Y 4
CAPS

=]
e

L dkaialea: 01 0 1% 0 O

Programming Multicore Challenges

Francois Bodin

Irisatech, May 19t, 2009

H =
Introduction

= Main stream applications will rely on new
multicore / manycore architectures

|t is about performance not parallelism

= Various heterogeneous hardware
e General purpose cores
* Application specific cores — GPU

= HPC and embedded applications are increasingly
sharing characteristics

ry

CA PS Irisatech, May 19th 2009

Manycore Architectures

= General purpose cores
e Share a main memory

e Core ISA provides fast SIMD
instructions

= Streaming engines / DSP / FPGA

» Application specific architectures
(“narrow banad’)

e Vector/SIMD
e Can be extremely fast
= Hundreds of GigaOps
e But not easy to take advantage of
* One platform type cannot satisfy
everyone
= QOperation/Watt is the efficiency scale
7

CAPS

Upload
remote :
data Application
data

Download
remote data

Remote Stream cores
Procedure call

Irisatech, May 19th 2009

Multiple Parallelism Levels

= Amdahl’s law Is forever, all levels of parallelism
need to be exploited

 Hybrid parallelism needed

= Programming various hardware components of a
node cannot be done separately

()
local memory shared memory shared memory local memory

A A | A A

\ 4 A 4 A 4 \ 4 =
—
: 5 :

| —- | —-
T core ; core T
]

S 2 ~
< <
= =
T T

3 Threads 3
Iocimemory Message Passing local memory

CA PS | Irisatech, May 19th 2009

H =
Programming Multicores/Manycores

= Physical architecture oriented
« Shared memory architectures
= OpenMP, CILK, TBB, automatic parallelization, vectorization...
« Distributed memory architectures
= Message passing, PGAS (Partition Global Address Space), ...
e Hardware accelerators, GPU
= CUDA, OpenCL, Brook+, HMPP, ...

= Different styles

o Libraries

= MPI, pthread, TBB, SSE intrinsic functions, ...
e Directives

= OpenMP, HMPP, ...

« Language constructs

= UPC, Cilk, Co-array Fortran, UPC, Fortress, Titanium, ...
7

CA P S Irisatech, May 19th 2009

The Past of Parallel Computing, mE

the Future of Manycore?

= The Past
« Scientific computing focused

* Microprocessor or vector based, homogeneous
architectures

* Trained programmers willing to pay effort for
performance

e Fixed execution environments

= The Future
 New applications (multimedia, medical, ...)
 Thousands of heterogeneous systems configurations
« Unfriendly execution environments

ry

CA P s Irisatech, May 19th 2009

H =
Multi (languages) programming

= Happens when programmers needs to deal with
multiple programming language
e E.g. Fortran and Cuda, Java and OpenCL, ...
= Multiprogramming impacts on
 Programmer’s expertise
 Program maintenance and correctness
* Long term technology availability

= Performance programming versus domain
specific programming
 Libraries, parallel components to be provided to divide

the issues

ry 4
C A P S Irisatech, May 19th 2009

H N
Can the Hardware be Hidden?

= Programming style iIs usually hardware
iIndependent but

* Programmers needs to take into account available
hardware resources
= Quantitative decisions as important as parallel
programming
e Performance is about quantity
e Tuning Is specific to a configuration

= Runtime adaptation is a key feature
« Algorithm, implementation choice

* Programming/computing decision

ry 4
C A P S Irisatech, May 19th 2009

o =
Manycore = Numerous Configurations

= Heterogeneity brings a lot of configurations
Proc. x Nb Cores x HWA x Mem. Sys.

1000s of configurations

= Code optimization strategy may differ from one
configuration to another

/s it possible to make a single (a few) binary that
will run efficiency on a large set of
configurations?

ry

CA PS Irisatech, May 19th 2009

H =
Asymmetric Behavior Issue

= Cannot assume that all cores with same ISA
provide equal performance

* Core frequency/voltage throttling can change
computing speed of some cores
* e.9. Nehalem “turbo mode”

o Simple (in order) versus complex (out-of-order) cores
o Data locality effects

How to deal with non homogeneous core
behavior?

ry 4
C A P S Irisatech, May 19th 2009

Manycore = mE

Multiple 1 -Architectures

= Each u -architecture requires different code
generation/optimization strategies
* Not one compiler in many cases

= High performance variance between implementations
e ILP, GPCore/TLP, HWA

= Dramatic effect of tuning
« Bad decisions have a strong effect on performance
o Efficiency is very input parameter dependent
e Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

ry 4
CA PS Irisatech, May 19th 2009

CAPS Compiler Flow mE
for Heterogeneous Targets

HMPP annotated
native codelet

= Dealing with
various ISAs

main function

= Not all code ——

. generator HMPP runtime
i interface
generation can be LM i
target . [HMPP
generator : codelet

performed in the

Same framewo rk Generic host
compiler
Target codelet
Hardware vendor
compiler
Binary host o
application Dynamic library

