Reachability Analysis of Rewriting for Software Verification

Thomas Genet

IRISA

Habilitation à diriger des recherches

IRISA - 30 novembre 2009

Motivation : proving safety properties

Verification using Model-checking

(1) $\{i \ge 1\}$ n := i; (2) while (i>1) do { (3) n := n*(i-1); (4) i := i-1; } (5) $\{n \ge 1\}$

	$D = \mathbb{N}$	$D^{\#}$: intervals on $\mathbb N$
1	$\{i \ge 1\}$ n := i;	(1) $i^{\#} = [1; +\infty[, n^{\#} = [0; +\infty[$
2	while (i>1) do $\{$	
(4)	n := n*(i-1);	
5	i := i-1; } $\{n \ge 1\}$	

	$D = \mathbb{N}$	$D^{\#}$: intervals on $\mathbb N$
1	$\{i \ge 1\}$	① $i^{\#} = [1; +\infty[, n^{\#} = [0; +\infty[$
2	n := i;	② $i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[$
3	while (i>1) do {	
4	n := n*(i-1);	
5	i := i-1; } $\{n \ge 1\}$	

	$D = \mathbb{N}$	$D^{\#}$: intervals on $\mathbb N$
	(1 \ 1)	
(I)	$\{l \ge 1\}$ n := i;	(1) $T^{n} = [1, +\infty[, n^{n}] = [0, +\infty[$
2		② $i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[$
3	while (i>1) do {	(3) $i^{\#} = [2; \pm \infty[$ $n^{\#} = [1; \pm \infty[$
9	n := n*(i-1);	$\bigcirc I = [2, +\infty[, II] = [1, +\infty[$
4		(4) $i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[*^{\#} [1; +\infty[$
5	$i := i-1; \}$ $\{n \ge 1\}$	

	$D = \mathbb{N}$	$D^{\#}$: intervals on $\mathbb N$
1	$\{i \ge 1\}$	(1) $i^{\#} = [1; +\infty[, n^{\#} = [0; +\infty[$
2	n := i;	2 $i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[$
3	while (i>1) do {	3) $i^{\#} = [2; +\infty[, n^{\#} = [1; +\infty[$
4	n := n*(i-1);	$4 i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[*^{\#} [1; +\infty[$
5	i := i-1; } $\{n \ge 1\}$	(5) $i^{\#} = [1; +\infty[, n^{\#} = [1; +\infty[$

(1) $\{i \ge 1\}$ n := i; (2) while (i>1) do $\{$ (3) n := n*(i-1); (4) i := i-1; $\}$ (5) $\{n \ge 1\}$

1	$\{i \ge 1\}$
	n := i;
2	$\{i \ge 1, n \ge 1\}$
	while (i>1) do $\{$
3	$\{ \text{ invariant } n \geq 1 \}$
	n := n*(i-1);
4	
	i := i-1; }
5	$\{n \ge 1\}$

(1) $\{i \ge 1\}$ n := i;(2) $\{i \ge 1, n \ge 1\}$ while (i>1) do $\{$ (3) $\{ \text{ invariant } n \ge 1\}$ n := n*(i-1);(4) $i := i-1; \}$ (5) $\{n \ge 1\}$

(1) $\{i \ge 1\}$ n := i;(2) $\{i \ge 1, n \ge 1\}$ while (i>1) do $\{$ (3) $\{ \text{ invariant } n \ge 1 \}$ n := n*(i-1);(4) $i := i-1; \}$ (5) $\{n \ge 1\}$

FORALL (i: int): i >=1 IMPLIES (FORALL (x: int): x = i IMPLIES (FORALL (i0: int): FORALL (x0: int): x0 >= 1 IMPLIES i0 > 1 IMPLIES (FORALL (x1: int): x1 = x0 * (i0 - 1) IMPLIES x1 >= 1))))

```
(skosimp*)
(replace -6 1)
(lemma "both_sides_times_pos_ge1")
(inst -1 "i0!1-1" "x0!1" "1")
(grind)
```

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
 - Regular model-checking
 - Abstract model-checking, ...

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
 - Regular model-checking
 - Abstract model-checking, ...
- + Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
 - Regular model-checking
 - Abstract model-checking, ...
- + Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard

- Proof assistants
- + If a proof exists, you are likely to succeed
- ... but you may spend weeks, months!

