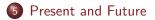
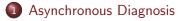
Law and Partial Order Nonsequential Behaviour and Probability in Asynchronous Systems

Stefan Haar

Oct 30, 2008

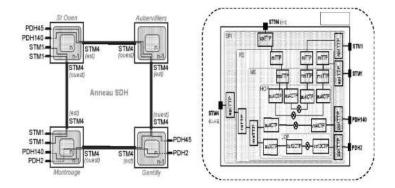
- 2 More on partial order Unfoldings
- Probability under Asynchronicity: Markov Nets and beyond
- 4 More Net-Works



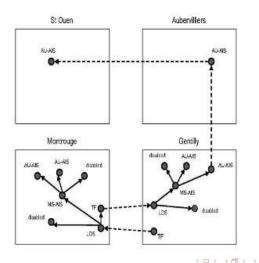


- 2 More on partial order Unfoldings
- 3 Probability under Asynchronicity: Markov Nets and beyond
- 4 More Net-Works
- 5 Present and Future

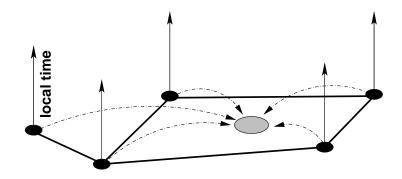
Fault Diagnosis for Networks (MAGDA)



Fault Diagnosis for Networks (MAGDA)

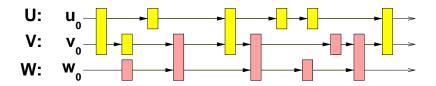


Fault Diagnosis for Networks



Centralized Diagnoser observes asynchronous alarm streams

Traces

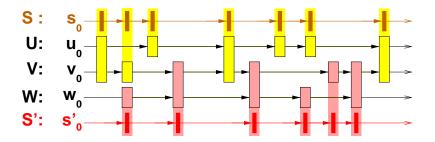


traces \equiv partial orders of tiles

э

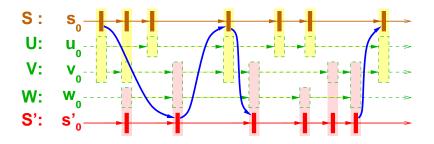
fi 🕨 🔸

Diagnosis via Synchronization



Correlate traces and observations

Diagnosis via Synchronization



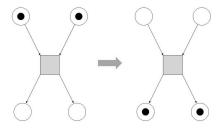
Project to traces, add precedence ordering in alarm patterns

Data structure ??



Share joint prefixes \rightarrow use Occurrence Nets

Asynchronous Model: Petri nets



Ingredients

- Transition set ${\mathcal T}$
- Place set \mathcal{P} , $\mathcal{P} \cap \mathcal{T} = \emptyset$
- Flow relation $F \subseteq (\mathcal{P} \times \mathcal{T} \cup \mathcal{T} \times \mathcal{P})$
- Marking M: Multiset over / Subset of \mathcal{P}

PN Unfoldings and Diagnosis (BFHJ 2003)

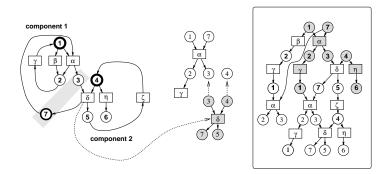


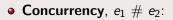
Image: A = A

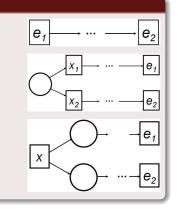
Unfoldings: from PNs to ONs

Relations

• Order, $e_1 < e_2$:

• Conflict, $e_1 \# e_2$:



