Les grilles informatiques : un enjeu national et européen

Thierry PRIOL IRISA/INRIA

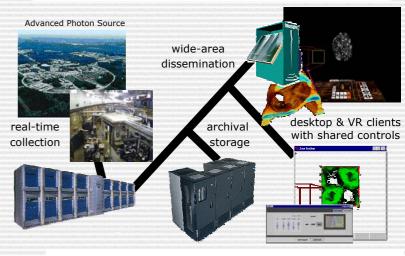
Thierry.Priol@inria.fr

Contenu de la présentation

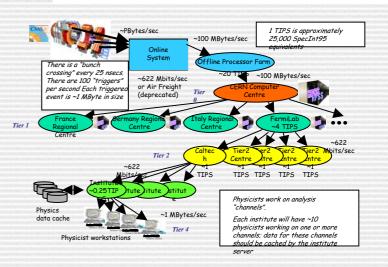
- Nouveaux besoins, nouveaux usages, nouvelles applications
- Concept de grilles informatiques
- Les différents types de grilles informatiques
- Les initiatives nationales et Européennes

De nouveaux besoins, de nouveaux usages de l'informatique

e-Science

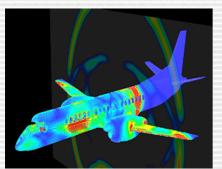

- Un bio-chimiste exploite 10000 ordinateurs pour tester 10000 composés chimiques en une heure
- 1000 physiciens dispersés géographiquement combinent leurs ressources informatiques pour analyser des péta-octets de données
- Des scientifiques du climat visualisent, annotent des données issues de simulations nécessitant l'analyse de téraoctets de données

e-Engineering

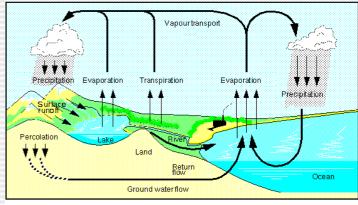

 Plusieurs ingénieurs de plusieurs équipes au sein d'une ou de plusieurs sociétés collaborent à la conception d'un satellite

e-Business

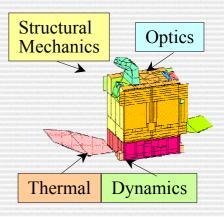
 Une compagnie d'assurance analyse des données de sources multiples (plusieurs bases de données) afin de détecter les fraudes DOE X-ray grand challenge: ANL, USC/ISI, NIST, U.Chicago


Data Grids for High Energy Physics (DataGRID EU project)

Les nouvelles applications du calcul scientifique : le couplage de codes

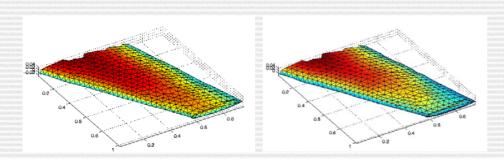


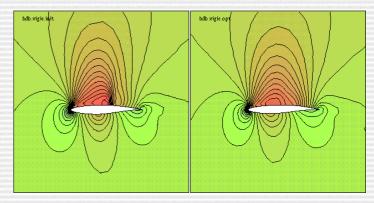
- L'accroissement rapide des performances des calculateurs à donné naissance à de nouvelles applications combinant plusieurs codes
- Couplage de plusieurs codes de calcul
 - Fluide-fluide, fluide-structure, structure-thermo, fluide-acoustique-vibration
- Quelques exemples
 - e-Science
 - Météo: Océan-Glace-Atmosphère-Biosphère
 - Environnement: Hydrologie-Atmosphère
 - e-Engineering
 - Avion: Dynamique des fluides-mécanique des structures, Electromagnétisme
 - Satellite: Optique-Thermique-Dynamique-Mécanique des structures

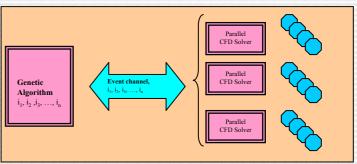


Electromagnétisme

QuickTimeTM et un décompresseur TIFF (non compressé) sont requis pour visionner cette imag


