1
ﬁ TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Signal Processing —  Transforms and Spectral Methods Group

Removal of signal-dependent noise:
the BM3D filter and optimized variance-stabilizing
transformations

Alessandro Foi

www.cs.tut.fi/"foi

INRIA Centre de Rennes Bretagne Atlantique, IRISA April 10, 2009



Outline 2

1. Block-Matching and 3D filtering (BM3D) algorithm
Grouping and collaborative filtering, block-based algorithm and shape-adaptive PCA im-
plementation.

2.1 Variance stabilization

Introduction to the problem, examples, counterexamples, main results.

2.2 Optimization of variance stabilizing transformations

Stabilization functional; Optimization by recursive approximate integral stabilization; com-
parison with AVAS; Optimization by direct search; relaxation of monotonicity, examples.

3. Application to raw-data denoising

Noise modelling for raw-data of imaging sensors; clipping; doubly censored normal distrib-
utions; variance stabilization; filtering; debiasing, declipping. Comparison of standard vs.
optimized stabilizers.



Block-Matching and 3D filtering (BM3D) 3
denoising algorithm

Generalizes NL-means and overcomplete transform methods.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-matching
and 3D filtering”, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, Jan. 2006.

— , “Image denoising by sparse 3D transform-domain collaborative filtering”, IEEFE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.



Observation model for the image denoising problem 4

2(2) =y(x) +n(x), zeXCZ?

z: X —-R observed noisy image
y: X — R  unknown original image (grayscale)
n:X —R  iid. Gaussian white noise, 1 (-) ~ N (0,0?)

Notation
Given a function f: X — R, a subset U C X, and a function g : U — R, we denote by:
fiv :U — R the restriction of f on U, fiy (z) = f(z) Vo € U;
g : X =R the zero-extension of g to X, (g‘X)lU =gand g¥ () =0Vz € X \U;

Xu = 1|U|X

the characteristic function (indicator) of U;
|U| the cardinality of U (i.e. the number of its elements of U);

® the convolution operation.



Block-matching 5

Let € X and denote by B, C Z2 be the square block of size | x [ “cen-
tered” at x. Let B be the collection of all such blocks which are entirely contained

in X, B:{Bx:xeX, Bch}. Equivalently, define Xz = {xeX:BxGIB%} -
{xeX:Bch}cX.

For each block Bm € B, (i.e. for each point x € Xp), we look for “similar” blocks BI/ whose
range distance d, (z,z") with respect to B,

d, (z,2') =

#1Be T 1B ||y

is smaller than a fixed threshold 7, a¢cn > 0.
Thus, we construct the set S, that contains the central points of the found blocks:
Sl‘ = {.’El S X]E : dz (357-'17/) < Tmatch} .
The threshold Tpatcn is the maximum d,-distance for which two blocks are considered
similar.

In case of heavy noise, we embed a coarse prefiltering within d, (e.g., £2-distance of thresh-
olded spectra). Otherwise, we need to increase .



o "

=5

To a fixed “reference” block By, € B associate a collection (disjoint union) B
borhoods:

of neigh-

TR

{(Bm,x) :xESmR}CXXSmRCXXX.



Group

collection of the noisy patches 2g, Bz S ﬁw .

(Compact notation) Zy, :B,, — R.

The patches can be stacked together into a 3-D data array
defined on the square prism B x {1,...,|Sz.|}-




Why groups are good and why do we need to be careful

Groups are characterized by both:
o intra-block correlation between the pixels of each grouped block (natural images);

o inter-block correlation between the corresponding pixels of different blocks (grouped
block are similar);

Warnings:
¢ blocks are not necessary flat or smooth but can be anything;
o “similar” does not mean “identical”.

Goals:
¢ exploit intra-block correlation whenever possible, without smoothing away the unex-
pected;

o exploit similarity in the forms in which it exists, without forcing dissimilar blocks to
become identical.



Collaborative filtering

e ceach grouped block collaborates for the filtering of all others, and vice versa.
o provides individual estimates for all grouped blocks (not necessarily equal).

Realized as shrinkage in a 3-D transform domain.

Typically separable transform: 7% =720 o710,

E.g.: 2D-DCT o DCT = 3D-DCT
or, restricting h and |Sy,| to powers of two,
biorth. 2D-DWT o Haar 1D-DWT
shrinkage: hard-thresholding

?QTR =T~ (shrink (T*° (Z,,)))

The group estimate ?m R I@x » — R is composed of

slices with local block estimates §, , : B, — R for each B, €B, R

Total variance of Y, "

i 3 3 vV ~ ~2 N\ har
can be estimated as tsvar{YxR} ~ o N,

N22r is number of coefficients of T%(Z,,,,) that survive thresholding
(so-called “number of harmonics”).



Collaborative filtering

T*"-spectrum T *°-spectrum

T *°-spectra

T '°-spectra
ool
.': :.:.:...- .. f
Py o

TlD_l l

image domain



Aggregation 11

For each reference point zp € X, grouping and collaborative filtering generate a group
Y, of |Sy,| distinct local estimates of y.

