A human-centered design process for the research project aceMedia

Barbara Schmidt-Belz Fraunhofer FIT

Fraunhofer FIT

Fraunhofer FIT investigates human-centered computing in a process context. The usability and usefulness of information and cooperation systems is optimized in their interplay with human work practice, organization and process. The three departments of FIT:

- ♦ Life Science Informatics LIFE
 - Complex image-based biomedical systems that compensate disabilities, or support micro surgery and protein analysis in molecular biology.
- Cooperation Support CSCW
 - Internet-based groupware and community systems for virtual teams and organizations
 - Augmented reality systems for collaborative planning.
- Information in Context ICON
 - Human centered information and communication systems considering the current context of use
- Usability Competence Centre
- Accessibility Competence Center

Rennes, 01.12.2006

Fraunhofer FIT - ICON

Contextualized information and communication systems for mobile activities, learning, planning, decision making that adapt the services to the context of use

Useroriented **Software Engineering Analysis of user** requirements

- Scenario-based Design
- **Participatory Design**
- **Usability Evaluation**

Nomadic Information **Systems**

Context Modelling

- Prior knowledge
- Interests and preferences
- Location and surroundings

Adaptive Knowledge **Learning Systems Management**

Meta models of processes and domains

- Adaptation to learning strategies
- Text mining
- Information brokering
- Information visualization

Micro-simulation **Models**

Modelling tax and welfare legislation

- Statistics
- Analysis of income distribution

Content

- ♦ Human-centred design process (ISO 13407)
 - Principles
 - Four essential activities
- Experiences from aceMedia
 - Scenario-based requirements analysis
 - User evaluation

Developers Dream:

To design for success, i.e. for user acceptance.

How to do this systematically, in a way that will not fail?

ISO 13407

"Human-centred design processes for interactive systems"
Guidance on

human-centred design activities
throughout the life cycle of
computer-based interactive systems.

Clause 4 - Reasons

Clause 5 - Principles

Clause 6 - Process implementation

Clause 7 - Four essential human-centred activities

Clause 8 - Documentation

Not included: recommendation of concrete methods and techniques. Complementary to other standards, e.g. ISO 9241 on usability.

Clause 4: Reasons

- Do it right from the start, late changes are much more expensive
- Human-centred development has social and economic benefits:
 - System becomes easier to understand and use
 reducing costs for learning and support
 - Improved user satisfaction, reduced discomfort and stress
 - Improved productivity of users, improved overall efficiency of organizations
 - Improved user-perceived quality of system
 competitive advantage of system on market

Clause 5: Principles

- Active involvement of users and clear understanding of user and tasks requirements
- Appropriate allocation of function between user and technology
- Iteration of design solutions
- Multi-disciplinary design

Principle 1 – User involvement

Active involvement of users and clear understanding of user and tasks requirements

- Users are a valuable source of knowledge about context of use, tasks, and how users are likely to use the product
- ♦ The more involvement the more effective
- Nature of user involvement varies, depending on design activities (more later)
- Choose appropriate representatives of user groups, e.g.
 - Custom-made products -> users from customer organization
 - Generic or consumer products -> representatives of target user groups

Principle 2 – Allocation of functionality

Appropriate allocation of functionality between users and technology

- Wise decision about the extent to which a given job, task, function or responsibility is to be automated
 - Not simply determine what can be automated, and allocate the rest to users, relying on their flexibility to make the system work
 - Resulting human functions should form a meaningful set of tasks

Principle 3 – Iteration

Iteration of design solutions

- Iterations combined with user feedback
 - Reduced risk to detect problems (too) late, reduced risk to fail;
 - Meet user and organizational requirements, also such requirements that are hidden or difficult to specify;
 - Testing design solutions against real world scenarios, use test results to progressively refine solutions.
- Iteration can take place for all levels of design, from concepts, then early artefacts such as scenarios, mock-ups and prototypes, to fully implemented system versions

