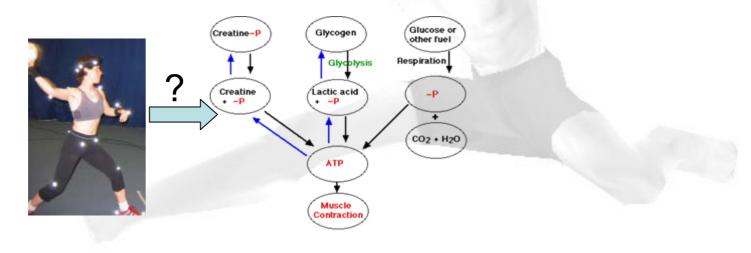
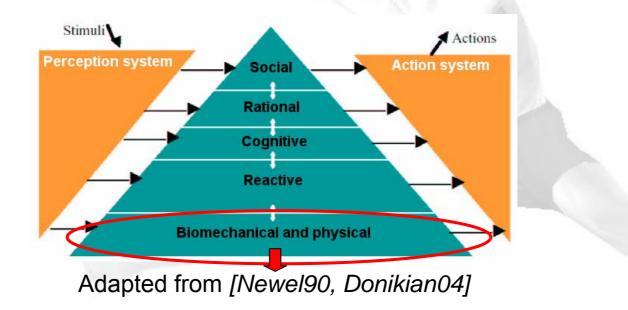
Analyse, Modélisation et Simulation du Mouvement Humain Analysis, Modeling and Simulation of Human Movements

Franck MULTON Université Rennes 2 – IRISA/Bunraku Actuellement en délégation INRIA



Introduction


- Human motion
 sociological (i.e. health care) and economical (i.e. sports) issue
- Human motion = f(biomechanics, physiology, psychology...)

Introduction

- Decomposition in several independent
 layers of control [Newel90]
- How to isolate phenomena?

Preamble

- Complexity of the motion control system
 - ->200 bones and muscles [Gray18]
 - Several natural sensors [Berthoz03]
 - Various laws (mechanics, physiology...)
 - ➔ simplifications!

- Skeleton = articulated rigid bodies [н-АNIM, ISB02]

Preamble

- Complexity of the motion control system
 - ->200 bones and muscles [Gray18]
 - Several natural sensors [Berthoz03]
 - Various laws (mechanics, physiology...)

➔ simplifications!

- Skeleton = articulated rigid bodies
- Muscles

Zj

• equivalent rotational actuators [Zajac90]