Overall, we have a highly redundant and rich representation of the original image y com-
posed of the estimates

H QL}MR, where gQMR : B, — R.

rzreEX, xESwR

Note: different groups Z,, and Z, can lead to different estimates g, , and g _, even
. "R

when these estimates are defined on the same block B, !

In order to obtain a single global estimate ¢ : X — R defined on the whole image
domain, all these local estimates are averaged together using adaptive weights wy, > 0 in
the following convex combination:

o X
w |
bt ZIREX ZIGS;:R IRya:,IR 1
Yy = Wep = 3rpar
o Nm‘;r

w :
ZzREX ZmeSzR *rXB,




Wiener filtering stage 12

Denoising can be improved by performing matching within this estimate and replacing
hard-thresholding by empirical Wiener filtering in the collaborative shrinkage.

Block-Matching

Noise in " is significantly attenuated: more accurate matching by replacing the distance
d. by a distance dgn:
~ht _ sht

d:ght (.%‘R,.%') = Hy \B’mR Y B,

The sets S, are redefined as
SzR = {ZC S X[Bg . dyhr (.’ER,ZC) S Tmatch} .

These new sets S,,, lead to new collections (disjoint unions) of blocks Em = ][] B

QZESzR

Grouping: two groups

Z,,:B
vht . @
YIR.IBE

TR

— R, built by stacking together the noisy patches 2B, B, € I@w "

+r — R, built by stacking together the estimate patches ﬂﬁéz,éz € IE%IR



Collaborative Wiener filtering

Group Wiener estimate | Yar = T~ (W, T (Zsy,))

W (o))

Wiener attenuation factors TR (7 (Y )) o2
TR

Estimate of total variance tsvar{?m} ~o? ||WTRH§

Aggregation

A ‘X
Awie ZIRGX ZIGSTR WrpYe: op 1

Global estimate y o= , Wy
ZxReX erst Wrr X B, "

o2 [[Wanrllz

13



BM3D flowchart 14

Noisy Step 1 _«Basic estimate Step 2
image | Final
Block-wise estimates = Aggregation === Block-wise estimates == Aggregation = Wiener
) N t N estimate
Inverse 3D transform i Inverse 3D transform '
Grouping by ) . Grouping by t b
block-matehing  p.q thresholding - -~ - - | block-matching  wioner filtering - -- - - -
v Weight v v Weight
t Lzt
g = 3D transform g —, 3D transform

> Process overlapping blocks in a raster scan. For each such block, do the following:

(a) Use block-matching to find the locations of the blocks that are similar to the cur-
rently processed one. Form a 3D array (group) by stacking the blocks located at
the obtained locations.

(b) Apply a 3-D transform on the formed group.

(c¢) Attenuate the noise by shrinkage the 3-D transform spectrum.

(d) invert the 3-D transform to produce filtered grouped blocks.

> Return the filtered blocks to their original locations in the image domain and compute
the resultant filtered image by a weighted average of these filtered blocks (aggregation).



BM3D with Shape-Adaptive PCA (BM3D-SAPCA)!®

Main ingredients:

Local Polynomial Approximation - Intersection of Confidence Intervals
(LPA-ICI) to adaptively select support for 2-D transform;

Block-Matching to enable non-locality;

Shape-Adaptive PCA (SA-PCA);

Shape-Adaptive DCT low-complexity 2-D transform on arbitrarily-shaped domains
(when SA-PCA is not feasible).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D Image Denoising with Shape-
Adaptive Principal Component Analysis”, Proc. Workshop on Signal Processing with
Adaptive Sparse Structured Representations (SPARS’09), Saint-Malo, France, April 2009.



At each pixel:

BM3D-SAPCA

\' Input noisy image \
) I

| '

| Group similar blocks

o

Obtain shape
using LPA-ICI

-

Apply
shape

Compute
shape-
adaptive

PCA |

l 3-D transform |"

Shrinkage |

|Tnvcrsc 3-D transform |~5

=

e

each processed bloc

Operations performed fo:

|

Aggregation ——— —

Denoised image

16

1. Group together square image blocks that are similar to the block centered at the current

pixel.



BM3D-SAPCA 17

‘ Input noisy image }
. |

| '

(]

| Group similar blocks

o

Obtain shape ‘
using LPA-TICI G

Apply
shape

Compute
shape-
adaptive

PCA |

l 3-D transform |"

Shrinkage |

|Invcrsc 3-D transform l-5

<

e

Operations performed fo:
each processed block

Aggregation ——— —

Denoised image

2. Obtain the anisotropic neighborhood at the current pixel using 8-directional LPA-ICI.
Apply its shape on each of the grouped blocks, producing a group of adaptive-shape

neighborhoods.



BMS3D-SAPCA 18

‘ Input noisy image }
. |

| '

(]

| Group similar blocks

o

Obtain shape ‘
using LPA-TICI G

Apply
shape

Compute
shape-
adaptive

PCA |

l 3-D transform |"

Shrinkage |

|Invcrsc 3-D transform l-5

<

e

Operations performed fo:
each processed block

Aggregation ——— —

Denoised image

3. Use this group as training data for computing Shape-Adaptive PCA (SVD of the empir-
ical second-moment matrix estimated from the group of similar adaptive-shape neigh-

borhoods).