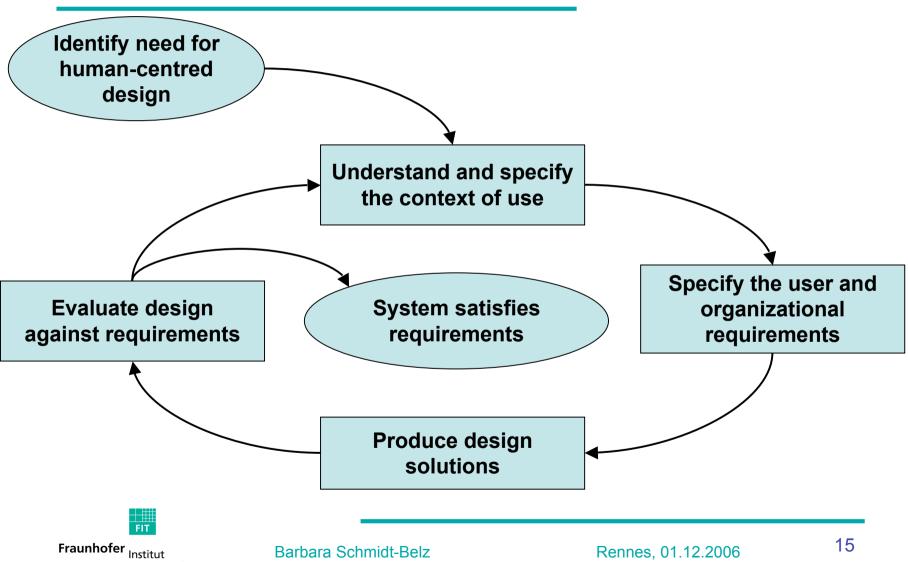
Principle 4 – multi-disciplinary design

Multi-disciplinary design team, to consider all aspects of a socio-technical system

- End user
- Purchaser, manager of user
- Application domain specialist, business analyst
- System analyst, systems engineer, programmer
- Marketing expert, salesperson
- User interface designer, visual designer
- Human factors and ergonomics expert, human-computer interaction specialist
- Technical author, trainer, support personnel

Clause 6 – implementing a human-centred design process

- Implement the recommendations of 13407 into the overall project plan, e.g.
 - Integrating these activities with other development activities, set appropriate milestones
 - Assign responsibilities
 - Establish procedures of feedback, affecting design activities, documenting activities and results
 - Workplan and timescale to allow user feedback, feedback to developers, and iterations
 - Get management support



Clause 7: Essential activities

- Understand and specify the context of use
- Specify the user and organizational requirements
- Produce design solutions
- Evaluate design against requirements
- Start at the earliest possible stage of the project
- Iterative development, until goals are met

Human-centred design process

Angewandte Informationstechnik

Context of use

- Understand and specify the context of use such as
 - Characteristics of the intended users (knowledge, skills, experience, education, training, physical attributes, habits, preferences, capabilities)
 - Tasks the users are to perform (including overall goals of the use of the system),
 - Environment where the system will be used
 - both physical/technical (existing systems, location, physical characteristics of a place, existing infrastructure and platforms)
 - and social/organizational (social and cultural conditions, organizational structure, legal conditions, standards)

Requirements

Explicit statement of user and organizational requirements in relation to the context of use description, including

- Functional requirements
- Requirements covering aspects such as
 - Users' jobs, including allocation of tasks and motivation;
 - Human-computer interface
 - Required performance; feasibility of operation and maintenance
 - Statutory or legislative regulations, including health and safety;
 - Cooperation and communication between users;

Produce design solutions

- Develop design proposals using existing knowledge from relevant disciplines (e.g. HCI, SE, web design)
- Make solutions more concrete using simulations, scenarios, models and mock-ups
- Present solutions to users and let them perform tasks
- Use user feedback to improve the design solution
- Iterations until goals are met
- Manage iterations of design solutions.

