman and J. Tukey, �Transformations Related to the Angular and the Square Root�, The
Annals of Mathematical Statistics, vol. 21, no. 4, pp. 607-611, Dec. 1950.

43Variance stabilization: Poisson

f (z) =
R z 1

σ(θ)dµ (θ) =
R z 1√

θ
dµ (θ) = 2

√
z.

Bartlett 1936: 2
q
z + 1

2

Anscombe 1948: 2
q
z + 3

8 (Anscombe attributes the result to A.H.L. Johnson)

Freeman&Tukey 1950:
√
z +

√
z + 1

Starck, Murtagh, and Bijaoui, 1998: generalization of Anscombe for linear combinations
of Poisson variates.

All these results enjoy asymptotic optimality, but good stabilization for small θ is not
achieved.

Fryzlewicz, Nason, et al. 2004-2008: wavelet-Fisz transforms that return spectra having
approximately constant variance.

Kolaczyk 1999: threshold-correcting schemes.

44Variance stabilization: three milestone works

� Curtiss 1943: general asymptotic theorems are proved.
� gave theoretical support to empirical stabilizers that were already used (and also to
others yet to appear).

� Efron 1981: existence of transformations for exact variance stabilization and/or perfect
normalization.
� formalizes sufficient conditions for existence of exact stabilizers (�general transfor-
mation families� framework), and provides their analytical expressions.

� results are nonparametric and nonasymptotic.
� difficult to use in practice (assumes too much smoothness and invertibilities of para-
metrized mappings).

� Tibshirani 1986: AVAS procedure for regression
� approximate variance stabilizing transformations are iteratively computed by re-
cursive application of the integral stabilizer (iterative reÞnement of the stabilizer)
[Tibshirani fails to successfully use Efron�s stabilizers on data]

� developed for data-driven application, hints about potential use for random vari-
ables.

� nonparametric and nonasymptotic.

45

2.2. Optimization of variance-stabilizing
transformations

Foi, A., �Direct optimization of nonparametric variance-stabilizing transformations�, Proc.
8èmes Rencontres de Statistiques Mathématiques, CIRM Luminy, Marseille, France, De-
cember 2008.

46Motivation

With so many transformations, which one is the best?

This question remains largely unanswered.

� It is typically impossible to achieve simultaneously good stabilization for all parameter
values (see Freeman & Tukey): thus, when a stabilizer appears to be better than another
for some values of the parameter, it is likely that for other values it is actually worse.
In this sense, there might be no �best stabilizer�.

� No objective criterion for assessing the goodness of a stabilizer has ever been formu-
lated. Simply demanding std {f (z) |θ} to be as close as possible to c is too vague and
ambiguous.

47Variance stabilization as a minimization problem

Let
ef (θ) = σf (θ)− c

be the local error because of inexact stabilization (where locality is intended by the condi-
tioning on θ) and deÞne a global cost functional as

Cf =

Z
|ef (θ)| dθ. (2)

We may formulate the variance stabilization problem as the solution of
argminf Cf (3)

Variance stabilization is exact only when Cf = 0 for some f .

Minimization needs to be constrained to some particular class of functions, such as strictly
monotone, Lipschitz, smooth functions, etc.

48Variance stabilization as a minimization problem

We have seen that it makes little sense to aim at exact variance stabilization simultaneously
for all parameter values.

We consider a separable weighted cost functional (stabilization functional) of the form

Cf =

Z
Θ

wθ (θ)we (ef (θ)) dθ, (4)

where the weight functions wθ and we provide different weighting for the different values
of θ and different stabilization errors ef (θ), respectively.

In particular, we design special weights we that favor approximate stabilization while ig-
noring very large stabilization errors.

49Stabilization functional
Let γu ,γl ≤ 1, r0u,r0l ≥ 0, r00u ≥ r0u , r00l ≥ r0l , ou,ol ≥ 1 be some real constants and χΩ be the
characteristic (indicator) function of a set Ω.

We deÞne the weights we as

we (ef (θ)) = |ϕ (ef (θ)) ef (θ)| ,
where

ef (θ) = σf (θ)− c = max {−r00l ,min {r00u , ef (θ)}} ,
σf (θ) = max {c− r00l ,min {c+ r00u , σf (θ)}} ,

and with the function ϕ given by

ϕ (ef) = γu · χ[0,+∞) (ef)

"
1−

µ
ef − r0u
r0u

¶2#(ou−1)
χ(−∞,r0u)

(ef) + χ[r0u ,+∞) (ef)

+
+γl · χ(−∞,0) (ef)

"
1−

µ
ef + r

0
l

r0l

¶2#(ol−1)
χ(−r0l ,+∞) (ef) + χ(−∞,−r0l] (ef)

 .