BMS3D-SAPCA 19

‘ Input noisy image }
. |

| Compute|
shape-
L Apply adaptive
I‘—_l shape PCA B
| Group similar blocks IS'D transform |..

1 ) Shrinkage |

Obtain shape
using LPA-TICI G

|Invcrsc 3-D transform l-5

<

Aggregation ——— —

e

Operations performed fo:
each processed block

Denoised image

3b. Keep only the eigenvectors (PC) whose corresponding eigenvalues are greater than a
threshold proportional to the noise variance (trimmed PCA).
The overall 3-D transform is a separable composition of the PCA (applied on each
image patch) and a fixed orthogonal 1-D transform in the third dimension.



, BM3D-SAPCA
~Input noisy image
) I

| Compute|
shape-
L Apply adaptive
shape PCA |
| Group similar blocks IS'D transform |..

1 ) Shrinkage |

Obtain shape
using LPA-ICI G

|Tnvcrsc 3-D transform |~5

=

Aggregation ——— —

e

Operations performed fo:
each processed block

‘_ Denoised image

4. Apply the 3-D transform on a group of adaptive-shape neighborhoods.
5. Attenuate noise by shrinakage (hard-thresholding or empirical Wiener filtering).



, BM3D-SAPCA 21
~Input noisy image
) I

| Compute|
shape-
L Apply adaptive
shape PCA |
| Group similar blocks IS'D transform |..

1 ) Shrinkage |

Obtain shape
using LPA-ICI G

|Tnvcrsc 3-D transform |~5

=

Aggregation ——— —

e

Operations performed fo:
each processed block

‘_ Denoised image

6. Apply the inverse 3-D transform to obtain filtered neighborhoods,
7. Return the filtered neighborhoods to their original locations and aggregate in case of
overlapping.



BM3D-SAPCA

The scheme is implemented in three iterations:
I:  hard-thresholding, BM and PCA on noisy data
II: hard-thresholding, BM and PCA on estimate from I.

III: empirical Wiener filtering, BM and PCA on estimate from II.

22



Directional varying-scale LPA estimates

Uh,0, = 2 ® gh.o,
scales: h € {hy,...,hs} =
directions: 6 = (k L) m k=1,.

ICI directional adaptive scales
8
{h" (2,0k) Hey

Adaptive neighborhood of the origin
8
Ut :polygonal_hull{suppg;ﬁr(gg,gk)’@k}k:1

adaptive anlsotroplc neighborhood
\ adaptlve -scale kernel sgépor

\ SUPP Gyt 0,
Supp g, e /
& B "7 supp g
< ay HH (a,0,),0,
\ +
Bl U
VR IIIIII
supp g, 2.0,).05 [ SUPD Gy, o)
T
SUPP Gy, 0,).0 ‘r\
supp gh+<I 000 = SUPP 91:+(.,0,).65

Adaptive neighborhood
of estimation point x
(mirror-translates)

U+_
_{ueX (x—v)eUS}




Intersection of Confidence Intervals (ICI) (Goldenshluger&Nemirovski, 1997)24

(for each fixed direction 6y)
A

Dy JA)hl v

bias?> 77— """ =

h* h hy hy hy=h* hy

The estimates g5 (x) are calculated for a set H = {h;}7_,; of increasing scales. The ICT rule
yields a pointwise adaptive estimate §,+ (z), where for every z an adaptive scale h* (z) € H
is used such that g+ (z) = Jp« (o) ().

ICI rule: Consider the intersection of confidence intervals

j
Z,=(\Di, where D;= [yh (2) — Loy, gn, (@) + Toy,
i=1
and T'>0 is a threshold parameter, and let j*+ be the largest of the indexes j for which I;
is non-empty, L+ #@ and L+, =@. Then, bt is defined as h"=h;+ and the adaptive
estimate is Jp+ ().



Block-matching 25

Adaptive neighborhoods can be too small for reliable matching!

Matching for Uj needs to be carried out for a superset.

We use square blocks of size (2hmax — 1) X (2hmax — 1) centered at x, hmax = max{H}.

Adaptive neighborhoods U Vz € X
Blocks B, Vze XpC X

To every x € X we associate zg € Xg such that ||0, (z)|, of §, () = g — z is minimal.

The mapping = — zp and d, (z) are univocally defined (for convex X).
0, (z) # 0 only for z sufficiently close to the boundary 0X of X.



Shape-adaptive grouping 26

For given points x, xi define the translate of ﬁ;rR

Ut :{UEX:(:E—U)GU;R}Z{UGXZ(xR_x"‘”)Gﬁ;—R}'

T, TR

U; zr 18 an adaptive neighborhood of z which uses the
adaptive scales of the “reference point” xpg.

It can happen that U, # Uj.

