
A Client-Server Approach for
Simulation over the Grid

Frédéric Desprez
LIP ENS Lyon

INRIA Rhône-Alpes
GRAAL Research Team

Join work with
A. Su, R. Bolze, E. Caron,

H. Dail, J.-Y. L’Excellent
LIP, Lyon

P. Amestoy, M. Pantel, C. Puglisi
ENSEEIHT/IRIT, Toulouse

Introduction

• One simple (and efficient) paradigm for grid computing
Offering (or renting) computational power and/or storage capacity through the
Internet
Providing access to existing applications to thin clients

☺Very high potential
• Need of Problem Solving and Application Service Provider Environments
• Installation difficulty for some libraries and applications
• Some libraries or codes need to stay where they have been developed
• Some data need to stay in place for security reasons

→ Using computational servers through a simple interface

But
• Always hard to use for non-specialists
• Often application dependent PSEs
• No sophisticated scheduling

RPC and Grid-Computing: GridRPC

• One simple idea
– Implementing the RPC programming model over the grid
– Using resources accessible through the network
– Mixed parallelism model (data-parallel model at the server level and task parallelism

between the servers)

• Features needed
– Load-balancing (resource localization and performance evaluation, scheduling),
– IDL,
– Data and replica management,
– Security,
– Fault-tolerance,
– Interoperability with other systems,
– …

• Design of a standard interface
– within the GGF (GridRPC WG, C. Lee)
– www.ggf.org, forge.gridforum.org/projects/gridrpc-wg
– Existing implementations: NetSolve, Ninf, DIET, XtremWeb

RPC and Grid Computing: Grid RPC

AGENT(s)

S3

A, B, C

Answer (C)

S2 !

Request

Op(C, A, B)

Client

S4S1 S2

RPC and Grid Computing: Grid RPC

• Adaptable grain
• Simple RPC API
• Libraries and applications integrated in Grid components
• IDL for the client interface, minimal information
• Task parallelism at the client/server level (using asynchronous calls),

Data-parallelism at the server level ⇒ mixed parallelism

double A[n][n],B[n][n],C[n][n]; /* data declaration */
dmmul(n,A,B,C); /* local function call */

GRPC_call(“dmmul”,n,A,B,C); /* remote function call */

double A[n][n],B[n][n],C[n][n]; /* data declaration */
dmmul(n,A,B,C); /* local function call */

GRPC_call(“dmmul”,n,A,B,C); /* remote function call */

Hidden parallelism to the user

• One sequential call in the client code
Data transfer to the target server (maybe parallel one)
Resource reservation on the server
Distribution for the target parallel routine chosen by the server(/agent)
Execution of the parallel code on the server (with or without check-pointing
for fault-tolerance)
Gathering of the result and send to the client (pipeline?)

• Transparent for
the client code !

RPC and Grid Computing: Grid RPC

Five fundamental components:
• Client

Offers several user’s interface and submit requests to servers

• Server
Receive clients requests and executes software modules on behalf of them

• Data-base
Contains both static and dynamic information about hardware and software resources

• Scheduler
Gets clients requests and takes decisions to map tasks on servers depending of data stored in the
database

• Monitor
makes observations about resources status and stores information in the database

AGENT

• Central component of GRID-RPC systems
• Choose servers able to solve a request on behalf of clients
• Main task: load-balancing between servers

Gets information about available servers
Asks the performance database for information
Applies some scheduling heuristics
Can take care of

Some security (access autorization)
Fault tolerance

• ‘Smart’ localization mandatory
• Some scalability problems may occur

• Centralized (or duplicated) in
NetSolve or Ninf

• Distributed in DIET

Agent Behavior

Scheduler

NetworkMonitor ServerMonitor

Client
Network

Network
Server

Scheduling UnitScheduling Unit

Global Computing EnvironmentGlobal Computing Environment

ResourceDB

Monitor periodically

Store observed information
Inquire

suitable server

Query available servers

Query predictions

Execute task
Return results

NetworkPredictor

Invoke
task

ServerPredictor

Returns
scheduling info

Predictor

Sends the task

Predictions Perform Predictions

Distributed Interactive Engineering Toolbox

DIET’s Goals

• Our goals
To develop a toolbox for the deployment of environments using the Application
Service Provider (ASP) paradigm with different applications
Use as much as possible public domain and standard software
To obtain a high performance and scalable environment
Implement and validate our more theoretical results

Scheduling for heterogeneous platforms, data (re)distribution and replication, performance
evaluation, algorithmic for heterogeneous and distributed platforms, …