Evaluate design against requirements

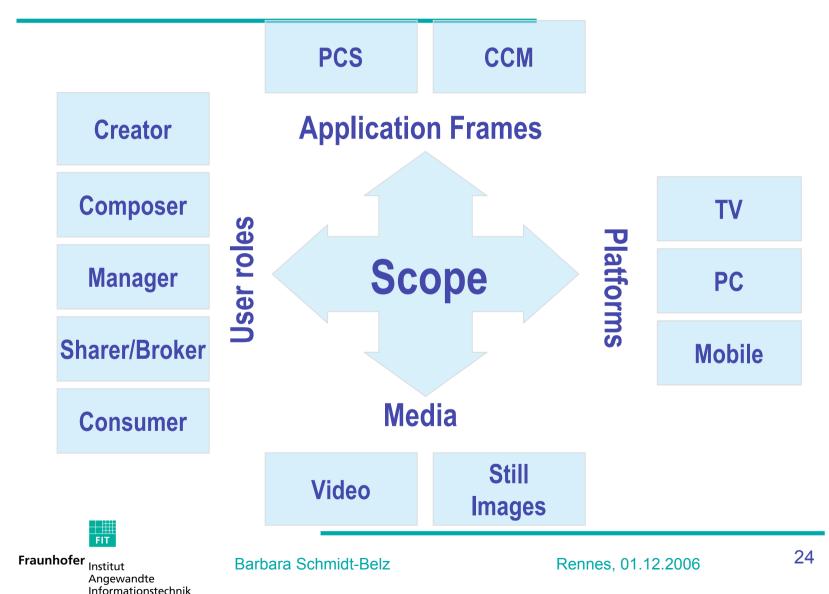
- Evaluation at all stages of the design process
 - Early: get user feedback to improve design solutions
 - Late: measure, to what degree objectives have been met
- Evaluation plan, including
 - Goals and criteria; Methods, procedure
 - Basis, i.e. which artefact to evaluate
 - How to document and analyse results
- Provide design feedback
 - How well does system meet organizational goals?
 - Diagnosis of potential problems, identify needs for improvement
 - Select design option that best fits requirements
 - Elicit feedback and further requirements from users
- Assess whether objectives have been achieved

Conformance to ISO 13407

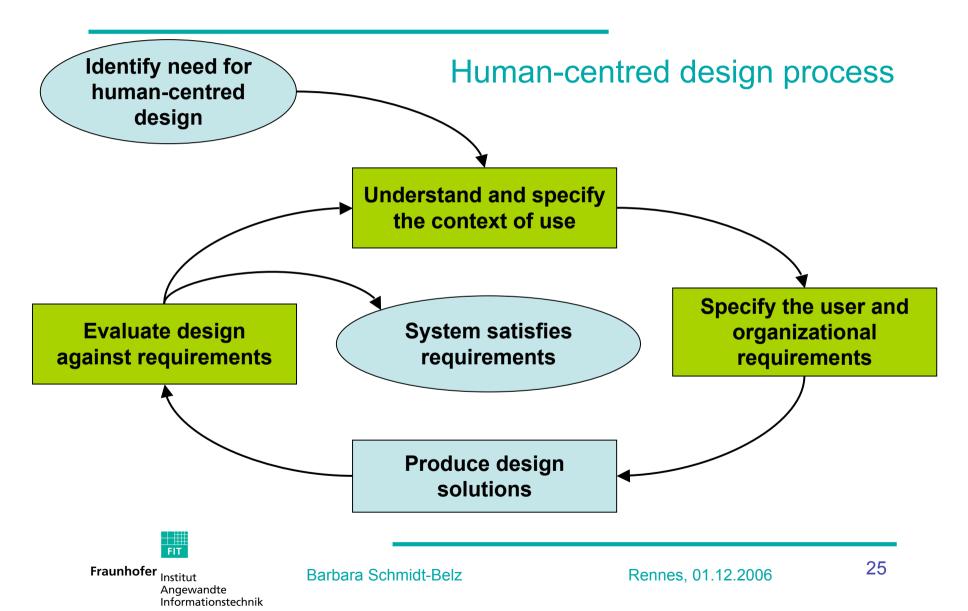
- Documentation!
 - Explicit planning of activities
 - Reporting on activities and results
 - Evidence, how results affected design