To a given “reference” point xr we can now associate not only its own adaptive neighbor-
hood U, but a collection (disjoint union) U, of neighborhoods defined as

UIR = H ﬁ;:IR = {Uv;:IR fx A+ 5B (xR) € SCCR+§[B(CCR)} y
m+5B(mR>€SIR+5B (=r)

where SIR+5B(1R) is the result of block-matching for BIR_H;B(Q;R).

All neighborhoods in flz » have the same shape, completely determined by adaptive scales
(™t (2r, 01) }oey at 2R



Shape-Adaptlve PCA

Noisy
adapnw—ah.upe
neigiboerhood

- Noise-froe

i W " s e O W
.'--""'-"-':"'_'. . a"t' Smmd -ﬁ'
B L5 _"_'1,__‘?_.;;.:,;-]-: By ,;:. "",,.__.:f_k

. N H ?._.

adaptive-shape
neighborhood . - .
- ra'g'g-.:.-... T :
-.‘l!. ﬂ-\ |'|.“'§J|.:-LJ_.|‘|.?-. 1-.:5 _:.
.‘l:',:-

Noisy ot ‘p" -
iy XN FE
T S
¥ wauwwe s
pi, A WK
e S

i

Fig.

Tllustration of the PCs (listed by decreasing eigenvalue magnitude) for

two adaptive-shape neighborhoods. The green overlay shows the grouped simi-
lar neighborhoods.



Shape-Adaptlv

@

DCTo
DCTy
DCT7
DCTg
DCT3

Spatial domain

S

DCTy
DCT,
DCTy
DCT3
DCTo
DCTo
DCTY

SA-DCT
Verse SA-DCT

Dlscrete Cosine Transform (SA-DCT) (Sikora et al., 1995) 28

o —— IDCT3

%)
Z{>
o
®)
-3
Q
S
Q
=

IDCT5 s

IDCT5

IDCTy

IDCT3g

IDCTo

IDCTo

IDCT]

Transformation

Shape-Adaptive Discrete Cosine Transform (SA-DCT) and its inverse.
is computed by cascaded application of one-dimensional varying-length DCT transforms,
along the columns and along the rows.



Shape-Adaptive Discrete Cosine Transform (SA-DCT) 29

direct generalization of the classical block-DCT (B-DCT);

on rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
the same computational complexity as the B-DCT (separable);

SA-DCT is part of the MPEG-4 standard;

efficient (low-power) hardware implementations available;

e shape must be coded separately (constitutes some overhead).

Orthonormal SA-DCT does not have a DC term and works best if applied on zero-mean
data: “Orthonormal SA-DCT with DC separation and ADC compensation”, Kauff et al.
1997.



30

SA-DCT (forward transform)
[as used in Pointwise SA-DCT denoising algorithm (Foi et al., IEEE TIP 2007)]

. Column-wise Row-wise
DC separation
> DCTs . DCTs m

Shape-adaptive collaborative filtering (forward transform)

/2D M;:/: o -

.~ SA-DCT < : j
»along each slice) ‘ki (along 3'°damensaon>f4
T Z
T = =
<@ < /

=4 [



Experimental comparison 31

1 1
—_ . =
un —_— un

1
D

Difference in PSNR [dB]

1
[
wn

Lena
AN ' ] ' ’\ﬁb
S
# + o
f_i_ "lﬁ e — J
I ——BM3D-SAPCA (proposed)
T SA-BM3D (Dabov2008)
—+BM3D (Dabov2007)
| MS-K-SVD (Mairal2008)
\ . —=SA-DCT (Foi2007)
— - - ——K-SVD (Aharon2006)
N | - OAGSMNC (Hammond2008)
Ny FoE (Roth2005)
AN ——TLS (Hirakawa2006)
s N SAFIR (Kervrann2008)
. . —% | —+BLS-GSM (Portilla2004)
20 25 35 —LPA-ICI (Katkovnik2004)

Noise standard deviation ——NL-means (Buades2005)



Experimental comparison 32

Cameraman

BJ

1 1
— \ (]
n — n

Difference in PSNR [d
L

[
th

2 —% —aN — A\

P L

B—= o |+~ BMB3D-SAPCA (proposed)

— | SA-BM3D (Dabov2008)
—~BM3D (Dabov2007)

_ = MS-K-SVD (Mairal2008)
s & —— | = SA-DCT (Foi2007)
I == —~+K-SVD (Aharon2006)
el T4 | - OAGSMNC (Hammond2008)
g 1 FoE (Roth2005)
——TLS (Hirakawa2006)
SAFIR (Kervrann2008)
[* . | —+BLS-GSM (Portilla2004)

15 20 5 — LPA-ICI (Katkovnik2004)
Noise standard deviation —+NL-means (Buades2005)

|8
n



1
p—t

1
(98]