Courtesy Erich Roeckner, Max Planck Institute for Meteorology



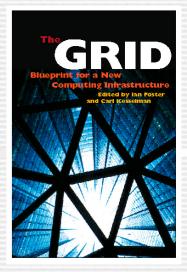

Les nouvelles applications du calcul scientifique : le design optimal

- L'exécution simultanée d'un même code de calcul mais avec des paramètres différents
 - Trouver le meilleur design selon un certain nombre de critères
- Couplage avec des algorithmes d'optimisation
 - Algorithmes génétiques
- Exemple
 - e-Engineering
 - Conception de profil d'aile d'avion

Conclusion sur les applications

- Les nouvelles applications exhibent encore plus de parallélisme
 - Certaines sont « embarrassingly parallel »
 - Schéma maître-esclaves
 - Pas de communication ou très peu
 - D'autres offrent plusieurs niveaux de parallélisme
 - Premier niveau exploitable par une machine parallèle
 - Deuxième niveau exploitable par un système distribué
 - Enfin, quelques unes imposent une distribution géographique pour des raisons de collaboration ou de confidentialité (peu importe le coût)
- Évolution du grain de calcul
 - De quelques milliers d'instructions à un programme entier
 - Evolution favorable lorsque les réseaux sont lents
- Analyse des résultats
 - Couplage visualisation simulation nécessaire
 - Intervention d'un plus grand nombre de spécialistes pour l'analyse
- En conclusion
 - Ces nouvelles applications autorisent et nécessitent de nouvelles approches

Approche pour la distribution de la puissance électrique = le réseaux électrique et la haute-tension


Approche pour la distribution de la puissance informatique = le réseau Internet et la haute-performance (parallélisme et distribution)

Une définition de la grille

par le projet Globus

- Une analogie avec l'énergie électrique (power grid)
 - Puissance de calcul = Electricité

- Partage coordonné de ressources dans un environnement flexible et sécurisé par une collection dynamique d'individus et d'institutions ("The anatomy of the Grid: Enabling Scalable Virtual Organizations")
- Autoriser des communautés ou des organisations virtuelles à partager des ressources distribuées, dispersées géographiquement afin de poursuivre des buts communs
- Plusieurs types de ressources
 - Processeurs, Stockage, Senseurs, Réseau, Visualisation, Logiciels, Individus, ...

La nébuleuse grille

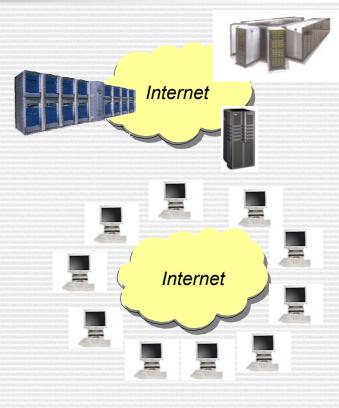
Plusieurs types de grilles informatiques

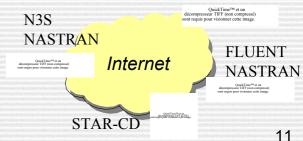
- Grille d'information: partager la connaissance
 - Le Web : une application à succès du concept de Grille
- Grille de stockage: partager les données
 - Musique, Vidéo, ...: des applications à succès
 - Données scientifiques
- Grille de calcul: agréger la puissance de calcul
 - Supercalculateur virtuel
 - Internet computing : quelques applications à succès
 - Metacomputing ASP

Les grilles de calcul: plusieurs approches

c'est comme pour l'électricité (nucléaire, hydraulique, éoliens, ...)

Virtual Supercomputing

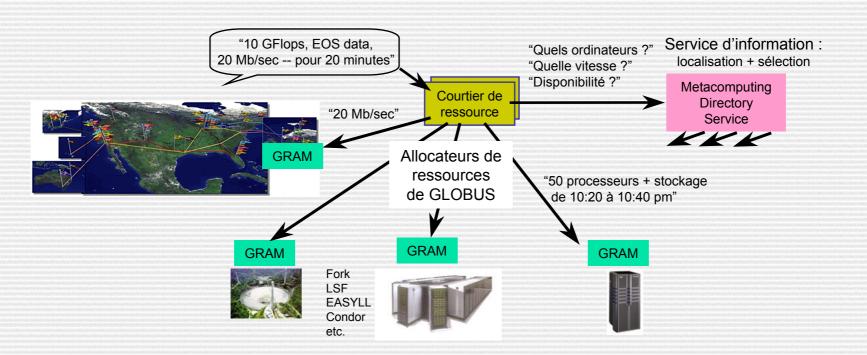

- Une association de plusieurs supercalculateurs répartis géographiquement (10-1000)
- Chaque nœud est une machine parallèle contrôlée par un gestionnaire de tâches (batch)
- Offrir une vision d'un supercalculateur virtuel