Any questions or comments, so far?

aceMedia


- aceMedia: "Integrate knowledge, semantics and content for user-centred intelligent multi media services"
- Reasearch funded by EU (FP6-001765), IST
 TP "Semantic-based Knowledge Systems"
- 4 13 Partners
 - Industry: Motorola Ltd. (co-ordinator), Philips, Telefónica ID, France Telecom R&D
 - SMEs: Alinari, Belgavox
 - research: INRIA, Fraunhofer FIT, CERTH-ITI, Uni KL, UAM, QMUL, DCU
- Duration Jan 2004 Dec 2007

aceMedia novel features

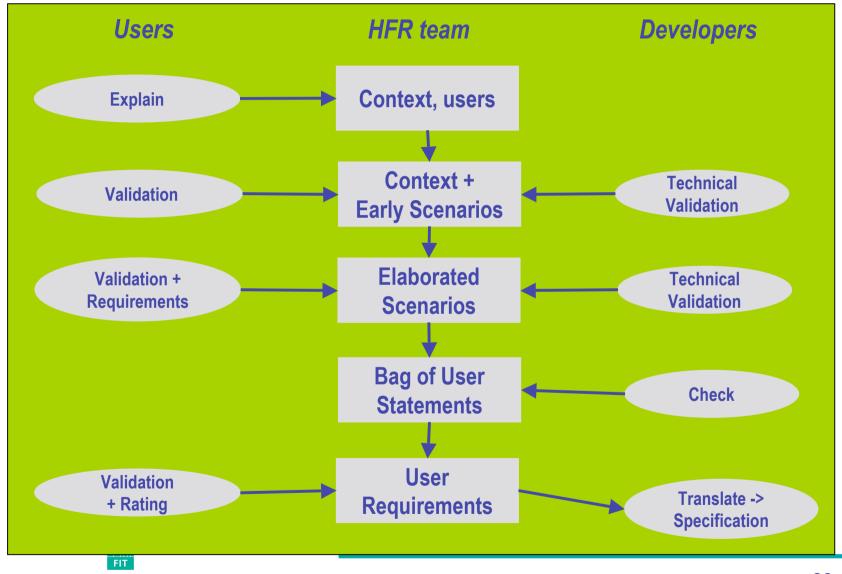

- Image / video analysis to create meaningful metadata
- Retrieval, e.g allows natural language text query, search by example for visually similar items, relevance feedback
- Scalable video coding
- Automatic adaptation to personal preferences and device profiles
- Intelligent content, allowing
 - Self-annotation
 - Self-organization
 - Self-governance