Difference in PSNR [dB]
D

1
=

1
N

Experimental comparison 33

Noise standard deviation

Barbara
o TR RN 5
r:;: r—’?P I%\.Q h&\_b
e e
,Tii:_:__"_"‘*—%—_,__7_ 1
e e
- T — 5 ——BM3D-SAPCA (proposed)
= — —f SA-BM3D (Dabov2008)
I = 5 =1 . BM3D [Dabov2007)
T* MS-K-SVD Mairal2008)
| = SA-DCT Fo0i2007)
—+—K-SVD (Aharon2006)
~~ OAGSMNC (Hammond2008)
] FoE (Roth2005)
o —~TLS (Hirakawa2006)
O~ SAFIR (Kervrann2008)
. . O 9 1 ——BLS-GSM (Portilla2004)
15 20 75 35 —=LPA-ICI (Katkovnik2004)

—+—NL-means (Buades2005)



BM3D (27.82, 0.8207)

Noisy, 0 = 35

Original

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)



2.1. Variance stabilization

35



One-parameter families of distributions 36
Let z € Z C R be a random variable distributed according to a one-parameter family of
distributions D = {Dy}, where 6 € © C R denotes the parameter.

w(@)=E{z]0} and o(0)=std{z|0}
conditional expectation and standard deviation of z given as functions of the parameter 6.

Example: ;
D Poisson distributions with mean 6 € © = [0, +00), Pr[z=(¢|0] =e %, (€ N.

o
We have p(f) =6 and o (6) =+0.

2
15 //
a(0) 1
0.5
% 1 3 4



One-parameter families of distributions

Dy [ ()] o (0)
Poisson
Prlz=¢l0] = e *%, CEN, 0 €0, +o0) | o ] Vo
Scaled Poisson (scale x > 0)
Prlz=%j0] =e "%, CEN, 0€0,+00) | 2 | VT o felf)
Binomial (n trials)
Prlz = ¢lo] = (})6° (1 —0)""C, ¢ N, 0 € [0, 1] | no [ ro—p) = /e0el)
Scaled binomial (n trials, scale n)
Prlz=£l0] = ()0 (1 —0)" . CeN o€ o,1] | o | Ve

Negative binomial (exponent k)

3 § —k )
Priz = Clo) = SR (1) (52) " cenoefo.to0) | 0 | NEz)

Scaled negative binomial (exponent k, scale x > 0)

Pr [Z: -i—lﬂ ) (9_%)4 (@) CEN, 0 €0,+00) ‘ ‘ \/9<e+k> — u(9)(#)§i)x+k)

Multiplicative normal (scale x > 0)

(<792 2
[£10) () = sme™ 20T \ 0 \

pdf

)

Doubly censored normal with standard-deviation s (6

pdf [216] (O) = @(55) 60(O) + 50 (558) X0 + (1 — 2(554)) 801 = ©)

37



Variance stabilization problem 38

Find a function f : Z — R such that the transformed variable f (z)
has constant standard deviation, say, equal to ¢, std {f (z) |0} = c.

the (conditional) standard deviation does not depend anymore on the distribution pa-
rameter;
heteroskedastic z turns into a homoskedastic f (z).

Constraints:

11 f should be independent of 8;

1! avoid pathological solutions (e.g., f identically constant);
require, e.g., f to be monotone strictly increasing;

the conditional distributions of f (z) possibly not too bad.



Variance stabilization is typically impossible to achiev®

Positive result: multiplicative normal
f(z) =log|z|

Negative result: Bernoulli

Binary samples z € {0, 1} of the Bernoulli distribution with parameter 0 = E {z|0}
cannot be stabilized to the same constant variance for different values of 6:

E{g(2)10} =09 (1) + (1-0)g (0)
var {g ()10} = B {(9 (=) = B {9 (2)101)° 10} = (9.0) — g (1))* 0 (1~ 0).

Ezact stabilization is not possible for Poisson, Binomial, and most other families used in
applications.

In practice, we deal with either approximate or asymptotic stabilization.



Variance stabilization: history and examples

Classic heuristic stabilizer as indefinite integral form

f<z>=/zﬁdu<e>.

Idea: consider a local first-order expansion of f at u (6)
(i.e., assume o () locally constant),

P = F(r0)) + (2~ 1 (6)) 92 (1(6)),

St {7 (2)16) = 5L (1(6)) 0 (0).

then impose std {f (2) |#} = ¢ and obtain the indefinite integral (1).

We have

40

Known and used already in the 1930’s (e.g., Tippett 1934, Bartlett 1936), often rediscovered
in signal processing (e.g., Prucnal&Saleh 1981, Arsenault&Denis 1981, Kasturi et al. 1983,

Hirakawa&Parks 2006).

Very rough, but useful as a first guess: nearly all classical stabilizers can be seen as a slight

modification of (1).



Variance stabilization: Poisson 41

)= sdun(0) = [* Z5du(0) = 2/z.

o

Bartlett 1936:  2y/z + 3
Anscombe 1948:  24/z + 2 (Anscombe attributes the result to A.H.L. Johnson)
Freeman& Tukey 1950: /z++/z+1

In the same way stabilizers were derived for the Binomial and Negative Binomial distrib-
ution families (“angular” transformations based on the arcsin and hyperbolic arcsin).



Variance stabilization: Poisson 42
- T ]

VX + 3/8

Ratio of actual to limiting variance.

{ 1
o [ 2 3

Fig. 2. Stabilization of Poisson variance.