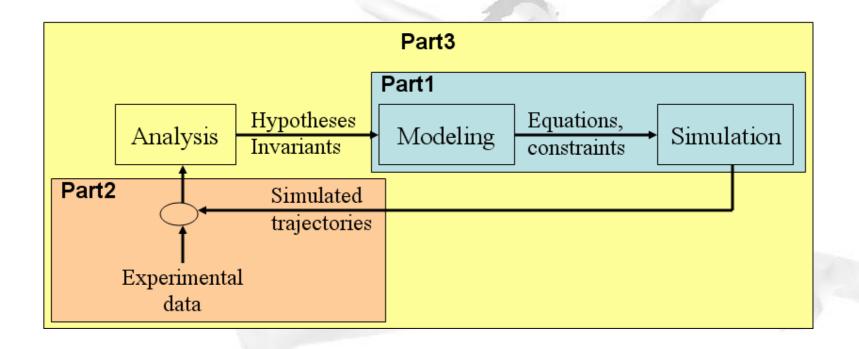
Preamble

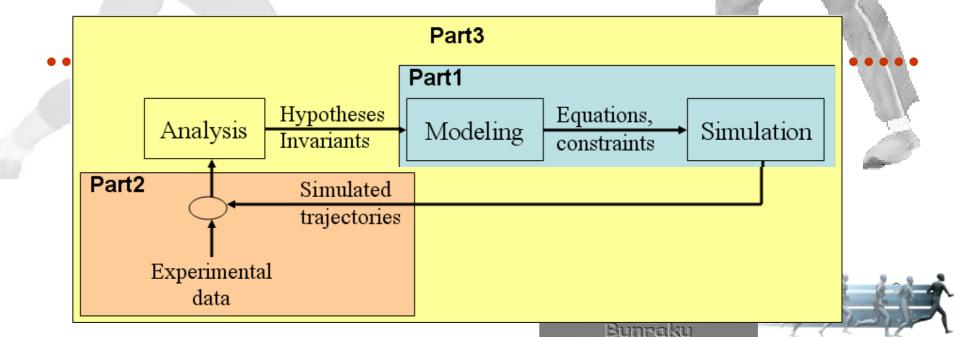
- Complexity of the motion control system
 - ->200 bones and muscles [Gray18]
 - Several natural sensors [Berthoz03]
 - Various laws (mechanics, physiology...)

➔ simplifications!

- Skeleton = articulated rigid bodies
- Muscles
 - equivalent muscles in rotation [Zajac90]
 - Musculoskeletal models [Delp90, Nakamura05]

Preamble (2)


- Several scientific domains are involved
- Experimental Research (ER) vs. simulation
 ER → simulation: early in computer animation
 [Zeltzer82] and humanoid robotics
 - Mainly used to mimic natural motions [Alexander83]→[Boulic90]
 - Simulation -> ER [Delp90, Yeadon90]
 - Mainly to understand the link between various
 phenomena



Proposal

• To an analysis/synthesis workflow

Part1: Simulation for human – motion understanding

Problem

- To propose a method:
 - For generating natural and controllable motions
 - For testing hypotheses from experimental sciences
 - Compatible with interactive applications
- Common assumption:
 - Rigid bodies with rotational actuators
 - → State = $\theta(t) = \{P(t), \Theta(t), \{q_i(t)\}_{i=1...n}\}$

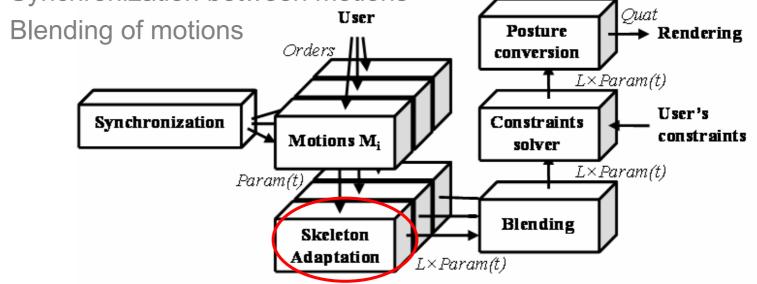
 $(P(t), \Theta(t))$ =position and orientation of the root

{qi(t)}=joint angles<

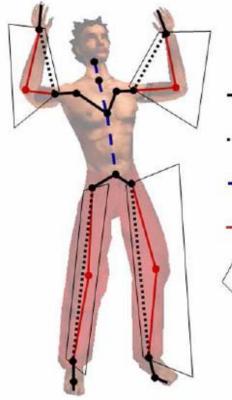
Bunraku

Problem (2)

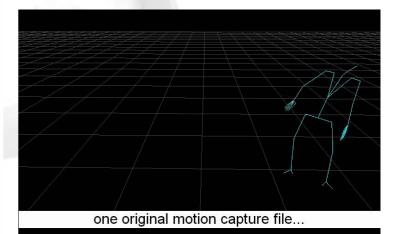
- Control= application of constraints
 Kinematic: constraints in the Cartesian frame
 - i.e. Inverse Kinematics $f({q_i})=X \rightarrow {q_i}=f^{-1}(X)$
 - Kinetic: taking masses into account
 - Dynamic: forces, torques, inertia...
 - "Style": remaining constraints
 - Psychological state: sad, nervous...
 - Social status: macho walking style...
 - Other...
- ➔ 2 families: using or not motion capture data