Internet computing

- Une combinaison d'un très grand nombre de PC (10000 - 1000000)
- Exploiter le PC lorsque celui-ci est inutilisé

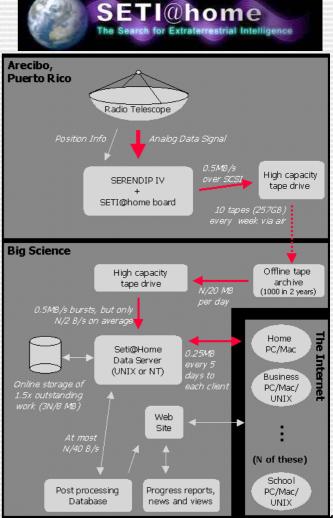
Metacomputing

 Une association de plusieurs machines proposant des applications



Virtual Supercomputing: Globus

- Objectifs
 - Offrir une boite à outils pour la construction de supercalculateurs virtuels à l'échelle de l'Internet
 - Faire exécuter ses applications sur des ressources distantes


Internet Computing (Desktop Grid)

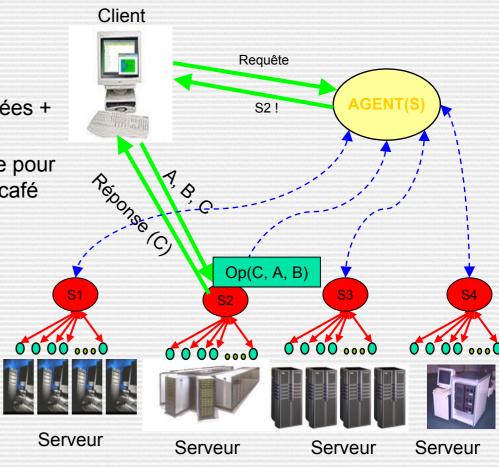
- Principe
 - Des millions de PC en attente...
 - Récupération des cycles processeurs inutilisés (environ 47% en moyenne dans une entreprise*) via un économiseur d'écran)
- Exemples
 - SETI@home
 - Recherche de signaux extra-terrestres
 - 62 Teraflop/s (à comparer aux 36 Teraflop/s de l'ordinateur le plus puissant au monde au Japon!)

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image

- Décrypthon: Etablir la carte des 500 000 protéines du vivant
- RSA-155: Casser des codes cryptographiques

^{*} d'après une enquête d'Omni Consulting Group

Modèle client/serveur pour les grilles de calcul : le metacomputing



Principe

- Acheter du service de calcul sur l'Internet
- Service = applications pré-installées + calculateurs
- Plutôt que de demander l'énergie pour faire chauffer le café, acheter le café chaud...

Exemples

- Netsolve (Univ. Tennessee)
- NINF (Univ. Tsukuba)
- DIET (ENS Lyon/INRIA)

Bilan : où en est-on ?

- Un concept né fin des années 90 avec quelques projets phares
 - Essentiellement des prototypes de recherche (middleware) ayant permis quelques expériences
 - Globus, Légion, Unicore, ...
 - Des standards émergents à l'initiative des chercheurs et soutenus fortement par quelques grands acteurs de l'informatique
 - OGSI (Grid Services), WSRF (Web service incluant les Grid Services)
- S'il fallait faire un parallèle avec le passé
 - Grille informatique: le calculateur planétaire
 - Le jeu d'instructions est désormais à peu près connu (WSRF)
 - Il reste à inventer des environnements qui facilitent l'usage d'une telle infrastructure
 - Systèmes d'exploitation, langages, outils, ...