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
 - Regular model-checking
 - Abstract model-checking, ...
- + Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard

- Proof assistants
- + If a proof exists, you are likely to succeed
- $-\ldots$ but you may spend weeks, months!

Is there something in between?

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

- A model-checking algorithm for finite (or regular) systems
- An abstraction mechanism for infinite non regular systems
- **③** A way to refine, by hand, abstractions if automatic verification fails

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

- A model-checking algorithm for finite (or regular) systems
- An abstraction mechanism for infinite non regular systems
- A way to refine, by hand, abstractions if automatic verification fails and bonus :
- In the end, the same level of confidence as with a Coq proof !

Outline

- 2 Regular model-checking of term rewriting systems
- Optiming abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
- 6 Conclusion and further work

Outline

1 Term rewriting and reachability analysis

- 2 Regular model-checking of term rewriting systems
- 3 Defining abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
- 6 Conclusion and further work

- Set of ranked symbols
- Set of variables

 $\mathcal{F} = \{+, 0, 1\}$ $\mathcal{X} = \{x, y, \ldots\}$

• Set of ranked symbols $\mathcal{F} = \{+, 0, 1\}$ • Set of variables $\mathcal{X} = \{x, y, \ldots\}$ • Set of ground terms $\mathcal{T}(\mathcal{F}) = \{0, 0+1, (0+0) + (0+1), \ldots\}$

Set of ranked symbols $\mathcal{F} = \{+, 0, 1\}$ Set of variables $\mathcal{X} = \{x, y, \ldots\}$ Set of ground terms $\mathcal{T}(\mathcal{F}) = \{0, 0+1, (0+0) + (0+1), \ldots\}$ Set of terms $\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, 0+x, 1+0, \ldots\}$

Set of ranked symbols $\mathcal{F} = \{+, 0, 1\}$ Set of variables $\mathcal{X} = \{x, y, \ldots\}$ Set of ground terms $\mathcal{T}(\mathcal{F}) = \{0, 0+1, (0+0)+(0+1), \ldots\}$ Set of terms $\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, 0+x, 1+0, \ldots\}$ Rewrite rules $0+x \rightarrow x$

Set of ranked symbols $\mathcal{F} = \{+, 0, 1\}$ Set of variables $\mathcal{X} = \{x, y, \ldots\}$ Set of ground terms $\mathcal{T}(\mathcal{F}) = \{0, 0+1, (0+0)+(0+1), \ldots\}$ Set of terms $\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, 0+x, 1+0, \ldots\}$ Rewrite rules $0+x \rightarrow x$

• Term rewriting system (TRS) = set of rewrite rules

With TRS $\mathcal{R} = \{0 + x \rightarrow x\}$:

$$ig| egin{array}{c} 0+1 o_{\mathcal R} 1 \ (0+0)+(0+1) o_{\mathcal R}^* 1 \end{array}$$

TRS as a formal model of programs

		$\mathcal{F} = \{(_,_,_), 0, s \\ \mathcal{X} = \{I, N, X, Y\}$	$\{1, +, *, (1), (2), (3), (4), (5)\}$
1			
	n := i;	(1, I, N)	\rightarrow (2, <i>I</i> , <i>I</i>)
2		(2, s(s(I)), N)	\rightarrow (3, s(s(I)), N)
	while (i>1) do $\{$	(3, s(I), N)	\rightarrow (4, s(1), 1 * N)
3		(4, s(I), N)	\rightarrow (2, I, N)
	n := n*(i-1);	(2 , 0, <i>N</i>)	\rightarrow (5, 0, N)
4		(2, s(0), N)	\rightarrow (5, $s(0), N$)
	i := i-1; }		
(5)		0 * <i>X</i>	$\rightarrow 0$
		s(X) * Y	$\rightarrow Y + (X * Y)$
		•••	

Proving safety by (un)reachability analysis :

 $(1, i, x) \not\rightarrow_{\mathcal{R}}^{*} (5, y, 0)$

with $i \geq 1, x, y \in \mathbb{N}$

TRS as a formal model of programs

		$\mathcal{F} = \{(_,_,_), 0, s \\ \mathcal{X} = \{I, N, X, Y\}$	$\{1, +, *, (1), (2), (3), (4), (5)\}$
1			
	n := i;	(1, I, N)	\rightarrow (2, I, I)
2		(2, s(s(I)), N)	ightarrow (3), $s(s(I)), N$)
	while (i>1) do $\{$	$(\Im, s(I), N)$	$\rightarrow (\textcircled{4}, s(I), I * N)$
3		(4, s(I), N)	ightarrow (2), I, N)
	n := n*(i-1);	(2, 0, N)	ightarrow (5), 0, N)
4		(2, s(0), N)	ightarrow (5), $s(0), N$)
	i := i-1; }		
(5)		0 * X	$\rightarrow 0$
		s(X) * Y	ightarrow Y + (X * Y)