Classification of simulation methods

	Without captured data	With captured data
Kinematic constraints	Kinematic models [Zeltzer82, Girard85, Boulic90, Sun01] Planning	Motion graphs [Kovar02, Lee02] Blending [Boulic97, Ashraf01, Kovar03] Displacement maps [Gleicher97, Shin01, LeCallennec04]
Dynamic constraints	[Arechavale Esteves06] Dynamic models [Yeadon90, Hodgins95, Brogan98, Yang04]	
Style	Procedural approaches [Rose98, Chi00]	Statistical analysis [Glardon04, Hsu05, Liu05] Navigation into a database [Grochow04]

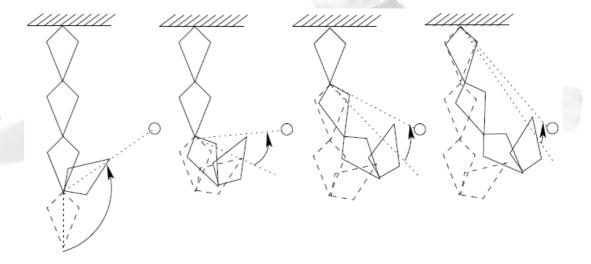

Our proposal: MKM

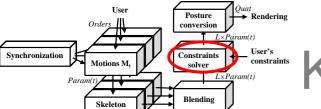
- Blending & adaptation of captured motions
 - Originality = designed for interactive animation + test of hypotheses
 - Definition of a morphology-independent representation of motion
 - Kinematic constraints solver
 - Synchronization between motions



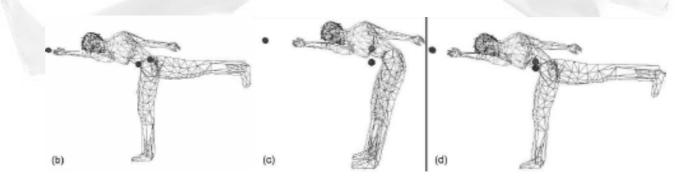

 Retargeting motion to another character
 Morphology-independent representation to avoid using Inverse Kinematics

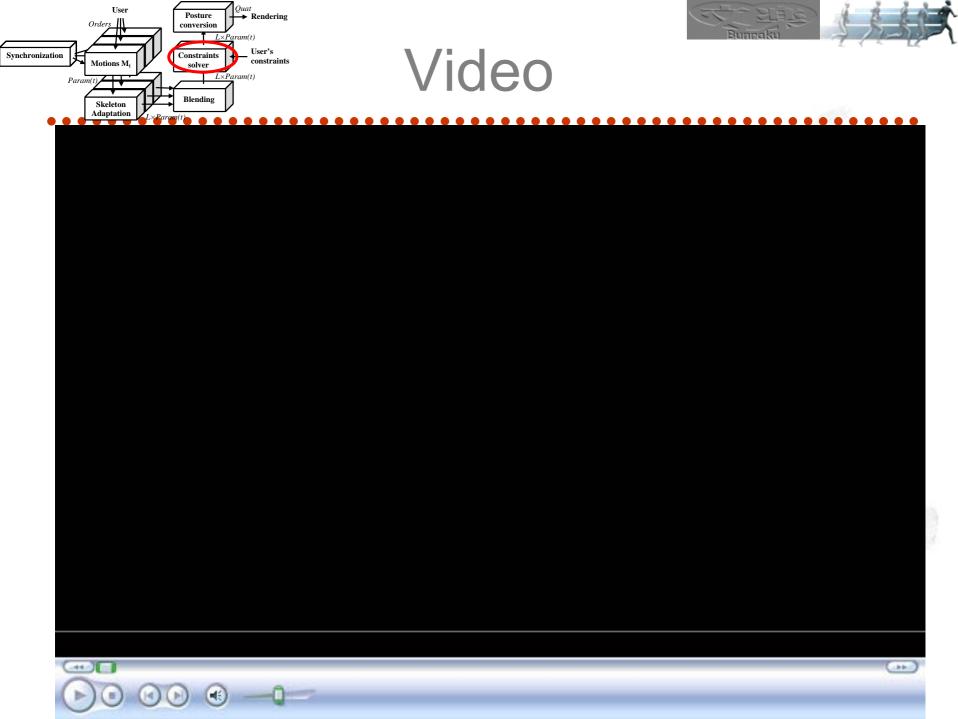
- Normalized segments
- Limbs with variable length
- - Spine represented by a spline
- Limbs not stored
 - 7 Half-plane containing intermediate articulation