M. Freeman and J. Tukey, “Transformations Related to the Angular and the Square Root”, The
Annals of Mathematical Statistics, vol. 21, no. 4, pp. 607-611, Dec. 1950.




Variance stabilization: Poisson 43

f@) = [ sgmdn(9) = [ Zzdp () = 2V/=.

Bartlett 1936:  24/z + %

Anscombe 1948:  2y/z+ 3 (Anscombe attributes the result to A.H.L. Johnson)

Freeman& Tukey 1950: /z++/z+1

Starck, Murtagh, and Bijaoui, 1998: generalization of Anscombe for linear combinations
of Poisson variates.

All these results enjoy asymptotic optimality, but good stabilization for small 6 is not
achieved.

Fryzlewicz, Nason, et al. 2004-2008: wavelet-Fisz transforms that return spectra having
approximately constant variance.

Kolaczyk 1999:  threshold-correcting schemes.



Variance stabilization: three milestone works 44

e Curtiss 1943: general asymptotic theorems are proved.

— gave theoretical support to empirical stabilizers that were already used (and also to
others yet to appear).

e Efron 1981: existence of transformations for exact variance stabilization and/or perfect
normalization.
— formalizes sufficient conditions for existence of exact stabilizers (“general transfor-
mation families” framework), and provides their analytical expressions.
— results are nonparametric and nonasymptotic.
— difficult to use in practice (assumes too much smoothness and invertibilities of para-
metrized mappings).

e Tibshirani 1986: AVAS procedure for regression
— approximate variance stabilizing transformations are iteratively computed by re-
cursive application of the integral stabilizer (iterative refinement of the stabilizer)
[Tibshirani fails to successfully use Efron’s stabilizers on data]
— developed for data-driven application, hints about potential use for random vari-
ables.
— nonparametric and nonasymptotic.



45

2.2. Optimization of variance-stabilizing
transformations

Foi, A., “Direct optimization of nonparametric variance-stabilizing transformations”, Proc.
8émes Rencontres de Statistiques Mathématiques, CIRM Luminy, Marseille, France, De-
cember 2008.



Motivation 46

With so many transformations, which one is the best?

This question remains largely unanswered.

e It is typically impossible to achieve simultaneously good stabilization for all parameter
values (see Freeman & Tukey): thus, when a stabilizer appears to be better than another
for some values of the parameter, it is likely that for other values it is actually worse.
In this sense, there might be no “best stabilizer”.

e No objective criterion for assessing the goodness of a stabilizer has ever been formu-
lated. Simply demanding std {f (z) |0} to be as close as possible to ¢ is too vague and
ambiguous.



Variance stabilization as a minimization problem 47

Let
ef(0) =05 (0) —c

be the local error because of inexact stabilization (where locality is intended by the condi-
tioning on 0) and define a global cost functional as

Cr= [ les @] ds (@)

We may formulate the variance stabilization problem as the solution of
argmin, Cy (3)

Variance stabilization is exact only when C't = 0 for some f.

Minimization needs to be constrained to some particular class of functions, such as strictly
monotone, Lipschitz, smooth functions, etc.



Variance stabilization as a minimization problem 48

We have seen that it makes little sense to aim at exact variance stabilization simultaneously
for all parameter values.

We consider a separable weighted cost functional (stabilization functional) of the form
Cy = [ wo ®)we s ©))db, (@
o)

where the weight functions wy and w, provide different weighting for the different values
of 6 and different stabilization errors ey (6), respectively.

In particular, we design special weights w, that favor approzimate stabilization while ig-
noring very large stabilization errors.



Stabilization functional 49

Let v,y < 1, 7,rf >0, ) > 1), ]’ > 1], 04,00 > 1 be some real constants and xq, be the
characteristic (indicator) function of a set .

We define the weights w, as
we (e (0)) = | (€7 (0)) €7 (0)]

where
e (0) = 7(0) —c=max{—r',min{r],es (0)}},
77 (0) = max{c—r{,min{c+r], 07(0)}},

and with the function ¢ given by

9 (ou—1)
er—rl
pler) = * X[0,+00) (ef) [1 - ( ! N u> ] X(=c0,r1) (ef) + X[, +00) (ef)

+

(o1—1)

X (€7) [1 ()| X € X )




Stabilization functional 50

The clipped argument €5 (¢) cannot distinguish stabilization errors larger than r{’,r!/, while
the multiplication against the function ¢ increases the order of the stabilization errors from
1 to 01,0,. Note that for a positive (resp. negative) argument, the function ¢ has a zero of
order o, — 1 (0 — 1) at zero and becomes constant (with quadratic-smooth joint) equal to

Yu (M) starting from 7/, (7).
Thus, the cost functional (4) takes the form

o /@ wo (0) o (77 (0)) 27 (9)] .

A
quadratic

—_— C 71 quadratic

Y — -
O -1

(ef ) O(efo”—l)

>
_,rJ 0 ,rJ

The function .



