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Introduction 
  High performance embedded applications rely on 

new multicore architectures  
•  It is about performance not parallelism 

  Various hardware  
•  General purpose multicores 
•  Application specific (DSP)/configurable processors 

  Moore’s law still applies 
•  Doubling number of cores every ~18 months 
•  Operation/Watt is the efficiency scale 

  HPC and embedded applications are increasingly 
sharing characteristics 
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Overview 

  Manycore architectures 

  Challenges 

  Compilers for embedded manycore architectures 

  Milepost project 

  The Multicore Association 

  Conclusion 
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Manycore Architectures 
  General purpose cores 

•  Share a main memory 
•  Core ISA provides fast SIMD 

instructions 

  Streaming engines / DSP / FPGA 
•  Application specific architectures 

(“narrow band”) 
•  Vector/SIMD 
•  Can be extremely fast 

  Hundreds of cumulated GigaOps  
•  But not easy to take advantage of 
•  One platform type cannot satisfy 

everyone 

  Tilera, TMS320TCI6488, Cell, … 
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Multiple Parallelism Levels 

  Amdahl’s law is forever, all levels of parallelism 
need to be exploited 
•  Hybrid parallelism needed 
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The Past of Parallel Computing,  
the Future of Manycore? 
  The Past 

•  Hundreds of parallel languages were proposed 
•  Scientific computing focused 
•  Microprocessor or vector based, homogeneous 

architectures 
•  Trained programmers 

  The Future 
•  New applications (multimedia, medical, …) 
•  Thousands of heterogeneous systems configurations 
•  Asymmetry issue 
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The Challenges 

  Programming 
•  Medium 

  Resources management 
•  Medium 

  Application deployment 
•  Hard 

  Portable performance 
•  Extremely hard 
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What is Specific to Embedded App.? 

  Co-design / co-configuration issues 

  (Soft) Real time issues 

  Need light weighted environments 

  Short system lifetime 

  Hardware may not exist 
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Research Directions 
  New Languages 

•  X10, Fortress, Chapel, PGAS languages, … 

  Libraries 
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, … 

  Compilers – Key for the short/mid term 
•  Classical compiler flow needs to be revisited 
•  Acknowledge lack of static performance model 
•  Adaptative code generation 

  Architectures 
•  Integration on the chip of the accelerators 

  Fusion, … 

•  Alleviate data transfers costs 
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Compiler Focus 

  Current compilers  
•  Have insufficient understanding about program input, architecture 
•  Have to deal with a very large optimization space 
•  General purpose tools 

  Compilers are not good at 
•  Understanding whole programs 
•  Understanding performance 
•  Making decisions 

  Finding global optimization strategies 
  What code (suite of) transformations and when ? 

  Compilers are good at 
•  Dealing with local compute intensive tasks 
•  Transforming, duplicating, specializing, generating codes 

10Irisa, December 16th 2008 



Future of Compilers for Manycores 

  What’s new! 
•  More processing time can be spent on the code 

generation and optimization processes 

  Mix offline and online techniques 
•  Iterative compilation 
•  Machine learning 
•  Speculative techniques 
•  Adaptation 
•  Runtime compilation and optimization 
•  Better understanding of libraries 
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Iterative Compilation 
  Use multiple compilations to select the best optimization strategy 

according to feedbacks 
•  Static - Analysis of the output code according to a performance model 
•  Dynamic - Performance measurement 

  Pros 
•  Explore the optimization space (for instance tiling block size) 
•  Usually find better results than human 
•  Cheap (when static) 

  Cons 
•  Expensive (when dynamic) 
•  Complex compilation flow 

  Some related works 
•  Maqao, CapsTuner, Milepost, ACME,  

Autotuner, ESTO, Atlas, FFTW, … …  
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Machine Learning 
  Learn from previous compilations and executions 

•  Use static and dynamic features 
•  Avoid iterative compilation 

  Pros 
•  Efficient, compilers  

easier to build 

  Cons 
•  Overfiting of  

the training set 
•  Scope ? 

  Some related works 
•  GCC-ICI, Milepost, Meta Optimization, … 
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Speculative Techniques 
  Assumes “a priori” properties of the code to achieve 

parallelization or optimization 
•  Code specialization 
•  Check at run-time if properties are true 

  Pros 
•  Allow better code optimizations 
•  Help avoiding inter-procedural analysis 

  Cons 
•  Execution overheads 
•  Overspecialization 

  Some related works 
•  Parasol, VESPA, Nemalabs, … 
•  CAPS Codelet Finder 
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Adaptative Techniques 

  Adapt to execution context while running 
•  Measure performance and select implementation while running 

the code 

  Pros 
•  Take into account real efficiency 

  Cons 
•  Runtime or code overheads 
•  Multi-path code acceptance 

  Some related works 
•  Stapl, Unidap, tbb, … 
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Runtime Optimization and Compilation 

  Code generation/optimization according to execution 
context 
•  Stream computing oriented, … 

  Pros 
•  Can deal with non existing hardware when packaging the 

application 
•  Accurate/exhaustive context information 

  Cons 
•  High overhead 
•  Limited scope (especially pure runtime or binary level)  
•  Safety and debugging 

  Some related works 
•  RapidMind, Accelerator, (Dynamo,) … 
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Milepost Compiler 
  Objective 

•  To develop compiler technology that can 
automatically learn how to best optimise programs for 
re-configurable heterogeneous embedded processors. 

  Partners 
•  University of Edinburgh, ARC International Limited, 

CAPS-Entreprise, IBM Israel - Science and 
Technology, INRIA 

http://www.milepost.eu/

Irisa, December 16th 2008 17



Milepost Overview - 1 

  Database filling with a training set 
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Milepost Overview - 2 

  Building the Model 
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Milepost Overview - 3 

  Using the improved compiler 
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Milepost Compiler Status 

  Prototype is available 
•  Provide an average of 11% performance 

improvement  

  More details 
•  http://gcc-ici.sourceforge.net/papers/
fmtp2008.pdf 
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Multicore Association (MCA) 

  MCA is an open membership organization about 
multicore technology 

  Working groups 
•  Communications API 
•  Programming Practices 
•  Resource Management API 

  Members  
•  CAPS entreprise, Codeplay, CriticalBlue, IMEC, 

Freescale, Intel, TI, Tilera, Virtutech, Wind River, … 

http://www.multicore-association.org/ 
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Communications API (MCAPI) 

  MCAPI is a message-passing API 
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Resource Management API 

  Defines an industry-standard API that specifies 
essential application-level resource management 
capabilities 
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Programming Practices 

  Objective 
•  To define industry-wide, best practices to leverage 

existing code in multicore environments 

  How today’s C/C++ code may be written to be 
“multicore ready” 
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Conclusion 
  Very exciting time for compilers! 

•  We need to understand how much CPU time should be used for discovering/
managing parallelism 

  But should not be in charge of dealing with coarse/large grain parallelism 
•  Node/socket level issues only 

  Next generation compilers should 
•  behave “linearly” (i.e. have less threshold effects) 
•  better interact with human 
•  exploit application specific knowledge 
•  generate very efficient sequential codes 
•  deal with heterogeneous instruction sets 
•  exploit stream/vector computing 
•  deal with memory and computing resources allocation 
•  deal with some fault issues 
•  interface programs with power management 
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