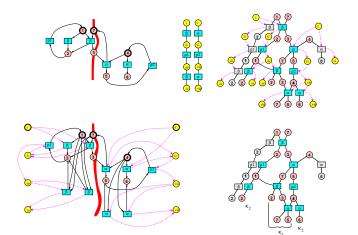


- 4 同 ト 4 国 ト 4

Unfoldings: from PNs to ONs

- $ON = (\mathcal{B}, \mathcal{E}, G, \mathbf{c}^*)$ is an occurrence net iff:
 - **()** No self-conflict: $\forall x \in \mathcal{B} \cup \mathcal{E} : \neg [x \# x];$
 - ② ≤ is a partial order: $\forall x \in B \cup E : \neg [x < x];$
 - **③** finite histories: $\forall x \in B \cup E : |{x' | x' < x}| < ∞;$
 - no backward branching: $\forall b \in \mathcal{B} : |\bullet b| \leq 1$.
 - initial cut: $\mathbf{c}^* := \min(ON) \subseteq \mathcal{B}$.
 - Configuration: conflict free, downward closed set $\mathbf{c}^* \subseteq \kappa \subseteq \mathcal{B} \cup \mathcal{E}$;
 - **Run:** \subseteq -maximal configuration ω

Unfoldings and Diagnosis



▲ 同 ▶ ▲ 臣

Unfoldings and Diagnosis

- Wanted: Set **diag**(A) of all configurations that explain alarm pattern A
- Solution: using product net $\mathcal{N} \times \mathcal{A}$, $\mathbf{C} \in \text{diag}(\mathcal{A})$ iff

 $\exists \ \overline{\textbf{C}} \in \textbf{config}(\mathcal{U}_{\mathcal{N} \times \mathcal{A}}): \textbf{proj}_{\mathcal{N}}(\overline{\textbf{C}}) = \textbf{C}, \ \textbf{proj}_{\mathcal{A}}(\overline{\textbf{C}}) = \mathcal{A}.$

- Online pruning
- Diagnosability ?

- 2 More on partial order Unfoldings
- 3 Probability under Asynchronicity: Markov Nets and beyond
- 4 More Net-Works
- 5 Present and Future

What is required of the system for diagnosis to work ?

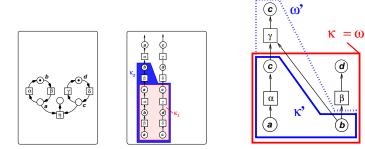
- Need observability : no invisible cycles
- Need diagnosability: Unobservable e is not diagnosable in live language L iff ∃ w_N, w_Y ∈ L :
 - w_Y contains e and w_N does not;
 - w_Y arbitrarily long after e;

•
$$P_O(w_Y) = P_O(w_N).$$

where $P: \mathfrak{A}^* \to O^*$ is the projection to observable words.

Weak vs. Strong observability / diagnosability

Analogous to the FSM case, but languages to be chosen with care:



Often, both hold only for progressive configurations

Weak vs. Strong observability / diagnosability

K is progressive iff its upper and lower heights are equal:

$$\sup\{n \in \mathbb{N} \mid \exists \omega \in \Omega : \ \mathbb{K} \cap \rho_n = \omega \cap \rho_n\} = \|\mathbb{K}\|,$$

where $\|\mathbf{K}\|$ is the length of \mathbf{K} 's longest causal chain.

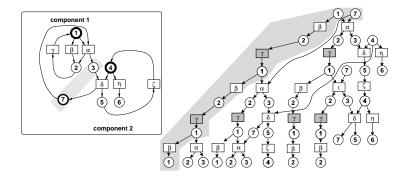
- $\bullet \ \mathcal{N}$ is observable/diagnosable iff the language of its configurations is, and
- weakly observable/diagnosable iff the language of its progressive configurations is.

Characterization via checking of cycles.

Verifying Diagnosability

- Strong observability/diagnosability
 - Sufficient and necessary conditions: costly
 - We do not take advantage of partial orders
 - Sufficient condition: if there is no invisible/indeterminate T-invariant, ${\cal N}$ is strongly observable/diagnosable
- Weak observability/diagnosability
 - Can explore unfolding structure and exploit covering relation

Verifying Weak observability/diagnosability

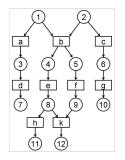


◆ 何 → ◆ 三

Verifying Weak observability/diagnosability

- ... leads to reasoning of the type 'if x occurs, then y must have occured/is occurring/will occur'
- Can we make this precise ? YES !
- Can we compute it ? YES !