Iterative integral algorithm for optimizing f 51

0. Initialize
fo(2) =z (identity) or an arbitrary (non-optimal) stabilizer
f monotone increasing

Iterate the following three stages:

1. Compute statistics
Uy (0) = med { fi (2) |0} = fi (med {20})
ok (0) = std {f (2) [0}

2. Compute stabilization refinement
e (2) = [ 1 (0) d [V (0)] (integration with respect to the median)

where
L) =1-2 (0) ¢ (e (9)) & (0)
o5, (0) ’
o (0) =7k (0) —c = max {—n’,min {ry, e (0)}}

0% (0) =max{c—r',min{c+ 1,0, (0)}},

3. Compose

Jre1 (2) = 7r (fi (2))



Optimization of Poisson stabilizer (iterative integral)’?

ou,0 = 1.5, r/ rl/ =0.2, r(l/,rl” =0.5, v,,7 =0.8
T T

u’

o A e ]

GO 5 10 15

Standard-deviation functions o (6)
Green: fo =+/z++Vz+1 Red: fo =24/z+ 3/8 Blue: optimized



Optimization of Poisson stabilizer (iterative integral)’

’ ! 1 "
oy,00 =15 r,,n =02, r',r" =0.5 ~,,v =0.8

0.35 T T T

0.3

0.25

02

0.15

01 1 1 1
10 10" 107 10°

stabilization functional vs. iterations (log scale)

fo=+vz++Vz+1 (lower) and fo = 2+/z+ 3/8 (higher)




Optimization of Poisson stabilizer (iterative integral)*

oy,0 = 1.5, r",,rl/ =0.2, r(l/,rl” =0.5, v,,7 =0.8

6 ! !
5 O ROLpU PP PP -
4 O SR _’ ______________________________________________________ -
3 R o PP -
S
L ¢ R A J
2 ’,vf
1 . -
’
4 : |
| A —Optimizedz > fiz) | i
===Expectations mapping E{z} > E{f{z)}
A - A bihb\2éiha .
2 5 10 15

variance-stabilizer f and the mapping E {z|0} — E {f () |0}
stabilization functional = 01.051



Optimization by iterative integral vs. direct search

Convergence of the iterative integral algorithm was verified experimentally, up to the
numerical precision of the algorithm, in extensive tests.

However, its limit does not necessarily coincide with the minimizer of the stabilization
functional.

— computational aspects involved in the evalutation of the integrals
— unless the class of distributions and allowed stabilizers are reduced to non-interesting

cases, a proof of minimization seems very difficult to achieve (similar situation as for AVAS
algorithm)

A practical way to circumvent these issues is to solve the minimization by direct search,
which is particularly feasible for discrete distributions.

We use Nelder-Mead downbhill simplex algorithm.



Optimization by direct search 56

ow,00 =15 r,r/ =02, r/,r/' =05, v,,v =0.8

" — Optimized Nelder-Mead z -> f(z)
{ | ==~ Expectations mapplng E{z} = E{fz)}

variance-stabilizer f and the mapping E {z|0} — E{f () |0}
stabilization functional = 0.096



Optimization by direct search: relaxing monotonicity”

’

ow,00 =15 r,r/ =02, r/,r/' =05, v,,v =0.8
B T T

: — Qptimized Nelder-Mead z -> f(z)
S - === Expectations mapping E{z} -> E{f(z)}}.------- .

0 5 10 15
variance-stabilizer f and the mapping E {z|0} — E{f () |0}
stabilization functional = 0.079



Optimization by direct search 58

"

ow,00 =15 r,r/ =02, r/,r/' =05, v,,v =0.8
T T

| A S ]

] S A -
02 A -
00 5 10 15

Standard-deviation functions o (6)
Purple: optimized by direct-search non-monotonic Blue: optimized by recursive integral



99

3. Application to raw-data denoising

Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-Gaussian
noise modeling and fitting for single image raw-data”, IEEE Trans. Image Process., vol.
17, no. 10, pp. 1737-1754, October 2008.

Foi, A., “Practical denoising of clipped or overexposed noisy images”, Proc. 16th FEuropean
Signal Process. Conf., EUSIPCO 2008, Lausanne, Switzerland, August 2008.

Foi, A., “Clipped or overexposed noisy images: heteroskedastic modeling and practical
denoising”, preprint, submitted to Signal Processing.



Raw data as clipped signal-dependent observations 69

Z(z) = max {0, min {z(x),1}}, reXCZ?

z(x) = y(2) + o (y(z)) E(=)

y: X =Y CR unknown original image (deterministic)
o(y(z))&(x) zero-mean random error
oc:R— R standard-deviation function (deterministic)
&(x) random variable E{{(z)} =0 var{{(z)} =1
y(z)=E{z(z)} expectation

o(y(z)) =std {z(x)} standard deviation



100

200

Clipped noisy data

300 400

original

added noise and then clipped

61



Raw data as clipped signal-dependent observations 62

Z(z) = max {0, min {z(x),1}}, reXCZ?

