
Modular Verification
of Security Protocol Code

Cédric Fournet
Microsoft Research

Joint work with Karthik Bhargavan and Andy Gordon

http://research.microsoft.com/~fournet
http://msr-inria.inria.fr/projects/sec

Protocol Verification 1978—2008

• In Using encryption for
authentication in large networks
of computers (CACM 1978),
Needham and Schroeder set up
a verification challenge:

Nowadays,
• Authentication and secrecy

properties for basic protocols
have been thoroughly studied

• After intense effort on symbolic
reasoning, techniques and tools
are available for automatically
proving these properties
– Athena, TAPS, ProVerif, CryptoVerif,

FDR, AVISPA, etc

• We can automatically verify most
security properties for detailed
models of crypto protocols
– IPSEC, Kerberos, Web Services,

Infocard, TLS, ...

“Protocols such as those developed
here are prone to extremely subtle
errors that are unlikely to be
detected in normal operation.

The need for techniques to verify
the correctness of such protocols is
great, and we encourage those
interested in such problems to
consider this area.”

Cryptographic Protocols (Still) Go Wrong

• Both design and implementations
– Most standards got it wrong once or twice (SSL, SSH, IPSEC, 802.11)
– Implementation details matter!

• For example, recent flaws in Google single-sign-on, in Kerberos
Security testing does not help much

– How to test for all attack scenarios?

Independent expert review may help
– E.g. mandatory Crypto Board review for any non-standard crypto
– Still, more an art than a science, and a limited resource

Do I need a new review before submitting any code change?

Security Verification?

• Best practice: apply formal methods and tools
throughout the protocol design & review process

• Not so easy
– Specifying a protocol is a lot of work
– Most practitioners don’t understand formal models

• Protocols go wrong because...
– they are logically flawed, or
– they are used wrongly, or
– they are wrongly implemented

• Some troublesome questions

1. How to relate crypto protocols to application security?
2. How to relate formal models to protocol implementations?

Specs, Code, and Formal Tools

TLS Kerberos

WS-Security
IPsec

SSH

Protocol Standards

Protocol Implementations and Applications

C/C++

Java

ML

C#

F# Ruby

Symbolic Analyses

ProVerif (‘01)

Casper

Cryptyc F7

AVISPA
Applied-Pi

Computational Analyses

CryptoVerif (‘06)

Hand Proofs
NRL

Athena

Scyther

Expert review by the Crypto Board of non-standard crypto helps

– but even experts miss bugs, and standards may be wrong

– reviewers can’t check all implementation details and changes

We develop automated tools to verify protocols
as part of their design and development

Goal: Crypto Verification Kit

Verifying Protocol Code (not just specs)

Applications

Crypto, Net
Concrete Libraries

Crypto, Net
Symbolic Libraries

Interoperability Testing

Compile

Network

Compile

Other
Implementations

Symbolic
Debugging

Run Run No Attack

Verify
Diverges

Attack

Symbolic
Verification

Proof

Verify
No Proof

Computational
Verification

Protocol Code Security
Goals

Computational
Crypto Model

One Source
Many Tasks

TLS in F# *CCS’08+

We implemented a subset of TLS (10 kLOC)

– Supports SSL3.0, TLS1.0, TLS1.1
with session resumption

– Supports any ciphersuite using
DES, AES, RC4, SHA1, MD5

We tested it on a few basic scenarios, e.g.

1. An HTTPS client to retrieves pages
(interop with IIS, Apache, and F# servers)

2. An HTTPS server to serve pages
(interop with IE, Firefox, Opera, and F# client)

We formally verified our implementation (symbolically & computationally)

TLS in F# *CCS’08+

We used “global” cryptographic verifiers,
treating our F# code as a giant protocol

We reached the limit of this proof method:

• “Automated” verification is fragile,
involves code refactoring and expertise

• Verification takes hours on a large machine

• Adding new profiles or composing sub-protocols leads to divergence

• We can’t directly reason about protocols using TLS as a component

We need compositional verification techniques

LOGICAL INVARIANTS
FOR CRYPTOGRAPHY

OUR LATEST VERIFICATION METHOD

Invariants for Cryptographic Structures

F7: REFINEMENT TYPES FOR F#
OUR TOOL FOR AUTOMATED VERIFICATION

Refinement Types

F7: Refinements Types for F#
• We use extended interfaces

– We typecheck implementations

– We generate .fsi interfaces
by erasure from .fs7

• We support a large subset of F#

– ADTs, records, patterns, refs

– Value- and type-polymorphism

– Concurrency

• We call Z3, an SMT prover,
on each non-trivial proof obligation

client.fs7

client.fs

file.fsi

Type
(F7) Prove

(Z3)

Compile
(F#)

Erase
types

crypto.fs7

AUTHENTICATED RPC
SAMPLE PROTOCOL

Client
Service

request HMAC(key,request)

response HMAC(key,request,response)

Informal Description

Is This Protocol Secure?