Covering relation

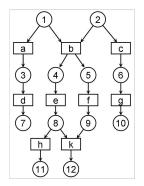


Covering relation

In ON :

- x implies or covers y, written $x \triangleright y$, iff $z \# y \Rightarrow z \# x$.
- **THM:** $x \triangleright y$ holds iff for all runs $\omega \ x \in \omega \Rightarrow y \in \omega$.
- y < x implies $x \triangleright y$
- $y \triangleright x$ compatible also with y < x and y **co** x
- $\triangleright[x]$ is a configuration.

Covering relation



$$\triangleright[h] = \{b, e, f, h\} \quad , \quad \triangleright[k] = \{b, e, f, k\}$$
$$\triangleright[a] = \triangleright[d] = \triangleright[c] = \triangleright[g] \quad = \quad \{a, d, c, g\}$$

э

э

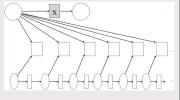
< + + F + F = 1

Covering relation

• >, it suffices to inspect immediate conflicts:

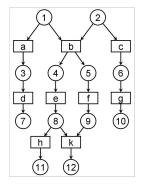
$$\#[x] = \{z' \mid \exists y \in \#_{\mu}[x] : y \leqslant z\}.$$

• Caveat: $\#_{\mu}[x]$ is not necessarily finite ...



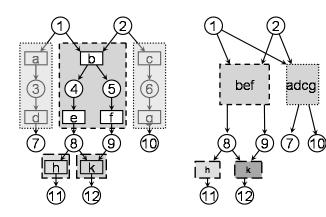
... but \triangleright can be computed on a bounded prefix

Facets: When ▷ holds both ways



$$\triangleright[b] = \triangleright[e] = \triangleright[f] = \{b, e, f\}$$

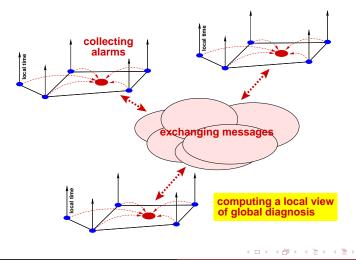
◆ 何 → ◆ 三



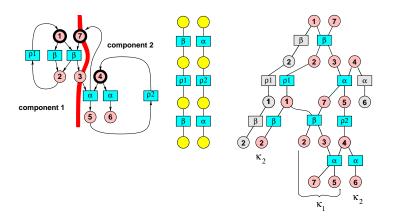
Covering

- Covering relation effectively computable
- > formalizes occurrence dependencies under progress
- Helps search for minimal observability (i.e. which events must be visible to allow detection) for a given task, such as control, diagnosis, verification, (test ?), ...
- Large unfoldings can be reduced by facet abstraction
- To o :
 - Read nets
 - Probability
 - Link with temporal logics

To fight prefix explosion ...



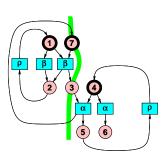
... distribute the unfolding !

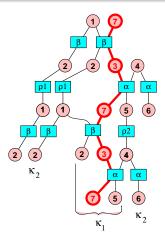


< + + F + F = 1

э

Distributed Computation of Explanations

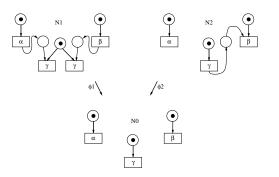




Distributed Unfolding

Formalizing

- Want: Decomposition of Petri nets (GGs, ... ?) that allows to unfold local views + to avoid computation of global unfolding
- Fabre/Benveniste/Haar/Jard CONCUR 03 + JDEDS 2005
- Koenig/Baldan/Haar FOSSACS 06: Use Pullbacks and limit preservation under coreflections
- Need to use interleavings rather than event structures on interfaces