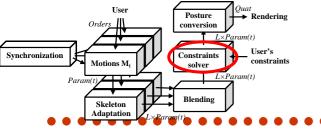



[Menardais03PhD, Kulpa05EG]

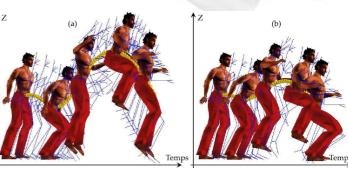
- Problem: $f({q_i})=X \rightarrow {q_i}=f^{-1}(X)$ Inverse kinematics
- Classical approaches
 - Local linearization of f with Jacobian [Baerlocher04] $\Delta \theta = J^{+} \Delta X + (I - J^{+}J)_{Z} \quad \Rightarrow \text{ Time consuming}$
 - Iterative algo. [Shin01]; Ex.: CCD [Lander98]


➔ Lot of iterations & unrealistic poses





- Skeleton viewed as a hierarchy of groups
 - Analytical solution (like IKAN [Tolani00])
 - Iterative algorithm (like CCD)
- Iterative process → order for the groups?
 - Hypothesis=energy minimization [Alexander04]
 - Distal groups with less mass first; also the groups with larger range of motions
 - But other hypotheses could be tested such as specific segmental sequences [Fradet04SportsSciences]


Dynamic constraints

Contact phase

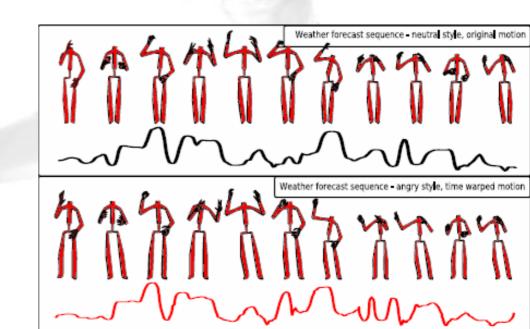
- Problem: verifying mechanical laws of motion [Safonova05]
- Proposal: preliminary work on COM's system

COM

- Ident. masses [Durocher05GW]
- Optimization of P2 [Kulpa05PhD]
 - Verifying gravity
 - Verifying constraints
 - Preserving the shape of the initial motion
- Inverse kinetics for posture retrieval^{*}

Aerial phase

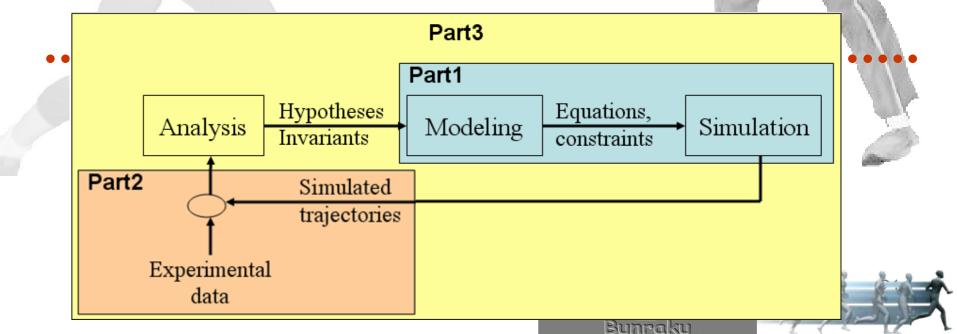
Time



Dealing with style

- Problem: applying a style to a motion
- Context: analysis/synthesis of sign language
 (coll. with VALORIA/UBS)
- Proposal: time-alignment and identification of a warp path using DTW [Heloir06CASA]

Alexis Héloir SIGNE project (coll. with VALORIA)



Discussion

- Fast algorithms for adapting motion capture data
 - Assumption: adapting locally a motion preserves its naturalness properties (to be verified...)
- Several encoded hypotheses
 - Order for constraints solving
 - Dealing with constraints
- Perspectives
 - Dealing with dynamics
 - Testing with real biomechanical protocols
 - Validation!