Quelques propriétés attendues des grilles informatiques du futur

- Transparence et robustesse
 - Leslie Lamport: « vous savez que vous avez à faire à un système distribué quand votre travail n'a pas été accompli à cause de la défaillance d'un nœud dont vous ne connaissiez pas l'existence auparavant »!
- Sécurité et confiance
 - Prise en compte de plusieurs domaines d'administration
- Persistance
 - Assurer la persistance de l'état des ressources dans un environnement hautement dynamique
- Ubiquitaire
 - N'importe quand, n'importe comment, n'importe où...
- Passage à l'échelle
 - Des milliers/millions de ressources
- Facile à programmer
 - Interfaces utilisateurs intelligentes, modèles de programmation, ...
- Fondé sur des standards et protocoles ouverts
 - Web services

L'Action Concertée Incitative (ACI)

Globalisation des Ressources Informatiques et des Données

Le programme de recherche Français dans le domaine des grilles informatiques du Ministère de la Recherche

ACI GRID: objectifs et organisation

- Soutenir l'effort de recherche dans le domaine des grilles informatiques
 - Projet pluridisciplinaire
 - Projet logiciel
 - Jeune équipe
 - Collaboration/Animation
 - International
 - Plateformes d'expérimentation
- Accroître la visibilité des activités de recherche
- Encourager l'expérimentation à grande échelle en facilitant l'accès à des plateformes d'expérimentation

- Directeur : Thierry Priol
 - Depuis janvier 2004, M. Cosnard auparavant
- Comité scientifique : Brigitte Plateau
- Budget: ~8 M€* (en incluant 8 bourses du ministère)
 - C'est un financement incitatif et ce n'est pas le coût global!
- Appels à proposition :
 - 2001 : 2,25 M€, 18 projets
 - 2002 : 3 M€, 12 projets
 - 2003 : 1 M€, 5 projets (Grid'5000)
 - 2004 : 1 M€, 6 projets (Grid'5000)
 - 2005 : arrêt des financements

Les projets financés par l'ACI GRID


- Pair-à-Pair
 - CGP2P (F. Cappello, LRI/CNRS)
- Modèle client/serveur
 - ASP (F. Desprez, ENS Lyon/INRIA)
- Algorithmes
 - TAG (S. Genaud, LSIIT)
 - ANCG (N. Emad, PRISM)
 - DOC-G (V-D. Cung, UVSQ)
- Techniques de compilation
 - Métacompil (G-A. Silbert, ENMP)
- Communication et réseaux
 - RESAM (C. Pham, ENS Lyon)
 - ALTA (C. Pérez, IRISA/INRIA)
- Visualisation
 - EPSN (O. Coulaud, INRIA)
- Gestion de données
 - PADOUE (A. Doucet, LIP6)
 - MEDIAGRID (C. Collet, IMAG)
- Outils
 - DARTS (S. Frénot, INSA-Lyon)
 - Grid-TLSE (M. Dayde, ENSEEIHT)

- Couplage de codes
 - RMI (C. Pérez, IRISA)
 - CONCERTO (Y. Maheo, VALORIA)
 - CARAML (G. Hains, LIFO)
- Applications
 - COUMEHY (C. Messager, LTHE) Climat
 - GenoGrid (D. Lavenier, IRISA) Bioinformatique
 - GeoGrid (J-C. Paul, LORIA) Recherche Pétrolière
 - IDHA (F. Genova, CDAS) Astronomie
 - Guirlande-fr (L. Romary, LORIA) Langage
 - GriPPS (C. Blanchet, IBCP) -Bioinformatique
 - HydroGrid (M. Kern, INRIA) Environnement
 - Medigrid (J. Montagnat, INSA-Lyon) Médical
- Plateforme d'expérimentation
 - CiGri-CIMENT (L. Desbat, UjF)
 - Mecagrid (H. Guillard, INRIA)
 - GLOP (V. Breton, IN2P3)
 - GRID5000 (F. Cappello, INRIA)
- Animation de la communauté scientifique
 - ARGE (A. Schaff, LORIA)
 - GRID2 (J-L. Pazat, IRISA/INSA)
 - DataGRAAL (Y. Denneulin, IMAG)

