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Summary
CV

Brief state of the art: complex systems, systems biology

Contributions in biology:

Markov processes in molecular biology

Qualitative equations for functional genomics

PDE models for pattern formation

Conclusion
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Complex systems

Quasicrystals
(Orsay)

Cellular physiology
(Rennes) Development

(Rennes)

Incommensurate composites
(Nimégue)

Wormlike micelles
(Leeds)
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What complex systems have in common

• Order as framework for transformation: crystals, 
dissipative structures, patterns

• Defects as motors for transformation: points, lines, 
interfaces

• Hierarchical organisation

• Nonlinearity

• Stability, robustness

• Universality
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Systems biology

• Mathematical modeling of physiology

• Transversal field, imports methods from physics, control 
theory, automata, chemical kinetics

• After rapid evolution, critical stage: obstacle raised by the 
complexity of higher organisms (models are scarce or 
weakly predictive)

• There is a need for new methods
analysis methods for massive data
model reduction
more realistic models using physico-chemistry
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Gene regulation is the result of many 
interactions



8Network models unify various processes

Gap genes, first 3 hours of Drosophila
Lactose operon, E.Coli

Nutritional stress, E.Coli
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Chromatin ImmunoPrecipitation on Chip

DNA Chip

Various kind of data: differences of concentrations, 
direct test of qualitative interaction
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Strategy
Aims:
• Model construction
• Model analysis
• Biological predictions

Difficulties:
• Data collection is massive but unguided
• Reverse engineering is difficult
• Models are non-linear and in very high dimension
• Interpretation of computer simulations is difficult

My solutions:
• Guide data collection (experiment design)
• Do not start reverse engineering from scratch (model correction)
• Develop new mathematical techniques for model analysis
• Look for network design principles
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Jump Markov processes

Ordinary differential equations

Qualitative equations

Partial differential equations

Thermodynamic limitPiecewise deterministic

Discretisation

Partial thermodynamic limit

Averaging

My mathematical garden
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My contributions

My contributions to this field:
1) Modeling stochasticity of molecular biology processes by 

piecewise deterministic Markov processes
2) Qualitative equations for analysis of massive data
3) Carr-Pego type model reduction for pattern formation
4) Measure concentration as framework for robustness

Collaborations
Computer scientists: A.Siegel, M.LeBorgne (IRISA Symbiose), 

M.Samsonova(St.Petersburg)
Biologists: N.Theret (INSERM), S.Lagarrigue (INRA), A.Lilienbaum

(CNRS), J.Reinitz (Stony Brook)
Mathematicians: S.Vakulenko(St.Petersburg), A.Gorban(Leicester), 

E.Pécou(Nice)

Research project MathResoGen (2003-2006)



Modeling stochasticity in molecular 
biology by Markov processes
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Markov jump processes: Renyi, Bartholomay, 50’

Modeling stochastic effects
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Suppose that the mass action law is satisfied
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Some species are in small numbers!

Piecewise deterministic limit
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O.Radulescu, A.Muller, A.Crudu (TSI in press)
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use frequent/rare species decomposition
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Piecewise deterministic limit result

For                                the Markov jump process      
converges to a piecewise deterministic process:

1,0, →→∞→ εε ΩΩ ),/( rf XXX Ω=
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Application: hybrid stochastic simulation 
algorithm

O.Radulescu, A.Muller, A.Crudu (TSI in press)
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1. Initialize
2. Generate exponential random time
3. Use deterministic solver to propagate
4. Change      to a new discrete value
5. Increment time
6. If t<tmax goto 2
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Application to happloinsufficiency

Biological problem:

Syndrom due to deficient genotype : insufficient copy number
Phenotype: heterogenous cell populations 

Aim:

Find the simplest model that reproduces this situation
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Model for haploinsufficiency
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Markov jump model (Cook 99)
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Study intermittency of trajectories 
and the invariant distribution
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Conclusion

Results:
• The protein production is intermittent
• The heterogeneity of the phenotype can be described by a Beta 

distribution 

The same method will be applied to larger, more complex models; 
in project NFκB signaling 



Qualitative equations
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Qualitative equations
Biological problem:

Following a perturbation (stress, signal) the state of the cell 
changes. Variations of hundreds or thousands of variables can 
be monitored. How to use this information?  

