

XtreemOS: an Operating System for Next Generation Grids

Christine Morin Centre de recherche INRIA Rennes - Bretagne Atlantique

XtreemOS Scientific coordinator

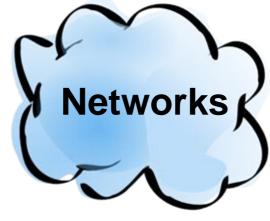
xtreemos-info@irisa.fr

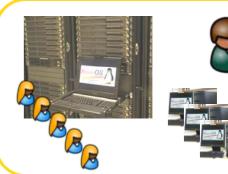
Outline

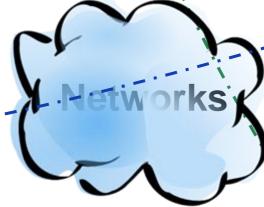
- Virtual organizations & Grid computing
- Overview of XtreemOS project
- XtreemOS services
- Conclusion

Virtual Organization Concept

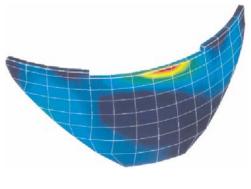
- □ Temporary or permanent alliances of enterprises or organizations
 - sharing resources, skills, core competencies
 - to better respond to business opportunities or large scale application processing requirements
 - whose cooperation is supported by computer networks


Large Scale Dynamic Grids





Virtual Organizations (VO)



Applications

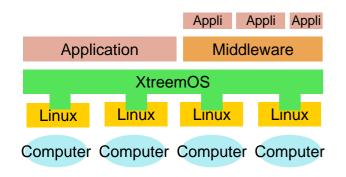
- Computing resources used on demand
 - Many applications of moderate size
 - Many users
- Distributed simulation of physical behaviour
 - Code coupling
- Business services

Why it is difficult to use a Grid

- Large scale distributed system
 - Very large number of heterogeneous resources
- System used by multiple users simultaneously to run different applications
 - Very large number of users
- Distributed system whose resources belong to multiple institutions
 - Multiple sites in different autonomous administrative domains
- VO Dynamicity
 - Resources may join or leave the Grid at any time
 - Resource and network failures
 - Changes in VO membership

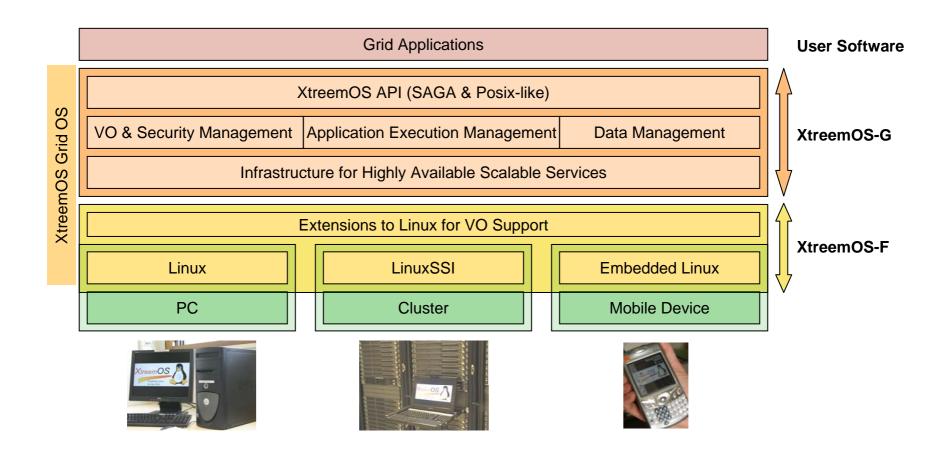
Harnessing large scale dynamic Grids

Ease of use & programming


State of the Art

- Systems offering Grid support
 - Minimal infrastructure (Globus)
 - Burden on system administrators, programmers and users
 - Global infrastructure (Xtremweb)
 - Lack of flexibility
 - Target specific class of applications
- Implementation level
 - Middleware (Globus, PUNCH, Unicore)
 - Performance & security issues due to multiple layers
 - Multiple rapidly evolving standards
 - Legacy applications need to be modified
 - Grid OS (9Grid, GridOS)
 - Implementation of core functionalities to simplify middleware
 - No Grid OS currently offers a full set of highly available scalable services

XtreemOS Project Objectives



- □ Design & implement a reference open source Grid operating system based on Linux
 - Get around overheads and security pitfalls brought by layers in existing Grid middleware
 - Provide native VO support
 - In a secure and scalable way
 - Without compromising on flexibility and performance
- □ Validate the XtreemOS Grid OS with a set of real use cases on a large Grid testbed
- □ Promote XtreemOS software in the Linux community and create communities of users and developers