Informationstechnik

Scenario-based requirements analysis

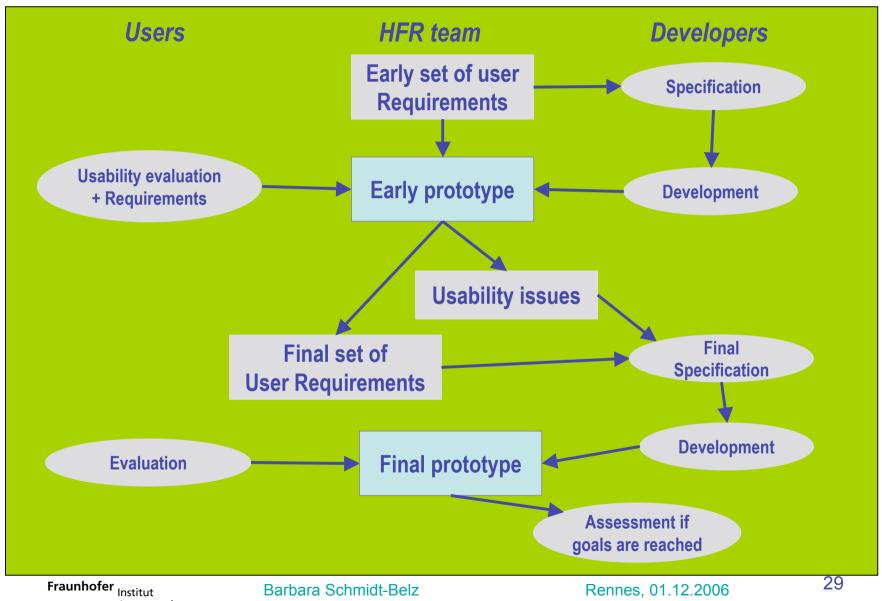
Requirements analysis in aceMedia

- Early requirements analysis based on scenarios
- Iterative requirements analysis based on prototypes and scenarios



Scenario-based requirements analysis

- Scenarios are the earliest artefacts your project can provide
- Scenarios are "tangible", they translate project objectives and technical description to users, illustrating what the results of the project will mean for peoples lives and work.
- Scenarios support communication among the project team and with prospective users



Scenario-based requirements analysis in aceMedia

28

Evaluation of Prototypes

29

Angewandte

Scenarios to capture context of use

- Start with a few explorative interviews asking users about their jobs, tasks, context,...
- Create context scenarios describing typical users and their tasks, not yet technology
- Validate context scenarios with users

Elements of Scenarios: Context Scenarios

- "Persona": a typical user, with a role (job, profile)
- "Setting": where and when, organizational environment, context
- User goal (task at hand)
- Observe the How users proceed to achieve the goal
 - Steps, triggers, desired outcome, conditions of success or failure

Elements of Scenarios: use of technology

- Elaborate context scenarios
- Illustrate how a certain technology (existing or future) will support users to achieve their goals
 - Functionality provided by the (future) system
 - Workflow
 - Handling of the system
- Maybe, illustrate story with sketches, e.g. paper prototype

Example scenario - context

- Liz likes to take photos and sometimes video clips, with her digital camera and sometime with her camera phone. She takes photos mainly when travelling, when she spends a holiday with her family. She also takes photos of events, such as birthdays or parties, and among her favourite topics are her children, the pets, and landscape with water.
- Liz just came back from a holiday trip, with some 200 new images, and some 20 video clips.
- Liz uploads the new content to her PC,...

Example scenario - elaborate

- Liz uploads the new content to her PC,
 - The system automatically creates a new collection, and starts displaying a thumbnail overview of the collection, while images and videos are uploaded.
- Liz is waiting for the upload to be completed, and enjoys the first look at thumbnails.
 - In the background, the system already starts a fast analysis, looking for clusters of similar images. In the overview, each cluster is represented by one image, but user can easily expand each cluster.
- Liz tends to take photos in bursts, so
 - the overview of her 200 images will show only 110 items, 30 of which are clusters of 2 or more photos.

Using scenarios to gain requirements

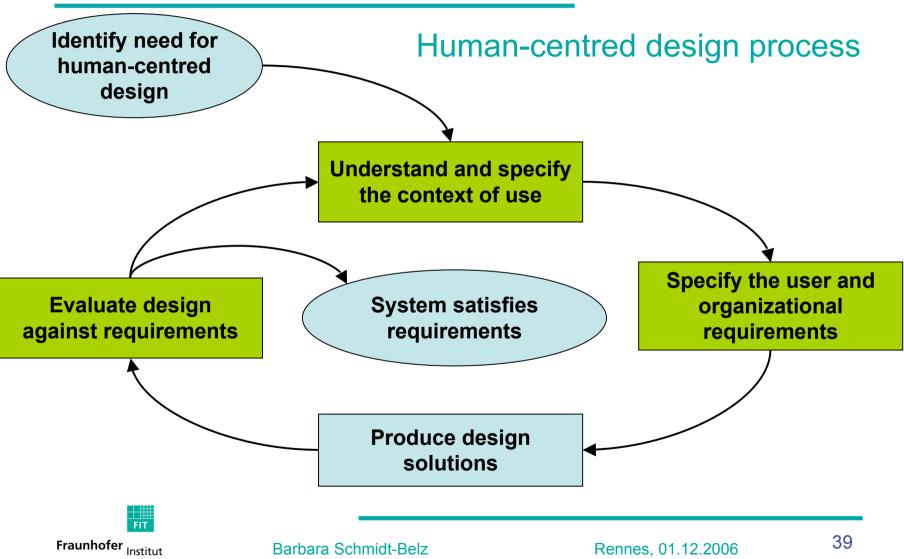
- Discuss scenarios with real users
 - Validate user role, task, context of use
 - Evaluate intended system functionality, its usefulness, model workflow, ask for missing functions, ...
 - Ask users about their requirements: How should system be in order to be useful, usable, trustworthy, fun, ...
- Record interviews, write down individual results