Steps:

• develop an “elasticity” theory of graphs (O.Radulescu et al. 
J.R.Soc.Interface 2006)

• translate this theory into qualitative equations (with A.Siegel et al. 
Biosystems 2006)

• polynomial algorithms for solving systems of qualitative 
equations (with Ph.Veber, M.leBorgne et al. Complexus 2006)

• application to huge networks (with C.Vargas et al., proc. RIAMS 2006)
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Elasticity of graphs
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Qualitative equations
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Algorithm for solving qualitative equations
•Map signs to elements of the finite field Z/3Z

•Map qualitative equations to polynomial equations over Z/3Z

•NP complete problem

•Ternary Decision Trees contracted to directed acyclic graphs and
systematic use of cache memory for non-redundant computation

•Obtain exhaustive lists of solutions within minutes for 1000 nodes

(with Ph.Veber, M.LeBorgne Complexus 2006)
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Predictions of a model

hard components: variables whose values are the same (+ 
or -) in any solution 
the hard components are the predictions of the model

Le, cAMP, A are observed

Li,G,LacZ,LacY, LacI are hard components
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Experiment design

Any value of the triplet
(Le,G,A) can be extended
to a solution

These variables have no 
validation power
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Use validation power for experiment design

Only 2 values (out of 8) of 
(LacI,A,LacZ), namely
(+,−, −) (−, +,+) can be extended
to a solution

Define validation power as:

Choose high validation power sets for optimal design
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Large scale application: nutritional stress  of E.Coli
1258 nodes, 2526 interactions, 10600 states, 1016 solutions

We have obtained both:
• a set of predictions:  from 40 observations in the stationary phase, 

401 hard components, 26% of the network
• a set of corrections to the model: necessarily include σ factors



Partial differential equations
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Pattern formation
Problem:
• Patterns form in very different complex systems (Drosophila 

embryo before gastrulation, shear banding of complex fluids). 
• The examples are of Wolpert type, less studied in mathematics. 

Can we find an unified approach? 

Cornerstones:
• of complex fluids: understand the relation between structure and 

flow properties
• of developmental biology: understand canalization, stability of 

development 

Collaborations:
P.D.Olmsted (Physics,Leeds), JP.Decruppe(Physics,Metz), JF.Berret, G.Porte 

(Physics,Montpellier) on wormlike micelles
S.Vakulenko (Maths,St.Petersburg), J.Reinitz(Appl.Maths and Biology, Stony Brook) on 

Drosophila
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Problem 1:

Syncitial blastoderm, before gastrulation
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Action of maternal gradient (bicoid)

Bicoid profile m(x) develops in 1h after fertilization
and remains constant during the blastoderm
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Problem 2: Shear banding of wormlike micelles
Hadamard instability

O.Radulescu et al. Rheol.Acta 1999, with PD.Olmsted J.Rheol. 1999
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Model: Fluid-structure coupling
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O.Radulescu, PDOlmsted J.Non-Newtonian.Fl.Mech. 2000
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Common framework: R-D PDE with small diffusion
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Result 1: Classification of patterning mechanisms

0when0,t,in uniformly  ,0t)-v(x,t)(x,u →>Ω∈→ εε x

t)(x,uε solution of the full system

v(x,t) solution of the shorted equation

Patterning is diffusion neutral if for vanishing diffusion, the solution of the full 
system converges uniformly to the solution of the shorted equation

If not, patterning is diffusion dependent

O.Radulescu and S.Vakulenko, arXiv qBio 2006
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Result 2: Classification of interfaces

For a given x, the shorted equation has only one 
attractor

Type 1 interface

O.Radulescu and S.Vakulenko, arXiv qBio 2006

Type 2 interface

For a given x, the shorted equation has several
attractors, here 2:  