Part2: VR for validation

Problem

- Simulation → angular trajectories + animations
- → How to compare?
 - Multidimensional data
 - Root Mean Square, correlations

 average values

 small details

Problem (2)

→How to validate?

- Involving subjects to evaluate the animations [Hodgins97, Bodenheimer99, Reitsma03]
- But sensible to subjective feelings
- → How the motion is perceived?
 - Many different factors such as the device on which it is displayed, the quality of the rendering [Hodgins97], the experience of the subject [Psotka95]...
- Close to the "Presence" evaluation in VR
 - "sensation of being there" [Slater93]
 - Evaluated through questionnaires [Witmer98, Slater98] or task evaluation [Slater95]

Proposal

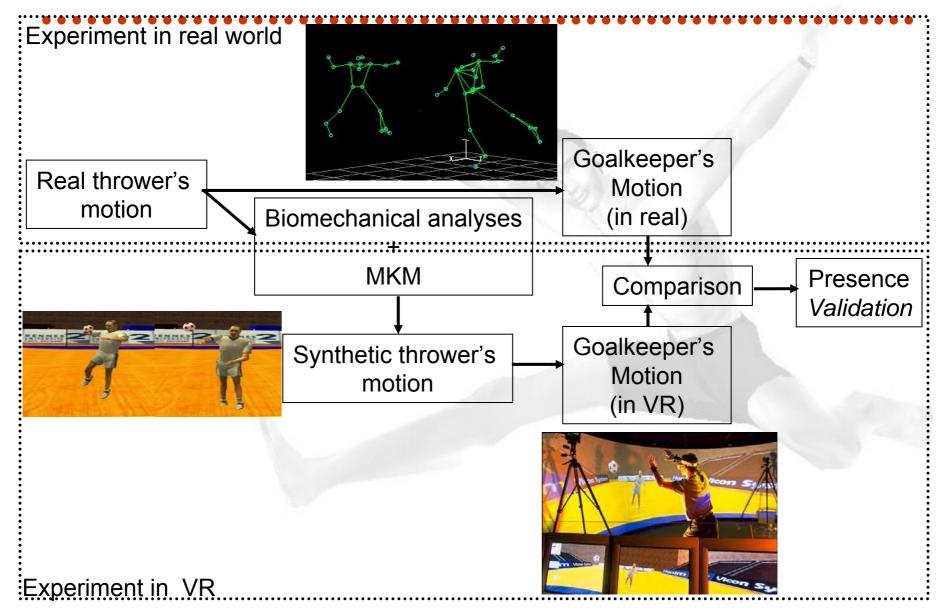
- Validation of an animation with subjects

 Evaluation of a task in relation with the
 animation
 - Interaction in VR
 - Comparison of the behavior in real vs. virtual situations

study-case: interaction between a goalkeeper and opponents

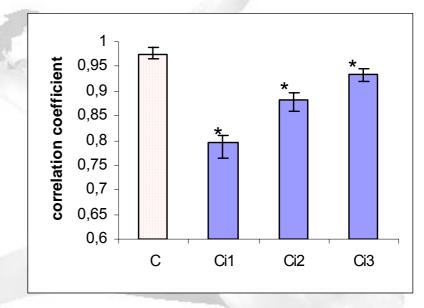
Study case

- Interaction between a real goalkeeper and simulated opponents in handball
 - Goalkeepers take information on the opponents motions for ANTICIPATION [Cottin89, Derrider85]
 - Generally studied thanks to eye-tracking


[Derrider85, Williams98, Savelsbergh02], film analysis

[Abernethy90]

