

From smart labels to wireless sensor networks

David SIMPLOT-RYL

IRCICA/LIFL, Université de Lille 1, INRIA Futurs, France

http://www.lifl.fr/~simplot

simplot@lifl.fr

Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication

Smart labels

- Radio Frequency Identification Tag
- By opposition to bar code which use optical principles

V IR ICA

• A strongly limited component:

500 times smaller than a classical microprocessor

Chip with a size of some mm²

IRISA'TECH March 15, 2005 SIMPLOT-RYL – From tags to sensor networks

RFID Tag

Principle

Typically, RFID Tags are passive components: they have no battery!

Tag are powered by electromagnetic field generated by reader

- Communication from reader device to vicinity tags: amplitude shift keying (ASK)
- Communication from tags to reader device: impedance shift keying (ISK)

EAS Application

Electronic Article Surveillance

- Once powered, the tag emits
- The reader listen channel and activate alarm as early as transmission is detected
- During checkout, the tag is burned out
- Problem: power and hear the tag whatever the tag orientation

Current smart labels

RFID Tag can memorize information

Up to 256 bytes for present generations

IRCIC.

- Rewritable (flash memory)
- Or not (write once)
- Can be protected by password

- ② Low-cost bar code
 less than one cents (€)
- High cost for interrogator device
- Static information
- B Limited information
 - ~ ten digits (decimal)
 - NB. Systemd that extend bar code capabilities exist (code-barre 2D, etc...)

- High-cost tags
 - Ten cents (€)
- Lost cost for interrogator device
- Dynamic information
- Significant information capability
 - Kilobit order ~ several digit hundreds

- Provided information concerns a collection of objects and requires centralized system
- Security relies on centralized system
- Unidirectional optical communication
 - Direct line of sight
 - Handling
 - Sensitive to dust
 - ...

- Information relative to the object
 - Can be completed by centralized system
- Security at tag level
 - Fight against falsification
- © RF communication
 - No Line of Sight

IRISA'TECH March 15, 2005

8 Item by item scanning

Scanning of set of items

Electronic Article Surveillance (EAS)

Batch identification

- No handling
- Fast identification
 - More than 200 tags per second

courtesy to Mike Marsh

IRISA'TECH March 15, 2005

Intelligence in interrogator device \Rightarrow simple and low-cost tags

e Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancé

Applications

Batch identification

Marathon Automatic clocking in

IRCICA

Automatic luggage sorting

Automatic inventory 50 items in less than one second

IRISA'TECH March 15, 2005

* POPS = Portable Objects Proved to be Safe (*e.g.* smartcards, RFID, sensors, smastdust...)

IRISA'TECH March 15, 2005

Class V tags Readers. Can power other Class I, II and III tags; Communicate with Classes IV and V.

Class IV tags: Active tags with broad-band peer-to-peer communication

> Class III tags: semi-passive RFID tags

Class II tags: passive tags with additional functionality

Class 0/Class I: read-only passive tags

IRISA'TECH March 15, 2005

Sensor applications

Military applications:

- (4C's) Command, control, communications, computing
- Intelligence, surveillance, reconnaissance
- Targeting systems

Health care

- Monitor patients
- Assist disabled patients

Commercial applications

- Managing inventory
- Monitoring product quality
- Misc.
 - Monitoring disaster areas
 - Home security

IRISA'TECH March 15, 2005 SIMPLOT-RYL – From tags to sensor networks

IR IC.

Inactive Sensor

IRISA'TECH March 15, 2005

IRISA'TECH March 15, 2005

Active Sensor

IRISA'TECH March 15, 2005

Research challenges in wireless sensor networks (1)

Operating system and software development

Common approach:

"We have no problem, we have TinyOS"

TinyOS

- Event-driven OS for sensor networks
- ✓ Open-source project at UC Berkeley
- Dedicated language NesC (C-like language)
- Strong expertise is needed to develop sensor software
- Is it what we want?
 - Intelligence in operating system and framework instead of expertise of developers
- Alternatives:
 - Contiki [Sweden] Free BSD based OS
 - ✓ Java Iin The Small [Univ. Lille] JavaOS

IRISA'TECH March 15, 2005

IRISA'TECH March 15, 2005

Research challenges in wireless sensor networks (3)

Coverage and exposure problems

- Coverage problem
 - Quality of service (surveillance) that can be provided by a particular sensor network
 - Activity scheduling (nodes can sleep while preserving surveillance surveillance)
- Exposure problem
 - A measure of how well an object, moving on an arbitrary path, can be observed by the sensor network over a period of time

Research challenges in wireless sensor networks (4)

Dissemination and data gathering

- Flooding is used to build gathering trees
- Building suitable gathering trees is an open question
- Flooding is a beaconless protocol but energy consuming
- Data fusion is possible along transmission

Conclusion

New networking paradigms and protocols

Network = physical database

Self organization and localization

Initialization

Energy efficient algorithms, protocols and systems

MAC layer, Topology control, Transport layer, Component activity, etc...

Embedded operating systems

Scalability, Real-time, Memory management, Component activity ...

Security

Of course...

From smart labels to wireless sensor networks

David SIMPLOT-RYL

IRCICA/LIFL, Université de Lille 1, INRIA Futurs, France

http://www.lifl.fr/~simplot

simplot@lifl.fr