50Stabilization functional

The clipped argument ef (θ) cannot distinguish stabilization errors larger than r00l ,r
00
u , while

the multiplication against the function ϕ increases the order of the stabilization errors from
1 to ol ,ou . Note that for a positive (resp. negative) argument, the function ϕ has a zero of
order ou − 1 (ol − 1) at zero and becomes constant (with quadratic-smooth joint) equal to
γu (γl) starting from r0u (r

0
l).

Thus, the cost functional (4) takes the form

Cf =

Z
Θ

wθ (θ) |ϕ (ef (θ)) ef (θ)| dθ.

The function ϕ.

51Iterative integral algorithm for optimizing f

0. Initialize
f0 (z) = z (identity) or an arbitrary (non-optimal) stabilizer
f monotone increasing

Iterate the following three stages:
1. Compute statistics

ϑk (θ) = med {fk (z) |θ} = fk (med {z|θ})
σk (θ) = std {fk (z) |θ}

2. Compute stabilization reÞnement
rk (z) =

R z
Ik (θ) d [ϑk (θ)] (integration with respect to the median)

where

Ik (θ) = 1− wθ (θ)ϕ (ek (θ)) ek (θ)
σk (θ)

,

ek (θ) = σk (θ)− c = max {−r00l ,min {r00u , ek (θ)}}
σk (θ) = max {c− r00l ,min {c+ r00u , σf k (θ)}} ,

3. Compose
fk+1 (z) = rk (fk (z))

52Optimization of Poisson stabilizer (iterative integral)
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

Standard-deviation functions σ (θ)
Green: f0 =

√
z +

√
z + 1 Red: f0 = 2

p
z + 3/8 Blue: optimized

53Optimization of Poisson stabilizer (iterative integral)
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

stabilization functional vs. iterations (log scale)
f0 =

√
z +

√
z + 1 (lower) and f0 = 2

p
z + 3/8 (higher)

54Optimization of Poisson stabilizer (iterative integral)
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

variance-stabilizer f and the mapping E {z|θ} 7→ E {f (z) |θ}
stabilization functional = 01.051

55Optimization by iterative integral vs. direct search

Convergence of the iterative integral algorithm was veriÞed experimentally, up to the
numerical precision of the algorithm, in extensive tests.

However, its limit does not necessarily coincide with the minimizer of the stabilization
functional.

� computational aspects involved in the evalutation of the integrals
� unless the class of distributions and allowed stabilizers are reduced to non-interesting
cases, a proof of minimization seems very difficult to achieve (similar situation as for AVAS
algorithm)

A practical way to circumvent these issues is to solve the minimization by direct search,
which is particularly feasible for discrete distributions.

We use Nelder-Mead downhill simplex algorithm.

56Optimization by direct search
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

variance-stabilizer f and the mapping E {z|θ} 7→ E {f (z) |θ}
stabilization functional = 0.096

57Optimization by direct search: relaxing monotonicity
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

variance-stabilizer f and the mapping E {z|θ} 7→ E {f (z) |θ}
stabilization functional = 0.079

58Optimization by direct search
ou , ol = 1.5, r0u , r

0
l = 0.2, r00u , r

00
l = 0.5, γu , γl = 0.8

Standard-deviation functions σ (θ)
Purple: optimized by direct-search non-monotonic Blue: optimized by recursive integral

59

3. Application to raw-data denoising

Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, �Practical Poissonian-Gaussian
noise modeling and Þtting for single image raw-data�, IEEE Trans. Image Process., vol.
17, no. 10, pp. 1737-1754, October 2008.
Foi, A., �Practical denoising of clipped or overexposed noisy images�, Proc. 16th European
Signal Process. Conf., EUSIPCO 2008, Lausanne, Switzerland, August 2008.
Foi, A., �Clipped or overexposed noisy images: heteroskedastic modeling and practical
denoising�, preprint, submitted to Signal Processing.

60Raw data as clipped signal-dependent observations

�z(x) = max {0,min {z(x) , 1}} , x ∈ X ⊂ Z2,

z(x) = y(x) + σ(y(x)) ξ(x)

y : X → Y ⊆ R unknown original image (deterministic)

σ(y(x)) ξ(x) zero-mean random error

σ : R→ R+ standard-deviation function (deterministic)

ξ(x) random variable E {ξ(x)} = 0 var {ξ(x)} = 1

y (x) = E {z (x)} expectation

σ(y(x)) = std {z(x)} standard deviation

61Clipped noisy data

original added noise and then clipped

62Raw data as clipped signal-dependent observations

�z(x) = max {0,min {z(x) , 1}} , x ∈ X ⊂ Z2,

z(x) = y(x) + σ(y(x)) ξ(x)

�z(x) = �y(x) + �σ(�y(x)) �ξ(x)

�y(x) = E{�z(x)} expectation

�σ : [0, 1]→ R+ standard-deviation function (of expectation)

�σ(�y(x)) = std {�z(x)} standard deviation

63Modeling raw-data signal-dependence before clipping

The random error before clipping is composed of two mutually independent parts:

σ (y (x)) ξ (x) = ηp (y (x)) + ηg (x)

ηp Poissonian signal-dependent component (photonic)

ηg Gaussian signal-independent component (everything else)

¡
y (x) + ηp (y (x))

¢
χ ∼ P (χy (x)) , χ > 0

ηg (x) ∼ N (0, b) , b > 0

σ2(y(x)) = ay(x) + b, a = χ−1

N ¡
µ, σ2

¢
normal (=Gaussian) distribution with mean µ and variance σ2

P (λ) Poisson distribution with mean (and variance) λ

64Normal approximation of Poisson variates

ζ ∼ P (λ) means the probability Pr [ζ = k] = e−λλ
k

k!
, k ∈ N.