Workflow


Bunraku

Results

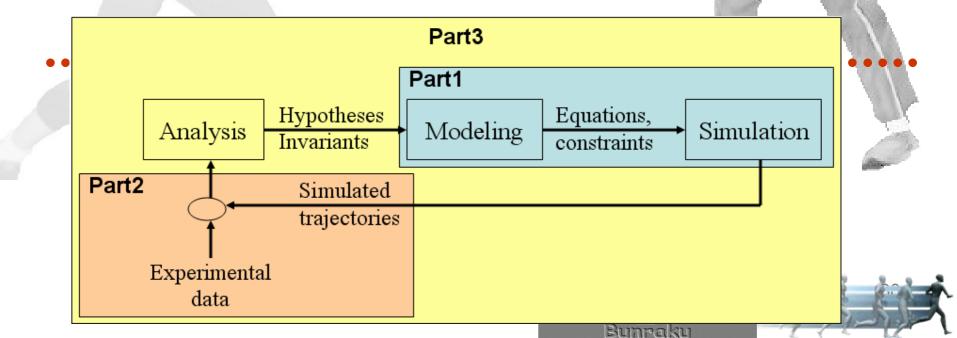
• Correlation in real world: ≈0.8 (hard to evaluate)

 \sim

- Correlation in VR: ≈0.98
- 3 small modifications
 C1: Height of the hand
 C2: Orientation of the trunk
 C3: Ball release delay
- → Significant influence

Bideau03Presence, Bideau04NSL Bideau04PhD

Video

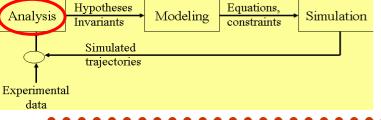


Conclusion

- Proposal of an original workflow to evaluate simulated motions
 - Evaluation of a task involving "natural" interaction with simulated entities
 - Beyond subjectivity of questionnaires
 - But do we really evaluate realism?

Ongoing project with neuroscientists

Part3: Generation of plausiblebipedal locomotion



- Motion capture on a skeleton may not be adapted for another one
 - Not only geometric/kinematic ≠ "motion retargetting" [Gleicher98, Crompton98, Kramer00, Wang03, Nagano05]: Human →? Chimpanzee
 - Interpolation in a database [Pronost06] (extrapolation?)
 - Musculoskeletal models: too complex [Sellers05]
 - Plausible locomotion for fossils?
- Design of a method that does not use knowledge on kinematics

Coll. G. Berillon, UPR2147CNRS



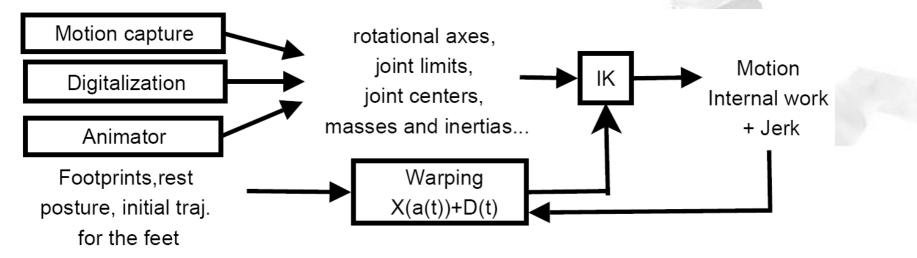
Plausible

- Adapted to joint limits, joint config...

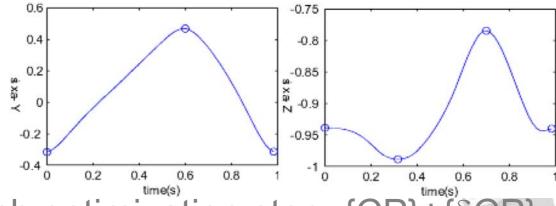
 hypotheses
- Taking general laws into account
 -> hypotheses
 - Minimum Jerk [Flash85]
 - Minimum metabolic energy [Alexander97, Alexander04]
 - Coordination in limb kinematics [Lacquaniti94] → link to energy expenditure [Bianchi98]
 - Phases in mechanical energies (opposition in walking vs in phase in running) [Cavagna77, Alexander83]
 - Head stabilization [Pozzo90]
 - • •
 - ➔ which ones are necessary? Combinations?