IST-FP6 commitment to Grid research

- First actions launched in IST-FP5
- Grid research is a key strategic objective

* Grid Infrastructures funding not included

125M€ *

Grid Research and Deployment in FP6

Application-oriented Strategic Objectives e.g. eBusiness, eGov, eWork, eHealth, risks management, environment, transport

R&D

Grids for Complex Problem Solving

Architecture, design and development of the next generation Grid

Enabling application technologies

DG IST - F2

Research & Development

125 M€ (IST)

Technology-oriented strategic objectives, e.g. semantic web, embedded systems software and services

R&D

Research Infrastructure

Deployment of specific high performance Grids

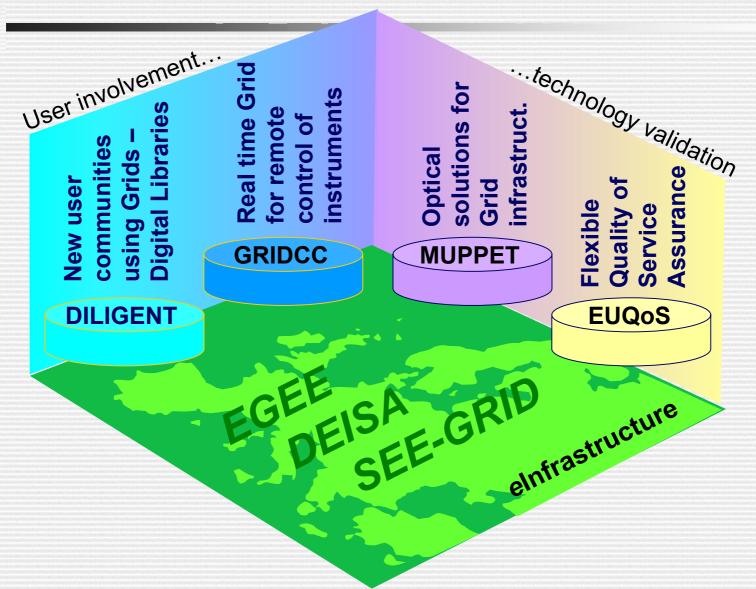
Deployment of high-capacity and high-speed communications network - GEANT

DG IST - F3

Deployment

200 M€ RI

Unit F2 - Grid Research http://www.cordis.lu/ist/grids



Started: SUMMER 2004 **GRIDCOORD Building the ERA in Grid research** K-WF Grid inteliGRID Knowledge based Semantic Grid based workflow & virtual organisations Grid-based generic enabling collaboration application technologies to facilitate solution of industrial problems **OntoGrid SIMDAT UniGridS** Knowledge Services **Extended OGSA** for the semantic Grid **EU-driven Grid services** Implementation based **Mobile Grid architecture** architecture for businesS on UNICORE and services for dynamic and industry **DataminingGrid** virtual organisations **NextGRID Datamining Akogrimo** HPC4U tools & services Fault tolerance, dependability **European-wide virtual laboratory for longer term Grid** for Grid **Provenance** research-creating the foundation for next generation Grids Trust and provenance **CoreGRID** for Grids Specific support action **Network of excellence** Integrated project Specific targeted research project

Unit F3 - eInfrastructure

http://www.cordis.lu/ist/rn/

En conclusion

QuickTimeTM et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

- Les grilles informatiques sont les infrastructures de calcul et de stockage de demain
- Les premiers projets de grilles informatiques ont montré la faisabilité
 - Développement de l'infrastructure (matériel et logiciel)
 - Première expériences concluantes à l'échelle de l'internet (e-science) et d'un intranet (applications industrielles)
- Une impasse sur certains problèmes fondamentaux des systèmes distribués qui nécessitent une nouvelle génération d'infrastructure logicielle pour les grilles
 - La tolérance aux défaillances
 - L'aide au diagnostique
 - Passage à l'échelle
- Une nécessité de renforcer la recherche pour aller vers cette nouvelle génération
 - Pas seulement un problème d'ingénierie!
 - La France est sur la bonne voie:
 - Sur le plan national: une communauté recherche active avec l'ACI GRID (Grid'5000)
 - Sur le plan européen: une forte participation des équipes françaises dans les projets Européens (CoreGRID)