ζ ∼ N ¡
µ, σ2

¢
means the probability density of z is ℘ (ζ) =

1

σ
√
2π
e
−
(ζ − µ)2
2σ2 , ζ ∈ R.

p.d.f. (top) and c.d.f. (bottom) for P (λ) and N (λ, λ), λ = 2, 10, 20, 40.

65Heteroskedastic normal approximation

�z(x) = max {0,min {z(x) , 1}} , x ∈ X ⊂ Z2,

z(x) = y(x) + σ(y(x)) ξ(x)

σ (y (x)) ξ (x) =
p
ay(x) + bξ (x) , ξ (x) ∼ N (0, 1)

66(Generalized) Probability distributions

Before clipping:

℘z(ζ) =
1

σ(y)φ
³
ζ−y
σ(y)

´

After clipping:

℘�z(ζ) = Φ
³
−y
σ(y)

´
δ0(ζ) +

1
σ(y)φ

³
ζ−y
σ(y)

´
χ[0,1] +

³
1−Φ

³
1−y
σ(y)

´́
δ0(1− ζ)

φ and Φ are p.d.f. and c.d.f. of N (0, 1)
δ0 is Dirac delta function χ[0,1] is characteristic (=indicator) function of interval [0, 1]

67Expectations and variances

E {�z|y} = �y = Φ
³

y
σ(y)

´
y −Φ

³
y−1
σ(y)

´
(y − 1) + σ(y)φ

³
y

σ(y)

´
− σ(y)φ

³
y−1
σ(y)

´
,

var{�z|y} = �σ2(�y) = Φ
³

y
σ(y)

´ ¡
y2 − 2�yy + σ2(y)¢+

+ �y2 −Φ
³
y−1
σ(y)

´ ¡
y2 − 2�yy + 2�y + σ2(y)− 1¢+

+ σ(y)φ
³
y−1
σ(y)

´
(2�y − y − 1)− σ(y)φ

³
y

σ(y)

´
(2�y − y) .

68

a = 0.022, 0.062, 0.102

b = 0.042

a = 0.042

b = 0.022, 0.062, 0.102

69Noisy image �z

PSNR=15.00dB noise parameters a = 0, b = 0.22

70Denoising

Denoising heteroskedaskic data using variance-stabilization and conventional
denoising algorithm for AWGN.

Main stages:
1. variance-stabilization
2. denoising (BM3D public code for AWGN from www.cs.tut.Þ/~foi/GCF-BM3D/)
3. inversion of the stabilizer (from E {f (�z)} 7→ y)

We compare two alternatives stabilizers:

f0(t) =

Z t

t0

c

�σ(�y)
d�y, t, t0 ∈ [0, 1]

f2000 optimization by iterative integral.

71Variance stabilization

fk std {fk (�z) |�y}

72Variance stabilization

std {f0 (�z) |�y} vs std {f2000 (�z) |�y}

73Variance stabilization

Convergence of the iterative integral algorithm

74Denoised using f 0 as stabilizer

PSNR=29.37

75Denoised using f 2000 as stabilizer

PSNR=30.67 [1.3dB gain]

76Noisy raw-data image �z

FujiÞlm FinePix S9600 (green channel)

77Noise estimation

a = 0.003978 b =0.0004787

78Variance stabilization

fk std {fk (�z) |�y}

79Variance stabilization

std {f0 (�z) |�y} vs std {f2000 (�z) |�y}

80Variance stabilization

Convergence of the iterative integral algorithm

81Denoised using f 0 as stabilizer

82Denoised using f 2000 as stabilizer

83Denoised using f 0 as stabilizer

(gamma-corrected)

84Denoised using f 2000 as stabilizer

(gamma-corrected)

85Comparison of fragments (1/3)

noisy using f0 using f2000

(all gamma-corrected)

86Comparison of fragments (2/3)

noisy using f0 using f2000

(all gamma-corrected)

87Comparison of fragments (3/3)

noisy using f0 using f2000

(all gamma-corrected)

88

Thank you!

89

LNLA 2009

2009 International Workshop on
Local and Non-Local Approximation

in Image Processing

August 19-21, 2009, Gustavelund Conference Hotel, Tuusula,
Finland (near Helsinki)

http://sp.cs.tut.fi/ticsp/lnla09