Logical Specification

F# Implementation

Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4

Test

Modelling Opponents as F# Programs

Security Theorem

SECURITY BY TYPING

Syntactic vs Semantic Safety

• Two variants of run-time safety:
“all asserted formulas follow from previously-assumed formulas”
– Either by deducibility, enforced by typing (the typing environment

contains less assumptions than those that will be present at run-time)
– Or in interpretations satisfying all assumptions

• We distinguish different kinds of logical properties
– Inductive definitions

(Horn clauses)
– Logical theorems

additional properties
that hold in our model

– Operational theorems
additional properties
that hold at run-time

• We are interested in least models for inductive definitions (not all models)
• After proving our theorems (by hand, or using other tools),

we can assume them so that they can be used for typechecking

Refined Modules (Theory)

• Defining cryptographic structures and proving theorems is hard...
Can we do it once for all?

• A “refined module” is a package that provides

– An F7 interface, including inductive definitions & theorems

– A well-typed implementation

Theorem: refined modules with disjoint supports
can be composed into semantically safe protocols

• We show that our crypto libraries are refined modules (defining e.g. Pub)

• To verify a protocol that use them,
it suffices to show that the protocol itself is a refined module,
assuming all the definitions and theorems of the libraries.

Refined Modules (Sample)

• Crypto: a library for basic cryptographic operations
– Public-key encryption and signing (RSA-based)

– Symmetric key encryption and MACs

– Key derivation from seed + nonce, from passwords

– Certificates (x.509)

• Principals: a library for managing keys, associating
keys with principals, and modelling compromise
– Between Crypto and protocol code,

defining user predicates on behalf of protocol code

– Higher-level interface to cryptography

– Principals are units of compromise (not individual keys)

• XML: a library for XML formats and WS* security

Cryptographic Pattern Example:

Hybrid Encryption

CARDSPACE
& WEB SERVICES SECURITY

CASE STUDY

InfoCard: Information Card Profile v1.0

,
Client C

(Windows Cardspace)

3. Get IP Policy

5. Submit (T)

card

Relying Party (RP)
(Web Server)

Policy

Identity Provider (IP)
(Security Token Server)

Secret
card
data

Policy

Client Application (A)
(Web Browser)

4. Get Issued Token (T)
with card data

1. Request

6. Response

2. Here is RP’s Policy (go to IP)
Selects card
and
provides
password

Protocol
Narration
(Managed
Card)

InfoCard: Information Card Profile v1.0

Verifying CardSpace

• We reviewed the protocol design

• We built a modular reference implementation

– For the three CardSpace roles: client, relying party, identity provider

– For the protocol stack: WS-Security standards & XML formats

– For the underlying cryptographic primitives

• We first analyzed this code using PS2PV and ProVerif

• We now verify the same code by typing using F7

– No change needed!

– Fast, modular verification of F# code

– We get stronger security properties,
for a more precise model (reflecting all details of the XML format)

Performance
relative to FS2PV/ProVerif

DISTRIBUTED KEY MANAGER [2009]

A new security API for protecting application data

Verifying DKM
(ongoing work with T. Acar, D. Shumow)

• We supplement production code (in C#)
with verified reference code (in F#)

– We re-code three internal interfaces in F#

– We re-use their test suites to validate our code against theirs

– We develop (and verify) a precise security model

• We identified several security issues in their
(high-quality) design and implementation

– (...)

• F7 can help with new security code,
as part of the development process, at a reasonable cost

language DKM source

C# code ~ 20,000

F# code 1,654

F7 model 300

VERIFYING “SECURITY COMPILERS” [2009]

F7-Based Verifying Compilers
For many applications, it is easier to generate security protocols
from high-level specifications than to verify low-level handcrafted code

1. We compile distributed workflows to custom crypto protocols [CSF07,09]

– The compiler generates efficient F# code (low cryptographic overhead)
with compact message formats, embedded key-establishment, etc

– The compiler is not trusted, but also generates detailed F7 type annotations,
“dumping” the invariants used for protocol synthesis

2. F7 typechecks the resulting protocol code (might report compiler bugs)

Maybe the largest verified cryptographic protocols
10 roles, 30 messages, 5 000 LOCs of F# code + 5 000 LOCs of F7 types

http://msr-inria.inria.fr/projects/sec/sessions

http://msr-inria.inria.fr/projects/sec/sessions
http://msr-inria.inria.fr/projects/sec/sessions
http://msr-inria.inria.fr/projects/sec/sessions

Summary:

Modular Verification of Protocol Code

• We develop automated verification tools for verifying
the security of cryptographic protocol implementations
– Against realistic threat models (crypto, active attackers)

– Using security models closely related to executable code

– As part of their design and development cycle

• We build cryptographic structures with logical invariants.
We enforce them for F# code, using F7 refinement types
(other verification tools may usefully apply)

• Ongoing work:
– Tools: F7 v2.0 (Dec’09)

– Applications: WS*, CardSpace, TLS, DKM, …

– Computational Soundness of F7 typechecking
under standard cryptographic assumptions

– Synthesis of cryptographic protocol implementations