HMPP codelet

ry 4
CA PS Irisatech, May 19th 2009

H =
Tuning Issue Example

#pragma hmpp astex codelet 1 codelet &
#pragma hmpp astex codelet 1, argslcl.do=in &
#pragma hmpp astex codelet 1, args[v]io=inout &
#pragma hmpp astex codelet 1, args[u].o=inout &
#pragma hmpp astex codelet 1, target=CUDA &
#pragma hmpp astex codelet 1, version=1.4.0
void astex codelet 1(float u[256] [256] [256], float v[256] [256] [256], float c[256] [256] [256],
const int K, const float x2){
astex thread begin:{
for ntit= 0 ; it < K ; ++it){
for (nti2 = 1;12 < 256 - 1; +i2){
for Gnt i3 = 1;i3< 256 - 1; ++i3){
for (intil = 1;il <256 - 1; ++i1){
float coeff = c[i3] [i2] [i1] *c[i3] [i2] [i1] * x2;
float sum = ufi3] [i2] i1 + 1] + uli3] 2] [il - 1];
sum += u[i3] [i2 + 1] [i1] +u[i3] [i2 - 1] [i1];
sum += u[i3 + 1] [i2] [i1] +u[i3 - 1] [2] [i1];
v[i3] (2] [1] = (2. - 6. * coeff) * u[i3] [i2] [i1] + coeff * sum - v[i3] (2] A1];
}

}

}

for Gnti2 = 1;1i2 < 256 - 1; +i2){
for Gnt i3 = 1;i3< 256 - 1; ++i3){
for (ntil = 1;il <256 - 1; ++i1{

Need interchange
If aims at NVIDIA GPU

}astex thread end:;
~y

} 4
CA PS Irisatech, May 19th 2009

H =
Input Fortran Code Example 2

ISHMPP sgemm3 codelet, target=CUDA, args[vout].Jo=inout
SUBROUTINE sgemm (m,n,k2,alpha,vinl,vin2,beta,vout)
INTEGER, INTENT(IN) ::m,n,k2
REAL, INTENT(N) :: alpha,beta
REAL, NTENT(IN) :: vinl(n,n), vin2(n,n)
REAL, NTENT@INOUT) ::vout(nn)
REAL :: prod
INTEGER ::ijk X>8 GPU compiler fails
ISHMPPCG unroll(X), jam(2), noremainder
ISHMPPCG parallel _ .
DO §=1,n X=8 200 Gigaflops
ISHMPPCG unroll(X), splitted, noremainder
ISHMPPCG parallel X=4 100 Gigaflops
DO i=1,n
prod = 0.0
DO k=1,n
prod = prod + vinl(,k) * vin2 (k,j)
ENDDO
vout (i,j) = alpha * prod + beta *vout(,j) ;
END DO
END DO

END SUBROUTINE sgemm

vy

CA PS | Irisatech, May 19th 2009

H N
Multicore Workload

Multiple applications sharing the hardware

« Multimedia, game, encryption, security, health, ...

Unfriendly environment with many competitions
e Global resource allocation, no warranty on availability

e Must be taken into account when programming/compiling

Applications cannot always be recompiled

* Most applications are distributed as binaries

A binary will have to run on many platforms
* Forward scalability or “write once, run faster on new hardware”

e Loosing performance is not an option

ry 4
CA P S Irisatech, May 19th 2009

H =
Varying Avallable Resources

= Avallable hardware resources are changing over
the execution time
e e.9. a HWA may not be available
e Data affinity must be respected

= How to avoid that conflict resource usage will
not lead to global performance degradation?

ry

CA PS Irisatech, May 19th 2009

H =
Competition for Resources

COTTteTTtion
BThread,
AThread, AThread,
L1 Cache L1 Cache L1 Cache L1 Cache

i ¥

L2 Cache

[shared bus

B
3
T § sec
i 3

[Pl le hus
Main Memory ARPC,) ARPC t
Application A
Application B HWA (GPU, FPGA, ...) HWA (GPU, FPGA, ...
r’

CA PS Irisatech, May 19th 2009

H =
OpenMP In Unfriendly Environment

= OpenMP programs performance is strongly
degraded when sharing resources

« Example with NAS parallel benchmark, 2 cores, one
rogue application using one of the core

e Best loop scheduling strategy not identical on loaded
or unloaded machine

1800

1600
1400 -
1200

Seq
1000 71 " static
Static + Rogue

® Dynamic8 + Rogue

600
Adapt10 + Rogue
400
T SP

o ;
CAPS

BOD -

I atech, Md§Toth 2009 EP

H N
Peak Performance is Not the Goal

= Maximizing the Return on Investment

4 Performance

>
Y J 4 Resources, cores

CAPS Irisatech, May 19th 2009

Difficult Decisions Making with Alternative mE

Codes (Multiversioning)