Requirements analysis

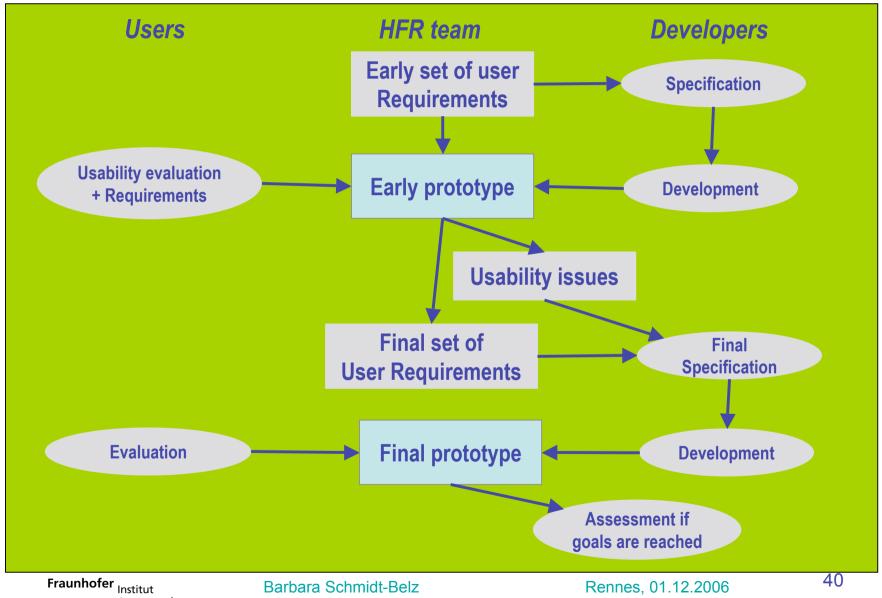
- Aggregate all statements from all individual users
- Translate user comments to requirements
- ♦ Rating:
 - Validity of each requirement
 - Importance of each requirement for users
- Document requirements and deliver them to the developers
 - Classify, relating to system aspects
 - Present outcome to developers, workshop

Example aceMedia

- Simple DB (Excel) to allow various ways of exploitation
- Structure:
 - ID for reference, indicating area of concern
 - Requirement + Rationale
 - Source (user, expert, KANO)
 - Classification which aspect of system concerned
 - Rating


	Α	В	С	D	Е	F	G	Н	I	J	K
	Requ ID	PCS	CCM	Requirement	Rationale	Source	Source	PC	Mob	Web	TV
,							ID	Prio	Prio	Prio	Prio
<u> </u>	R-ACE-001	Х	0	For outomotic organization of content various		ovport		Ι Δ	Λ	,	Λ
2	R-ACE-001	^		For automatic organisation of content various metadata should be considered.		expert		A	Α	./.	A
	R-ACE-001-1	Х		For automatic organisation of content, user wants		user	3004	Α	Α	./.	Α
				to be informed about the criteria that were used to							
3				assign content to a collection.							
	R-ACE-001-2	Х		For automatic organisation of content the "date"	"Date" when content was captured is the most	user	1217	Α	Α	./.	Α
				should be considered in which the content was	important aspect in PCS.		3058				
4				captured.							