- ... fail for ON's and Event Structures !
- Conclusion: use interleavings rather than event structures communication between local supervisors and adjustment of local views

- Benveniste, Fabre, Haar, Jard :
 - Asynchronous diagnosis for PN TAC 2003
 - Probability TAC 2003 etc
 - Distributed diagnosis JDEDS 2005
- Distributed unfolding of PNs: Baldan, Haar, König FOSSACS 2006
- Asynchronous diagnosis for Graph grammars: Baldan, Chatain, Haar, König CONCUR 2008
- Haar: Diagnosability, Covering CDC 2003 + 2007, submitted

2 More on partial order Unfoldings

Probability under Asynchronicity: Markov Nets and beyond

4 More Net-Works

5 Present and Future

Why Asynchronous Stochastic Processes ?

- **Diagnosis** may result in ambiguity: the same alarm pattern may be explained by several different runs of the system
- In that case, choose the most likely one
- Therefore, need a model for stochastic processes that reflects asynchronous dynamics
- Classical stochastic processes have one-dimensional trajectories; need: model with partially ordered realisations
- Here: no *external* time parameter, need to find *internal* process time

Markov Nets (BHF 2003, Abbes et al.)

- Desirable: analogon of (discrete time) Markov chains : $(X_n)_{n \in \mathbb{N}}$ such that $\mathcal{L}(X_{n+k} \mid X_1, \dots, X_n) = \mathcal{L}(X_{n+k} \mid X_n)$
- Allows e.g. characterization of stationary laws & asymptotic behaviour
- Markov processes reflect 'absence of memory' of the system ...
- ... and allow for recursive computation of probabilities , with compact representation of laws

Stopping Times

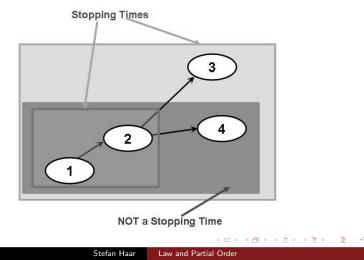
• Random time index $\tau : \Omega \to \mathbf{T}$ depending on $(X_t)_{t \in \mathbf{T}}$ s.th.

$$\forall t \in \mathbf{T}: \{\omega \in \Omega \mid \tau(\omega) \leqslant t\} \in \mathcal{F}_t$$

- Strong MP, for $\mathbf{T} = \mathbf{N}$: if τ is a stopping time, then $\forall, A : \mathbf{P}(X_{n+1} \in A \mid X_1, \dots, X_n) = \mathbf{P}(X_{n+k} \in A \mid X_n)$
- Examples of stopping times:
 - The fire engine must be maintenanced and tested *on November 7*
 - The fire engine must be maintenanced and tested *the day following its use*
- NOT a stopping time:
 - The fire engine must be maintenanced and tested *the day before a fire breaks out*

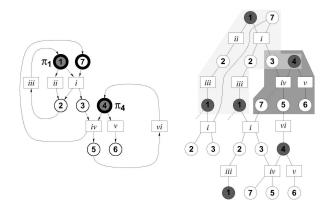
Stopping Times

In DTMC, stopping times are *closed under conflict*



Stopping Times

Conflict-closure for stopping times in PN !



◆ 何 → ◆ 三

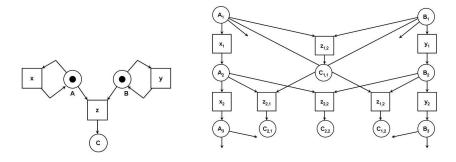
Markov Nets (BHF 2003, Abbes et al.)