Overall XtreemOS Architecture

XtreemOS API

Challenges

- Linux applications should run with little (no) modifications
- Grid applications should run with little (no) modifications
- XtreemOS functionality must be provided to applications
- SAGA, the Simple API for Grid Applications
 - Very close to POSIX
 - Compliant to existing OGF standards (DRMAA, JSDL, BES, GridRPC)
- Implementation of a SAGA engine with Posix Adaptors

VO & Security Management

Challenges

- Interoperability with diverse VO framework and security models
- Flexibility in policy languages
- Scalability of management of dynamic VO
- Accurate isolation
 - Strict access control from service level to system object level
 - Monitoring and logging OS service usage and system object access
 - Audit log must refer to user credentials and be securely provided to the resource owner and the VO manager

VO and Security

VO level

VOM service

- Distributed information management for membership tracking and accounting of users and resources
- Security services

Node level

Extended Linux OS

 Mechanisms for recognizing, controlling, and enforcing usage of Grid entities

VOM Service

Identity Service

Generates and manages globally unique VO IDs and user Ids

A Virtual Organization Membership Service

Checks whether a user is a member of a specified VO. Used by the CDA before issuing an XOS-Cert, and by other subsystems needing to check VO membership of a user

A Credential Distribution Agency

Issues users with VO security credential for accessing grid-wide services and resources

XtreemOS uses X.509 v3 certificates (the 'XOS-Cert')

Attribute Service

Provides users with VO attributes. Used to carry information relating to controlling access to resources, and to allow VO nodes to map global user IDs to local UIDs/GIDs

Policy Service

Provides services such as Policy Information Points and Policy Decision Points

Node Level VO Support

- Mapping from grid user credentials (User ID, VO id, attributes) to local user credentials (uid, gids)
- Enforcement of VO/local access control policies and resource usage constraints
- Isolation of multiple VO accesses on the same node
 - By dynamic creating local accounts for isolation
- Internal interfaces are exposed via
 - PAM APIs (*libpam*)
 - NSS APIs (libc)
 - Kernel Key Retention Service APIs (libc)

Application Execution Management

- Objective: provide functionality to execute jobs
 - Services to start, monitor and control applications
 - Services to select and allocate resources
- Challenges:
 - Scaling to 10⁶ of nodes/users/jobs/...
 - Heterogeneity of resources
 - Benefit from integration with other components
 - Synergies
 - Better accuracy in information

Comparison with SOA

Job

- Allows non-grid aware users
 - Grid parameters: by default or guessed

- Both queueing & interactive systems
- Resource usage enforcement

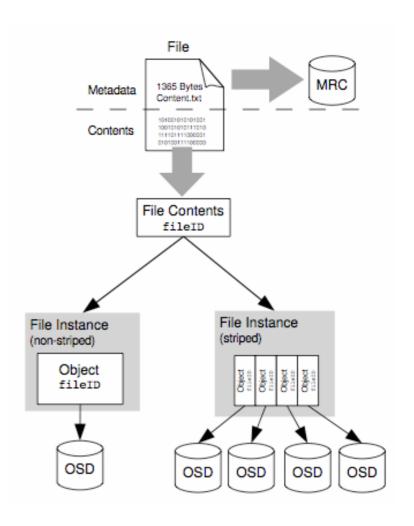
User

Resource

Services

- Both batch & interactive
- First class objects:
 - Known by the kernel

- No global view
 - Only job/resource view
 - i.e. no global schedule



XtreemFS

A distributed file system (POSIX interface):

- Federated installations over multiple VOs
- Designed for cross-org. high-latency WANs
- File replication (control interface for AEM)
- File striping and redundancy
- Metadata replication
- Coordinated client-side data caching with advanced semantics (interface: mmap)

Infrastructure for highly available scalable Services

- Mechanisms for transparent fault tolerant service replication
 - Based on IPv6
 - AEM: job controller
 - VOM: security services
- Publish/subscribe communication
 - XtreemFS: reliable dissemination of meta data changes
- Directory service
 - AEM: job directory in AEM
 - XtreemFS: global index of file system volumes
- Resource discovery
 - Multi-range queries
 - AEM: find resources matching job requirements

Based on overlay networks (P2P technology) for scalability

Cluster Flavour

Objectives

- Efficient execution of applications requiring a large amount of resources
 - make efficient use of the cluster hardware
- Provide a simple interface
 - make resource distribution transparent