Any questions or comments, so far?



User evaluation

Angewandte Informationstechnik

Evaluation of Prototypes

Method of usability evaluation

- Evaluation of a prototype; this may be paper prototype, mock-up, or functional prototype
- Real users, i.e. representatives of target user groups
- Let user perform typical tasks using the system
- Ask users to think aloud while using the system
- Observe and listen, record.

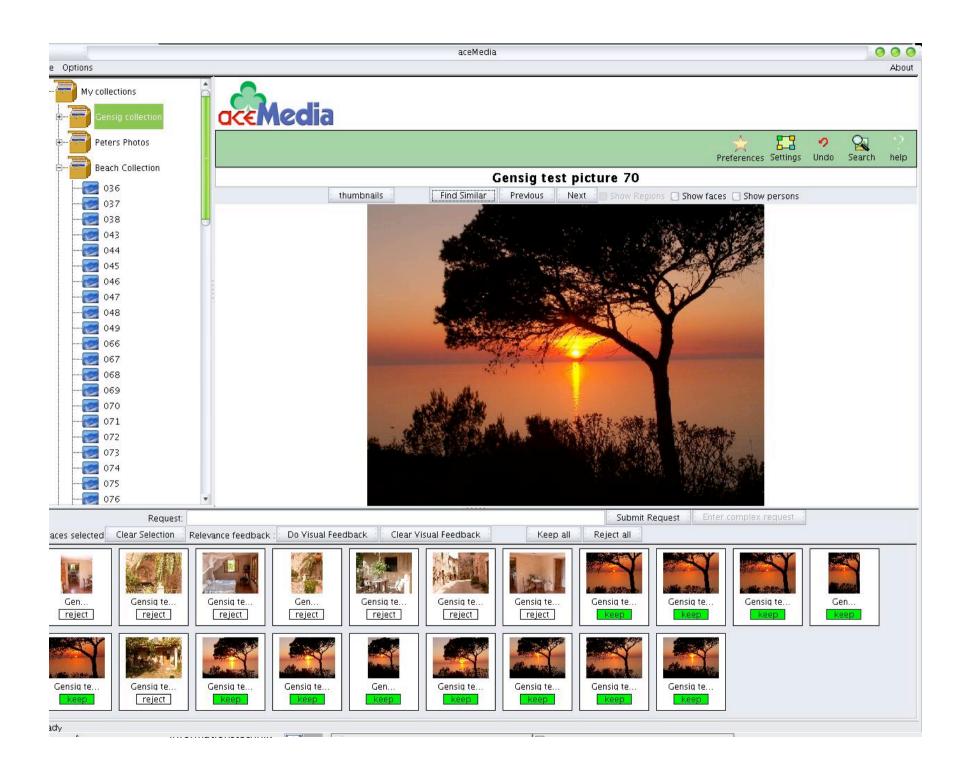
Analysis of user evaluation sessions - 1

- Identify usability issues "critical incidents"
 - Where does it occur (task, screen, function)
 - What happens to user (describe incident)
- Diagnosis: what is wrong, why is this an issue
 - Refer to established usability principles, e.g. ISO
 9241 110 "Design principles for dialog systems"
- Attention: do not rush at recommendations

Analysis of user evaluation sessions - 2

- Validate and rate issues:
 - Does issue inhibit the completion of task?
 - If yes: catastrophe
 - If not:
 - does issue seriously hamper the completion of task?
 - Is there a work-around to achieve goal in spite of issue
 - How frequently would issue occur in real life?
- Give recommendations of improvements (in cooperation with developers)

Some recommendations


- User evaluation lightweight:
 - 5-7 users (per user group) will discover 75% of usability issues
- Agile process: do several iterations of lightweight user evaluations and subsequent design improvements
- Optional: heuristic evaluation by usability experts if users are "expensive"
 - Can reduce but not substitute user evaluations
- Optional: focus groups to clarify special issues
 (e.g. trade-offs, choice among optional solutions)