- Probabilistic routing on each place
- Renormalization to obtain the prob. of occurrence for each event inside the first stopping time τ₁ = first layer
- Redo for next layer (better (S. Abbes): next branching cell)
- Strong Markov Property:

$$\mathbf{P}\left(B \mid \mathcal{F}_{\tau}\right) = \mathbf{P}\left(B \mid \mathcal{X}_{\tau}\right).$$

Stopping Times

... may not be finite, so probabilization may fail:



< 🗇 🕨 <

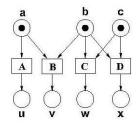
Cluster Semantics

Leaving the Markov net approach, more is possible: Consider Conflict cluster or t: smallest subnet $\gamma = \gamma(t) \subseteq \mathcal{T} \cup \mathcal{P}$ such that

$$1 t \in \gamma;$$

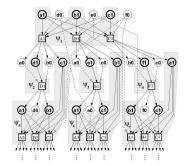
2 if
$$t' \in \mathcal{T} \cap \gamma$$
, then ${}^{\bullet}t' \subseteq \gamma$; and

 $\ \, {\bf if} \ p \in \mathcal{P} \cap \gamma, \ {\bf then} \ p^{\bullet} \subseteq \gamma.$



Cluster Semantics

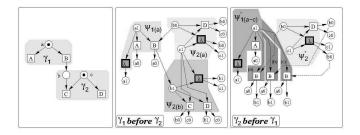
... new unfolding semantics, still yielding ONs



◆ 何 → ◆ 三

Cluster Semantics

Time strikes back: need scheduling policies



Cluster Semantics

- Probabilistic unfolding for all net structures
- Not even safeness required
- Natural counting time: number of policy rounds
- Stopping times are exactly the tile-respecting prefixes
- Markovian in time ...
- ... and space: choice of transition set can follow a Markov field → *right* conditional independence of transitions
- Details in FI 2002/2003

Contents

2 More on partial order Unfoldings

3 Probability under Asynchronicity: Markov Nets and beyond

More Net-Works

6 Present and Future

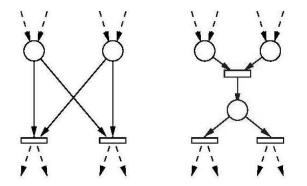
Time and probability

- In timed Petri nets, logical choice is intertwined with durations
- Random durations probabilize behaviour
- Standard approach: stochastic Petri nets
 - (essentially) all durations memoryless \rightarrow exp
 - Yields CTMC, but excludes many laws (gamma, heavy tail, ...)
- Idea (Gaujal/Haar/Mairesse 2003):
 - Allow arbitrary $(0,\infty)$ duration laws
 - Establish *renewal* markings, and ...
 - ... thus obtain asymptotic throughput results
- For this, need structural restrictions

Time and probability

- BLOC Block any (non-branching) transition b of live and bounded net N; then N eventually stops in unique marking M_b
 - Free choice nets satisfy BLOC ...
 - ... and hardly any other class does !
 - Under *reasonable* assumptions, \mathcal{N} goes into a blocked marking a.s.
 - M'_b s are renewal points \rightarrow win !!

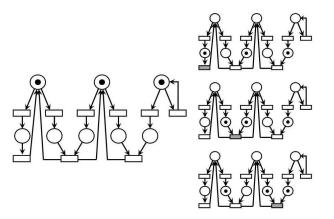
Free Choice Nets



< A → < E

Free Choice Nets + Blocking

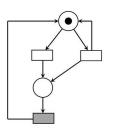
Transitions and associated blocked markings

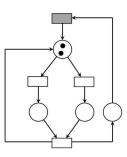


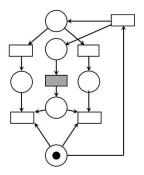
◆ 何 → ◆ 三

Free Choice Nets + Blocking

Boundedness, liveness and FC cannot be dropped







Testing Partial Order Input/Output Automata

Given:

- A formal specification \mathcal{S} : black box, only I/O
- Implementation ${\mathcal I}$ of ${\mathcal S},$ which may or may not be correct

Want:

automatically generate test sequences to prove **conformance** of the implementation to the specification

Testing: Concurrent multi-port machines

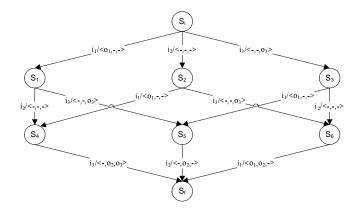
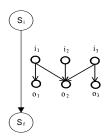


Figure: (Partial) Multiports Deterministic FSM.