• Based on CORBA, NWS, LDAP, and our own software developments
FAST for performance evaluation,
LogMgr for monitoring,
VizDIET for the visualization,
GoDIET for the deployment

• Several applications in different fields (simulation, bioinformatic, …)
• Release 1.1 available on the web
• ACI Grid ASP, RNTL GASP

http://graal.ens-lyon.fr/DIET/

DIET Environment

Sequential
Application

Data management
Application

Parallel
Application

C C

C
C

C
C C

C C

A
A A

S

A
A

A

A

A

A

CLIENT

S S S

A S S

A

Client Interface

As simple as possible
Multi-interfaces (C, C++, Fortran,
Java, Matlab, Mathematica, Scilab,
Web, ...)
Proposition of a standard interface
within the Global Grid Forum (DIET,
Ninf, and Netsolve)

DIET Architecture

LA LA

LA
LA

Server front end

Local Agent

MA

MA

MA

MA

JXTA

FAST library
Application
Modeling

System
availabilities

LDAP NWS

Client
Master Agent

MA

Request Management

Some Research Topics

• Scheduling
Distributed scheduling
Software platform deployment with or without dynamic connections between
components
Plug-in schedulers

• Data-management
Scheduling of computation requests and links with data-management
Replication, data prefetching
Workflow scheduling

• Performance evaluation
Application modelization
Dynamic information about the platform (network, clusters)

• Applications
Bioinformatic, geology, physic, chemical engineering, sparse solvers evaluation, …

Data Management

Data/replica management

• Two needs
Keep the data in place to reduce the overhead of communications between clients and
servers
Replicate data whenever possible

• Two approaches for DIET
DTM (LIFC, Besançon)

Hierarchy similar to the DIET’s one
Distributed data manager
Redistribution between servers

JuxMem (Paris, Rennes)
P2P data cache

• NetSolve
IBP (Internet Backplane Protocol) : data cache
Request Sequencing to find data dependences

• Work done within the GridRPC Working Group
Relations with workflow management

Client
A

F

G

Client
Y

Server 1

Server 2

X

B

B

B

Data management with DTM within DIET

SeD
F

MA
C=AxB
D=A+C
G=F(D)

C,A,B

D,A,C LA

• Persistence at the server level
• To avoid useless data transfers

Intermediate results (C, D)
Between clients and servers
Between servers
“transparent” for the client

• Data Manager/Loc Manager
Hierarchy mapped on the DIET hierarchy
modularity

• Proposition to the Grid-RPC WG (GGF)
Data handles
Persistence flag
Data management functions

SeD
x, +

G,D

SeD
F

MA
C=AxB
D=A+C
G=F(D)

A,B

D? LA

SeD
x, + D

G

Projet PARIS. IRISA.JUXMEM

• A peer-to-peer architecture for a data-sharing service in memory
• Persistence and data coherency mechanism
• Transparent data localization

Peer

Peer

Peer Peer

Peer

PeerPeer

Peer

PeerPeer

Peer
Firewall

Peer
TCP/IP

HTTP

Peer
ID

Peer
ID

Peer
ID

Peer
ID

Peer
ID

Peer
ID

Peer
ID

Peer
ID

Firewall

Toolbox for the
development of P2P
applications

Set of protocols

One peer
Unique ID
Several communication
protocols (TCP, HTTP, …)Peer

Peer

JuxMEM Architecture

• A peer-to-peer architecture for data-sharing

Experimentations

Target Platform

4 - 128 Clients
LS - Lyon

Master Agent
LS - Lyon Local Agent

LS-Lyon

…

1-32 SeDs …

…

…

Local Agent
PARACI - Rennes

LA
Cristal - Rocquencourt

LA
Cobalt - Grenoble

DIET Scalability with # clients. Size = 10.

y

DIET Scalability with # clients. Size = 1000

y

VizDIET

Some Target Applications

Digital Elevation Models (MNT)

• Stereoscopic processing:
• Maximal matching between the spots of both pictures.
• Elevation computation.

View angles information and
coordinates of initial
corresponding points

MNT Binary files
• Geometrical constraints
• Optical disparities

LST

DIET
AGENT(s)

MNT server

Client

S2

Digital Elevation Models (MNT), cont.