= Various implementations of routines are
avallable or can be generated for a given target
e CUBLAS, MKL, ATLAS, ...
e SIMD instructions, GPcore, HWA, Hybrid

= No strict performance order

« Each implementation has a different performance
profile

e Best choice depends on platform and runtime
parameters

= Decision is a complex issue
 How to produce the decision?

ry 4
C A P S Irisatech, May 19th 2009

lllustrating Example:
Dealing with Multiple BLAS Implementations

= Runtime selection of DGEMM in
High Performance Linpack
* Intel(R) Xeon(R) E5420 @ 2.50GHz
e CUBLAS - Tesla C1060, Intel MKL

= Three binaries of the application
= Static linking with CUBLAS
= Static linking with MKL
= Library mix with selection of routine at runtime
= Automatically generated using CAPS tooling
= Three hardware resource configurations
= GPU + 1, 2, and 4 cores used for MKL

ry 4
CA P S Irisatech, May 19th 2009

Performance Using One Core

= Performance in Gigaflops
= 4 problem sizes: 64, 500, 1200, 8000

25

23 23,3

20
)
o
o
& 15 +
S
E Cublas
g 10 - g =MKL
£
a

on

64 500 1200 8000
Y 7 Problem Size

CA PS Irisatech, May 19th 2009

73 8 81 Dyn. Sel.
6.5
4.4 . J .
1,3 14 1,2
0,07
0/ s _ :

Performance Using Two Cores

Performance (GFLOPS)

ry

CAPS

35 7

30 -

25 1

20 1

15 4

10 1

0,07

0,6

64

1.4

12

7.6

68,5
43 I 4.4
1'2 .
500 1200
Problem Size

Irisatech, May 19th 2009

29

15

8000

Cublas
"KL
Dyn. Sel.

Performance Using Four Cores

35
32

30
26

25
23

20 -

15 1
13

Performance (GFLOPS)

9,7
10 1 -

7.2
5

5 4
1.2 1.2
an? Dlg l
0! — _

B4 500 1200 8000

4,4

Problem Size

ry

CA PS Irisatech, May 19th 2009

Cublas
BKL
Dyn. Sel.

The Challenges

= Programming
e Medium

e Medium

e Hard

e Extremely hard

ry

CAPS

= Resources management
= Application deployment

= Portable performance

Irisatech, May 19th 2009

application

Re

o e
search Directions

New Languages
e X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, ...

Libraries
» Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, ...

Compilers
o Classical compiler flow needs to be revisited
* Acknowledge lack of static performance model
» Adaptative code generation
OS
* Virtualization/hypervisors
Architectures

* Integration on the chip of the accelerators
= AMD Fusion, ...

* Alleviate data transfers costs

Key for the
short/mid

term

#® = PCIl Gen 3x

CAPS

Irisatech, May 19th 2009

Directives Based Parallel Programming

= Directives
* Do not need a new programming language
« Already in state of the art (e.g. OpenMP)
o Keep incremental development possible
* Avoid exit cost

= Does not address large scale parallelism
e But this is not (yet) the issue for multicore nodes

= Path chosen by CAPS entreprise
e Heterogeneous Multicore Parallel Programming

ry

CA P S Irisatech, May 19th 2009

Conclusion

ry

CAPS

= Multicore ubiquity Is going to have a large impact on
software industry

New applications but many new issues

= Will one parallel model fit all?
o Surely not but multi languages programming should be avoided

= Toward Adaptative Parallel Programming

Compiler alone cannot solve it

Compiler must interact with the runtime environment
Programming must help expressing global strategies / patterns
Compiler as provider of basic implementations

Offline-Online compilation has to be revisited

Irisatech, May 19th 2009

	Programming Multicore Challenges��François Bodin
	Introduction
	Manycore Architectures
	Multiple Parallelism Levels
	Programming Multicores/Manycores
	The Past of Parallel Computing, �the Future of Manycore?
	Multi (languages) programming
	Can the Hardware be Hidden?
	Manycore = Numerous Configurations
	Asymmetric Behavior Issue
	Manycore = �Multiple μ-Architectures
	CAPS Compiler Flow �for Heterogeneous Targets
	Tuning Issue Example
	Input Fortran Code Example 2
	Multicore Workload
	Varying Available Resources
	Competition for Resources
	OpenMP in Unfriendly Environment
	Peak Performance is Not the Goal
	Difficult Decisions Making with Alternative Codes (Multiversioning)
	Illustrating Example:�Dealing with Multiple BLAS Implementations
	Performance Using One Core
	Performance Using Two Cores
	Performance Using Four Cores
	The Challenges
	Research Directions
	Directives Based Parallel Programming
	Conclusion