Image: A = A

Testing bPOIOA

The "classical" approach to testing automata does not work with bPOIOA because the causal relationships are not observed.



Solution

- Delay input on one port
- Observe outputs
- Send last input
- Observe outputs
- repeat

Checking Sequence construction

Theorem

Given an bPOIOA of n states and t transitions having an adaptive checking sequence, assuming that the implementation is in the initial state, the following test sequence is a checking sequence of size $O(tpn^3 + pn^4)$

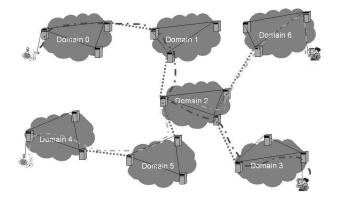
- Check all states with the test sequence checking all states
- Por all transitions do:
 - transfer to the starting state of the transition
 - check the transition with the test sequence checking transitions

Test : present and future

- general POs (non-bipartite): 2008
- Weak synchronization at states
- Petri Nets
- References:
 - S. Haar and C. Jard and G.-V. Jourdan: Testing Input/Output Partial Order Automata. *TestCom*, 2007.
 - G. v. Bochmann and S. Haar and C. Jard and G.-V. Jourdan. Testing Systems Specified as Partial Order Input/Output Automata. *TestCom*, 2008.

SWAN I: QoS contracts in heterogeneous Networks

$Negotiation\,+\,Monitoring$



f7 ▶ <

SWAN I: QoS contracts in heterogeneous Networks

- Distributed negotiation of end-to-end QoS for e.g. videoconference
- Monitoring , repair, optimization
- SWAN cooperation with ALU, QosMetrics, FT, LORIA, LIPN/LABRI
- Thesis of H. Pouyllau; ICT, ICWS, Qshine, Annals Telecom

SWAN II: Composition of WS

- Orchestrations (e.g. BPEL ; Orc (UofTexas))
- QoS composite/cumulative
- Challenges:
 - Predict overall latency for contract
 - Find critical components
 - Analyze impact (monotonicity etc)
- AES semantics for Orc (Rosario/Benveniste/Haar/Jard WSFM 2007)
- QoS: on-going work with A. Bouillard, S.Rosario, A.Benveniste; ICWS 2007 etc.

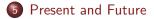
Miscellaneous

- AXML: intensional and dynamic data
- Want : analyze and control document flows
- Have: *Datalog* query system for diagnosis (Abiteboul/Abrams/Milo/Haar PODC 2005)
- Cyclic ordering (ROGICS 2008)
- more on PNs

2 More on partial order Unfoldings

3 Probability under Asynchronicity: Markov Nets and beyond

4 More Net-Works



- PhD Hamburg 1997
- PostDoc Berlin, Nancy, Paris
- INRIA Rennes
- U of Ottawa (sabbatical) 2007
- ALU Bell Labs Ottawa 2008
- now : INRIA Saclay, LSV at ENS Cachan

Projects and other activities

- Participation ALAPEDES, MAGDA, MAGDA2
- SWAN leader
- ASAX
- PhD Thesis Supervision Hélia Pouyllau
- Co-supervisions etc.
- IEEE TAC associate editor
- INRIA GTRI, DRI



- \bullet (the above, and ...)
- Stuttgart/Duisburg, Venise/Padova, Pisa
- University of Ottawa
- Queen's University

Present and Future Subjects

- Partial orders are good for you !
- Analyze and deduce processes, completeness of model, dynamic topologies
- Tools for reasoning on branching partial orders
- Link between real time and logical evolution
- Probability, Asynchrony and Distribution
- Control and Test
- Civilized Networks and services (contracts, monitoring, ...)

THANKS !

Stefan Haar Law and Partial Order

Image: A image: A

э

э