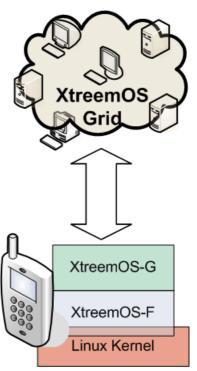
Single System Image Technology

- A SSI cluster looks like a single powerful PC for software executed on top of the OS
 - Legacy applications can be executed on a SSI without modification or recompilation
- Ease of management: a single distributed OS managing all cluster nodes

Cluster Flavour

- Leverage the open source Kerrighed SSI cluster OS originally developed by INRIA in collaboration with EDF R&D
 - Extension to Linux kernel
 - Kernel modules + patch
 - Most recent version Kerrighed 2.1.0 based on Linux 2.6.20
 - http://www.kerrighed.org

Linux SSI

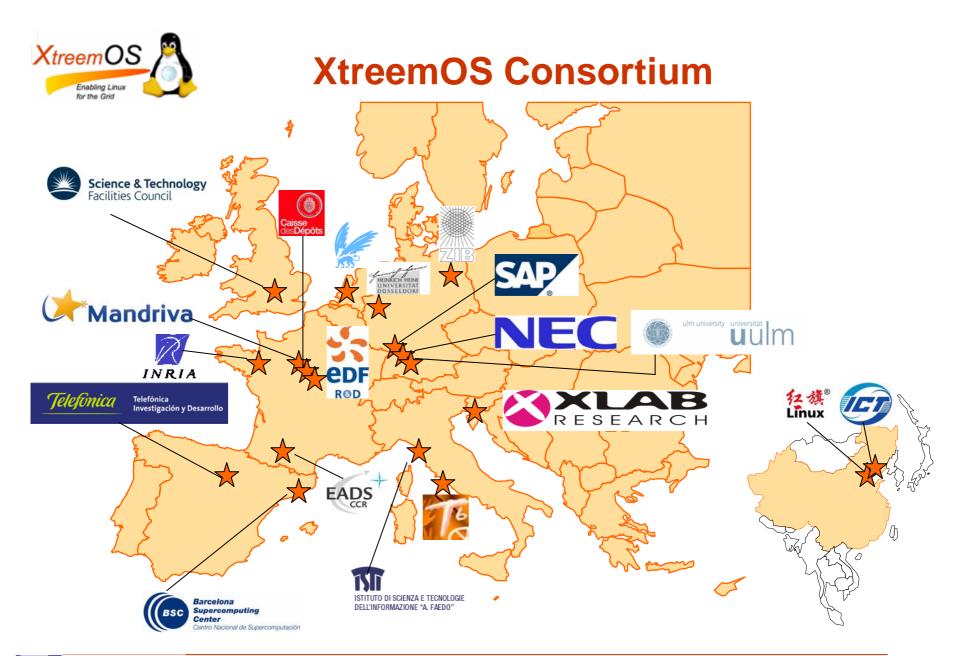

- KDFS distributed file system exploiting disks attached to compute nodes
- Customizable scheduler
- Parallel application checkpointing
- Scalable SSI

Mobile Device Flavour

- Provide support for VO activities in a mobile and ubiquitous scenario, by integrating those functionalities in a Linux distribution for mobile devices (PDAs and Mobile Phones).
- Composed of two layers:
 - XtreemOS-F: Foundation layer, low level, integrated in the OS (kernel, modules...)
 - XtreemOS-G: Services layer, a subset of all XtreemOS services
- Two versions:
 - Basic (PDAs): more stable platform, more processing and storage power
 - Advanced (Smartphones): more optimizations needed, unstable (but promising) future/market

Mobile Device Flavour

- Guide the development of new features in Mobile Grids
- Help spotting potential "killer apps"
- Just to name a few:
 - eLearning
 - eHealth
 - Crisis management
 - eBusiness (mobile services integration)
 - In general, services requiring more resources than available on MDs (i.e. voice recognition algorithms, biometric identification databases,...) and access to resources from different organizations.
 - ...



Conclusion & Perspectives

- Initial architecture design of XtreemOS Grid OS
 - a consistent set of scalable and highly available services based on kernel level mechanisms
 - Native VO support
- On-going implementation of a first prototype
 - First fully integrated XtreemOS release planned by May 2008
 - Some individual components released by the end of 2007
- ☐ Future work
 - Refinement of the initial design
 - Iterative approach based on feed-back from experimentation with use cases
 - Security analysis of XtreemOS
- More information: http://www.xtreemos.eu