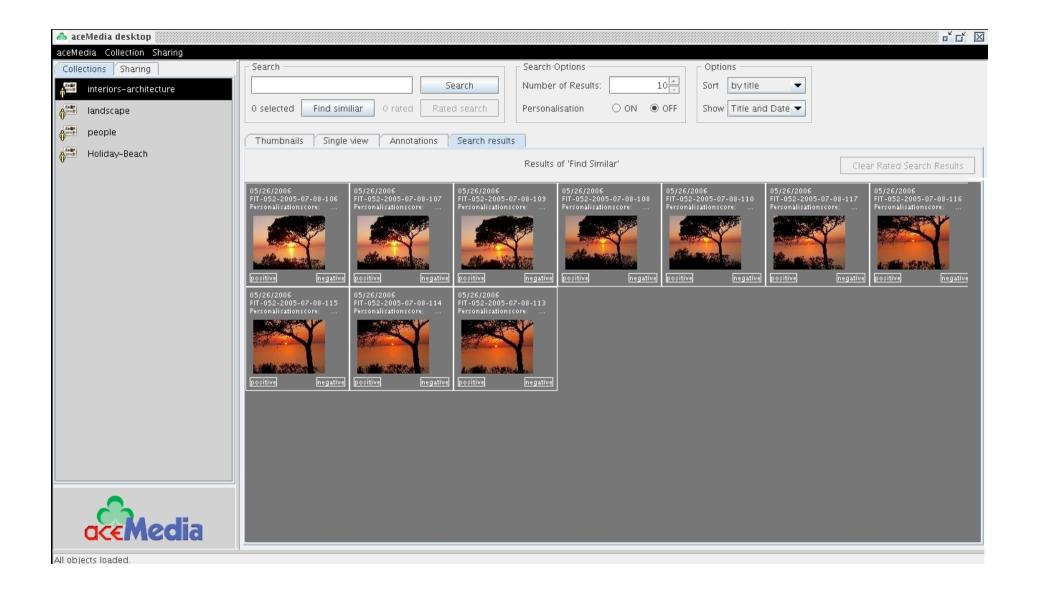
Example: impact of user evaluation (1/3)

- Scenario: Relevance feedback will allow iterative search, if user not satisfied with result s/he can indicate pos/neg examples, and will get better results.
- Users liked it.
- First version delivered, solution:
 - If not satisfied with retrieval results, user had to decide for all items in result set whether they are good or bad, then ask for relevance feedback.
 - improved result set contained all different images.
 (if user did not find what s/he looked for in previous result set, why show some again?)

Example: impact of user evaluation (2/3)

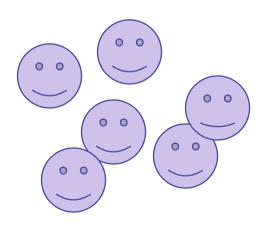
- User evaluation identified major issues:
 - Too much effort to decide for each image if keep or reject
 - Some images were not visible unless user scrolled, but if unsatisfied user would not scroll
 - After relevance feedback, user expects good examples to be included in next result set.
 - User expects to get a retrieval result that matches query (good recall, good precision).
 - Goal is not (as developers relevance feedback had assumed) to retrieve one particular item.

Example: impact of user evaluation (1/3)


Improved version:

- If result set is not satisfactory, user has to indicate 2+ good and 2+ bad examples, then ask for another search.
- New result set will contain good examples, and more like those, and none of the bad examples.

Improvement required


- Algorithm had to be changed!
- Improved layout, improved labels on buttons

Thank you for your attention!

References (small selection only)

- Jakob Nielsen"Usability Engineering"
- Suzanne Robertson, James Robertson
 "Mastering the Requirements Process"
- Larry L. Constantine, Lucy A.D. Lockwood
 "Software for Use"