(@) + 6 (5(2)) é(2)

IS
—
&
S—
Il
<

g(z) = E{zZ(z)} expectation
5:[0,1] - Rt standard-deviation function (of expectation)
a(g(z)) =std {z(x)} standard deviation



Modeling raw-data signal-dependence before clipping’

The random error before clipping is composed of two mutually independent parts:
o (y ()€ (@) =mn, (y(x)) +n, (z)

p Poissonian signal-dependent component (photonic)

Mg Gaussian signal-independent component (everything else)

(@) +n,y@)x ~ Phyx), x>0
ng (x) ~ N(0,0), b>0

o*(y(x)) = ay(x) +b,  a=x

N (u, 02) normal (=Gaussian) distribution with mean p and variance o

P (A) Poisson distribution with mean (and variance) A



Normal approximation of Poisson variates 64

k

A
¢ ~ P (\) means the probability Pr[¢ = k] = e**ﬁ, ke N.
L = w?
¢~ N (s, 02) means the probability density of z is p (¢) = e 22 | CeR
oV 2

- /

e
0

p.d.f. (top)

and c.d.f. (bottom) for P (\) and N (A, \), A = 2,10, 20, 40.



Heteroskedastic normal approximation

Z(z) = max {0, min {z(x),1}}, reXCZ?

65



(Generalized) Probability distributions 66

Before clipping:

0:(¢) = $¢(%>

After clipping:

p2(Q) = (5%) 00(Q) + 7570 (558) X + (1= @ (38)) 801 = ©

¢ and ® are p.d.f. and c.d.f. of N (0,1)
do is Dirac delta function X[0,1) is characteristic (=indicator) function of interval [0, 1]



Expectations and variances

B == (55) v -2 (45) 0 - D+ 000 (35) ~ oo (45

var {Zly} = 52(5) = @ (55 ) (v* — 20y + o*()) +

+72 -0 (L55) (v~ 2y + 25+ 0*(y) — 1) +

67

+o(y) ¢ (455) @i—y -1 - o) o () @7 - ).



01| — o) = —
008H ~7~ U(y) = N\
— |
— —\\\ A
0.06 — &
//// A
0.04=7% A
I 4 A\ i
[ I
0.02/f \
I
% 02 04 06 08 1
0.12
01 - - ~
7
’ \
008 \
/ Y]
0.06—%—= &
”/// \\\
0.041f — e A
In L — N
i ] A
0.02t sem— ~
K —o(y) —- ()
I 1 I I
% 0.2 04 06 0.8 1

68

a = 0.022,0.062, 0.102
b = 0.042

a = 0.042
b =0.022,0.062,0.102



Noisy image :

PSNR=15.00dB noise parameters a = 0, b= 0.22

69



Denoising 70

Denoising heteroskedaskic data using variance-stabilization and conventional
denoising algorithm for AWGN.

Main stages:

1. variance-stabilization
2. denoising (BM3D public code for AWGN from www.cs.tut.fi/ " foi/GCF-BM3D/ )

3. inversion of the stabilizer (from E {f (2)} — y)

We compare two alternatives stabilizers:

folt) = / i Lt el

f2000 optimization by iterative integral.



Variance stabilization 71

0.4

0.2
std { i, () |7}




02

Variance stabilization

i

= Optimized

62 05 04
std {fo (2) |7} s

0.5

0?6 057
std { fa000 (2) |7}

72



Variance stabilization

Convergence of the iterative integral algorithm

73



Denoised using f, as stabilizer

Mg

INI\M\IM

PSNR=29.37

74



Denoised using f,,, as stabilizer

‘IWW”WM‘l““‘i“W‘l“l“l“WV‘M“I‘WWMI‘M
&

PSNR=30.67 [1.3dB gain]

(6]



Noisy raw-data image

Fujifilm FinePix S9600 (green channel)




0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01y

Noise estimation

| | | | x
0 01 02 03 04 05 06 07 08 09 1
a = 0.003978 b =0.0004787

(i



Variance stabilization 8

0.4 0.6

. 0.2
std {fi (2) 17}

n




Variance stabilization

s e ==
H H H H H H H -r'
|
| | : : | i || = Initial
02 I o L [ Optimized| ]

b 01 02 03 04 05 06 07 08 08 1
std{fo (2) [} vs  std{fa000 (2) |7}




0255

025

0245

024

0235

0.3

0225

hl)

Variance stabilization

Convergence of the iterative integral algorithm

80



Denoised using f, as stabilizer




Denoised using f,,, as stabilizer




Denoised using f, as stabilizer

(gamma-corrected)

83



Denoised using f,,, as stabilizer

(gamma-corrected)

84



Comparison of fragments (1/3)

noisy using fy using fa000

(all gamma-corrected)




Comparison of fragments (2/3)

using fo using f2000

(all gamma-corrected)




Comparison of fragments (3/3)

using fo using f2000

(all gamma-corrected)




Thank you!




89

LNLA 2009

2009 International Workshop on
Local and Non-Local Approximation
in Image Processing

August 19-21, 2009, Gustavelund Conference Hotel, Tuusula,
Finland (near Helsinki)

http://sp.cs.tut.fi/ticsp/1nla09

N NOKIA
'ﬁ' @ IE E TTpIFtS.E'f'?TFg &, Connecting Peop