- Metabolism vs. mechanics
 - 2D Musculoskeletal models → relations with energy expenditure [Ma91, Alexander97]
 - Internal work calculated indirectly [Winter79, Pierrynowski 80]

$$\overline{W_{int}^{1}} = \sum_{k=1}^{m} \Delta \left[\sum_{i=1}^{n} \left| 0.5 \left(m_{i} \dot{x_{i}}^{2} + I_{i} \dot{\theta_{i}}^{2} \right) \right| + \left| -m_{i} g h_{i} \right| \right]$$
$$\overline{W_{int}^{2}} = \sum_{k=1}^{m} \Delta \left[\sum_{i=1}^{n} \left| 0.5 \left(m_{i} \dot{x_{i}}^{2} + I_{i} \dot{\theta_{i}}^{2} \right) - m_{i} g h_{i} \right| \right]$$
$$[Burdett83] \Rightarrow \left[\overline{W_{int}^{3}} = \sum_{k=1}^{m} \left| \Delta \left[\sum_{i=1}^{n} 0.5 \left(m_{i} \dot{x_{i}}^{2} + I_{i} \dot{\theta_{i}}^{2} \right) - m_{i} g h_{i} \right] \right]$$


Appl. human portable engine & coll. Satie

[Beaupied03HMS, Beaupied03T]

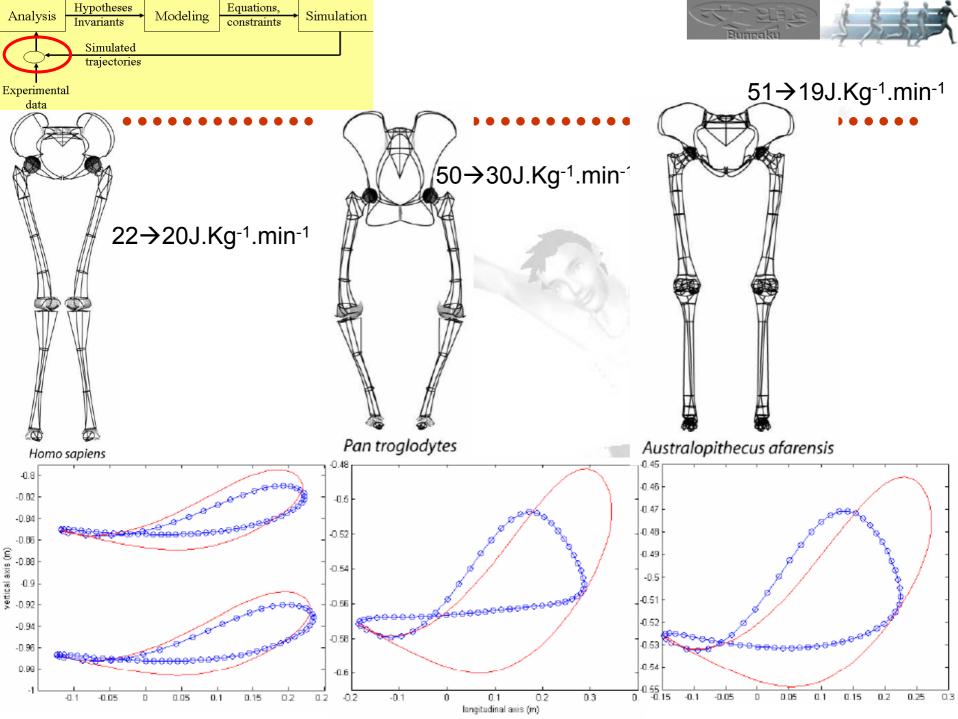

- Input: Anatomical data + pal. hypotheses
- Output: Angular traj.
- Assumption: min Jerk & $\overline{W_{int}^3} |_{min_{\theta}} \frac{1}{t_f t_0} \sum_{t=t_0}^{t_f} |W_{int}(\theta, t)| + \left(\frac{d^3\theta(t)}{dt^3}\right)^2$
- Philosophy: two sub-problems [Esteves06]