(x)φ

(x)(x), 21 φφ

Patterning with type 1 interfaces 
is diffusion neutral

Patterning with type 2 interfaces 
is diffusion dependent

The width of type 2 interfaces 
can be arbitrarily small
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Theorem on the diffusion neutral patterning

O.Radulescu and S.Vakulenko, arXiv qBio 2006

Consider the time autonomous situation 
and the shorted equation

The patterning is diffusion neutral under the following conditions on the shorted
equation: 

i) uniform dissipativity

ii) strong linear stability

calculated at the attractor

iii) attraction basin condition
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Theorem on the movement of type II interfaces in 
the bistable case

O.Radulescu and S.Vakulenko, arXiv qBio 2006

Invariant manifold decomposition for

Travelling wave solution 
for the space homogeneous eq.

The solution of space inhomogeneous equation is of the moving interface type

Equation for the position q(t) 
of the interface

This extends results of Carr-Pego(90) and Fife (89)

The velocity of a Type II interface is proportional
to the square root of the diffusion coefficient 
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Application1: stress diffusion coefficient from 
interface kinetics

Diffusion is small
D~0.003-0.011 μm2s-1

w~30-40 nm

O.Radulescu et al.  Europhys.Lett. 2003

10s-130s-1 .
γ

60s-1

σ.
γ
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Application2: Diffusion dependent patterning of 
Drosophila

1) parameter fit of Reinitz model from time dependent data 
by simulated annealing

2) compute attractors of shorted equation

Result: patterning is diffusion dependent
Improvement of model fit: Rapid method of parameter identification using

interface kinetics

with Gursky, Manu, Vakulenko, unpublished 

presented at Nanobio’06, St.Petersburg 
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Comment on the impact in biology

Compared to Turing models, the gene circuit model is realistic:
• the pattern is not a periodic modulation of a homogeneous state
• the pattern results from the interaction of development genes, is 

guided by maternal gradients and has aperiodic transients

Treating the set of segmentation genes as a dynamical system 
allows to understand:

• The logic of interactions (open problem) and transformations 
• The stability of the result (open problem)
• The possible errors in mutants (open problem)
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Conclusion and future projects
Start of a long term project: produce powerful mathematical tools for analysis 
of complex systems.

Strategy: 
Model simplification 
*The invariant manifold technique of Carr-Pego
*piecewise deterministic approach for Markov processes 
*graph theory methods for chemical kinetics models

An intrinsic relation exists between model reduction, stochasticity
and robustness: concentration phenomena!

Physical chemistry for diffusion and transport in physiology.

Collaboration
Upi Bhalla NCBS Bangalore, planned co-tutored phD.
A.Gorban (Leicester) Egide/Alliance sponsorship 
J.Reinitz (Stony Brook) and Samsonova (St.Petersburg)
ASC project with INRA on modeling lipid metabolism
project ANR SITCON with Curie
Symbiose team IRISA
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Project 3: Robustness of biological systems 

Cube concentration

Distributed robustness

r-robustness

Simplex concentration

Stony Brook (Reinitz), Leicester (Gorban), St.Petersburg(Samsonova, Vakulenko)
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Project 4: LIPID METABOLISM

Hierachical modeling:
1)Extended model
2) Abstract model

Multiorgans, multispecies

Heterogeneous data
Microarrays
Biochemical dosages

Symbiose, INRA Rennes and Toulouse



51

Project 5: SITCON
Modeling signal transduction induced by a 

chimeric oncogene

CELL 
PROLIFERATIO

N

Νfκb pathway

TGFβ pathway

IGF pathway

…

EWS/FLI1

Ewing 
network

APOPTOSI
S

EWS/FLI1
Institut Curie, Symbiose



Farey sets and spectra of 
incommensurate structures
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Number theory and Incommensurate 
compounds

Related problems:
Hofstadter Butterfly

Bellissard’s gap labelling
Arnold tongues
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