Geologist

S1

Map server
LST

Grid TLSE: expert site for sparse linear solvers

Tests for Large Systems of Equations
Coordinated by ENSEEIHT-IRIT, Toulouse
Funded by ACI GRID

• Goal
Provide a friendly test environment for expert and non-expert users of
sparse direct linear algebra software
Easy access to software and tools, a wide range of computer
architectures, matrix collections
On a user’s specific problem, compare execution time / accuracy /
memory usage / … of various sparse solvers

public domain … as well as commercial,
sequential … as well as parallel
Find best parameter values / reordering heuristics on a given problem

http://www.enseeiht.fr/lima/tlse

Request Examples

• Memory required to factor a matrix
• Error analysis as a function of the threshold pivoting value
• Minimum time on a given computer to factor a given unsymmetric matrix
• Which ordering heuristic is the best for solving a given problem

Why using a grid ?

• Sparse linear algebra software makes use of sophisticated algorithms for
(pre/post)-processing the matrix

• Multiple parameters interfere for the efficient execution of sparse linear solvers
Ordering
Amount of memory
Architecture of the target computer
Available libraries
Determining the best combination of parameter values is multi-parametric problem
Combinatorial nature of these parameters

• The installation of any sparse solver library on a new architecture can be a
nightmare !

• Testing different architectures
• Always using the latest version of each library

Is it realistic ?

• Time to send the data can be more important than the computation
itself !

• But
Large number of independent requests
Time to answer is not critical
Data persistency between elementary requests easy to express

• Clear need for the users !
Managing software and hardware testing from a PSE

Architecture

Sends experiment
requests

Writes scenarii,
deploy new softwareClient Expert

Database

Matrix
Collections

Connection

Partial
Results

Consult/Modify

Modify

ConsultExpert Site
Grid TLSE

Websolve
Expertise
Request

Synthetic
Results

Weaver
Solver
Runs Scenarii

Services
History

Log Files
DIET

Requests Results

Client Provided Matrix

Stats
Static Dynamic

Research Issues

• Sparse Linear Algebra
Automatically choosing the right parameters, the correct sequence of operations
Help the user as much as possible

• Scenarii Management
Generation and management of workflows
Need to be connected to the scheduling of requests/data management

• Interoperability
Connecting different libraries with different data formats
Meta-data

• Data Management
Leaving data in place as much as possible
Matrix collections

• DIET Research issues
Managing requests of different sizes with data dependences

Conclusion and Future Work

We did not talk about …

• Automatic deployment
Depending of the target architecture, the location of servers, clients, …

• Distributed scheduling
Plugin schedulers, relations with batch schedulers, application dependent scheduling

• Other applications
Simulation (physic, chemical eng., …), robotics, bioinformatic, geology, …

• Adding services
Registering new applications

• Performance evaluation
Routine/application cost, data (re)distribution, computation of the optimal number of processors used
on the servers

• Fault tolerance
Agent, servers, checkpointing

• Platform monitoring
Distributed log management (LogService), post-mortem visualization (VizDIET)

• Security !
Authentication, communications, firewalls, …

Conclusions and future work

• GridRPC
Interesting approach for several applications
Flexible and efficient
Many interesting research issues (scheduling, data management, resource discovery and
reservation, deployment, fault-tolerance, …)

• DIET
Scalable, open-source, and multi-application platform
Concentration on several issues like resource discovery, scheduling (distributed scheduling and
plugin schedulers), deployment (GoDIET), performance evaluation (FAST and Freddy),
monitoring (LogService and VizDIET), data management and replication (DTM and Juxmem)
Large scale validation on the Grid5000 platform
Demo @ SC2004

• TLSE
Help for the development of high performance sparse direct solvers
Opening the whole platform in 2005 (CSC 2005 ?)
Demo @ SC2004 http://www.grid5000.org/

http://graal.ens-lyon.fr/DIET (online demo)

Questions ?

http://graal.ens-lyon.fr/DIET

	A Client-Server Approach for Simulation over the Grid
	Introduction
	RPC and Grid-Computing: GridRPC
	RPC and Grid Computing: Grid RPC
	RPC and Grid Computing: Grid RPC
	Hidden parallelism to the user
	RPC and Grid Computing: Grid RPC
	Distributed Interactive Engineering Toolbox
	DIET’s Goals
	Client Interface
	DIET Architecture
	Request Management
	Some Research Topics
	Data Management
	Data/replica management
	JUXMEM
	JuxMEM Architecture
	Experimentations
	Target Platform
	DIET Scalability with # clients. Size = 10.
	DIET Scalability with # clients. Size = 1000
	VizDIET
	Digital Elevation Models (MNT)
	Request Examples
	Why using a grid ?
	Is it realistic ?
	Architecture
	Research Issues
	Conclusion and Future Work
	We did not talk about …
	Questions ?