[Nicolas04CASA, Nicolas06JOB]

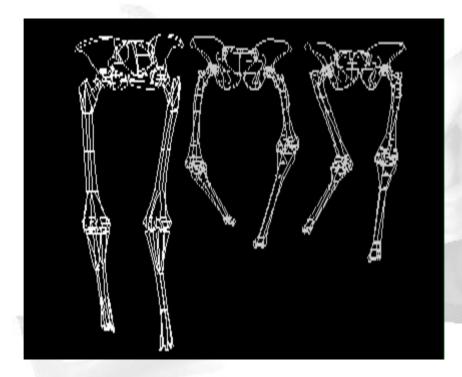
Traj. modeled with control points {CP}
 Intrinsically linked to the motion not the specie

- For each optimization step: {CP}+{δCP}
- Constraint: verifying the footprints

 $h(CP, t_{rFS}) = (-X_l(CP, t_{rFS}) + X_r(CP, t_{rFS}))$



- Non-linear problem
 ∆Footprints=h(CP)
 - Locally linearized $J(CP, t_{rFS})$


$${}_{S}) = \begin{pmatrix} \frac{\partial h_x}{\partial CP_1} \cdots \frac{\partial h_x}{\partial CP_n} \\ \frac{\partial h_y}{\partial CP_1} \cdots \frac{\partial h_y}{\partial CP_n} \\ \frac{\partial h_z}{\partial CP_1} \cdots \frac{\partial h_z}{\partial CP_n} \end{pmatrix}$$

- Constraint = $\Delta F = (F_r F_l)_{new} (F_r F_l)_{old}$
- Inversion of the problem:

 $\Delta(CP, t_{rFS}) = J(CP, t_{rFS})^+ \Delta F + P_F(J) \delta_{CP}$ Imposed by the optimization process

Conclusion

- Main contribution:
 - No kinematic knowledge
 - Problem divided into 2 sub-problems
 - Test of general laws
- - Testing on a wider set of primates (ongoing project)
 - Experimenting new hypotheses
 - Actual link between metabolic and mechanical energy?

Conclusion

Contributions

- Analysis/synthesis approach
- Multidisciplinary work
 - Publications in various domains, many collaborations
 & projects
 - Computer graphics (6 journals, 12 confs), biomechanics (3 journals), sports sciences (1 journal), neurosciences (1 journal), humanoid robotics (1 conf), paleoanthropology (1 journal), VR (2 journals, 2 confs)...
 - PhD & Master theses in biomechanics (5 PhD/3 defended) and computer graphics (3 PhD/2 defended)

Applications

- Patent for human motion simulation software (MKM)
 - Tested in industry (Dassault Systems, EADS & video games companies) PRIAMM HVTR, RIAM AVA Motion
 - Used for behavioral animation [Paris06, Badawi06]
- Model-based motion capture systems – RIAM SEMOCAP, RNTL "Mouvement", RNTL Perf-RV2
- Handicap (sign language, physical therapy) – "SIGN" project, CNRS ROBEA HuGeX project
- Sports (training, performance evaluation & understanding)
 - Funds from the Ministry of Sports, Federations and regional direction of sports and youngness

Perspectives

- Middle-term
 - Dynamics (low-cost)
 - Style operators identification
 - Real use in experimental research
- Long-term
 - Design of a convenient metrics for motions
 - Multi-layers controller
 - Coherence between layers?
 - Hierarchical simulation

Contributors

- Master students:
 - S. Canneçu, L. Fradet, N. Fusco, J. Hénaff
- PhD students:
 - H. Beaupied, S. Ménardais, B. Bideau, C.
 Durocher, R. Kulpa, H. Gain, G. Nicolas, A.
 Héloir
- And many engineers...

Questions?

What I didn't address in the oral presentation:

- motion synchronization & blending
- models of constraints
- motion compression
- BSP customization
- IK for natural bipedal locomotion
- simulation LOD

- energy analysis of human locomotion
- application to handicap
- energy extraction from natural motion
- model-based motion capture system
- gymnastic motions analyses