Proving safety by (un)reachability analysis :

 $(1, i, x) \not\rightarrow_{\mathcal{R}}^* (5, y, 0)$

with $i \geq 1, x, y \in \mathbb{N}$

TRS as a formal model of programs

$$\begin{array}{c} \mathcal{F} = \{(-, -, -), 0, s, +, *, (\underline{1}, 2), (\underline{3}, 4), (\underline{5})\} \\ \mathcal{X} = \{I, N, X, Y\} \\ \begin{array}{c} (\underline{1}, I, N) & \rightarrow (\underline{2}, I, I) \\ (\underline{2}, s(s(I)), N) & \rightarrow (\underline{3}, s(s(I)), N) \\ (\underline{3}, s(I), N) & \rightarrow (\underline{3}, s(s(I)), N) \\ (\underline{3}, s(I), N) & \rightarrow (\underline{4}, s(I), I * N) \\ (\underline{4}, s(I), N) & \rightarrow (\underline{5}, 0, N) \\ (\underline{2}, s(0), N) & \rightarrow (\underline{5}, s(0), N) \\ (\underline{2}, s(0), N) & \rightarrow (\underline{5}, s(0), N) \\ \end{array}$$

Proving safety by (un)reachability analysis :

 $(1, i, x) \not\rightarrow_{\mathcal{R}}^{*} (5, y, 0)$

with $i \geq 1, x, y \in \mathbb{N}$

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow_{\mathcal{R}}^{*} t$?

• Undecidable in general (TRS are Turing-complete)

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow_{\mathcal{R}}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if $\mathcal R$ terminates

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow_{\mathcal{R}}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if $\mathcal R$ terminates

where $\mathcal{R}^*(\mathcal{L}) = \{ u \mid s \in \mathcal{L} \land s \rightarrow_{\mathcal{R}}^* u \}$

• Decidable, if $\mathcal{R}^*(\{s\})$ is finite

(\approx finite model-checking)

Given a TRS
$$\mathcal{R}$$
 and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow_{\mathcal{R}}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if *R* terminates

where $\mathcal{R}^*(\mathcal{L}) = \{ u \mid s \in \mathcal{L} \land s \rightarrow_{\mathcal{R}}^* u \}$

• Decidable, if $\mathcal{R}^*(\{s\})$ is finite

(\approx finite model-checking)

• Decidable, for classes of $\mathcal R$ such that $\mathcal R^*(\{s\})$ is regular (\approx regular model-checking)

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :

 $((1, i, x) \not\rightarrow_{\mathcal{R}}^* ((5, y, 0)) \qquad \text{with } i \ge 1, x, y \in \mathbb{N}$

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :

 $(\textcircled{1}, i, x) \not\rightarrow_{\mathcal{R}}^{*} (\textcircled{5}, y, 0) \qquad \text{with } i \ge 1, x, y \in \mathbb{N}$

which can be seen as :

The reachability analysis problem becomes :

 $\mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset?$

Two applications of reachability analysis of rewriting

 $\mathcal{R}^*(\mathcal{L}) \cap \textit{Bad} = \emptyset$?

• Java application verification [Boichut, Genet, Jensen, Le Roux, 07]

Two applications of reachability analysis of rewriting

 $\mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset$?

- Java application verification [Boichut, Genet, Jensen, Le Roux, 07]
- Cryptographic protocol verification

[Genet, Klay, 00]

- L= protocol initial configurations
- $\mathcal{R}= \begin{vmatrix} \text{specification of protocol exchanged messages} \\ \text{deduction rules of the intruder} \end{vmatrix}$
Two applications of reachability analysis of rewriting

 $\mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset$?

- Java application verification [Boichut, Genet, Jensen, Le Roux, 07]
- Cryptographic protocol verification

[Genet, Klay, 00]

- L= protocol initial configurations
- $\blacktriangleright \mathcal{R} = \left| \begin{array}{c} \text{specification of protocol exchanged messages} \\ \text{deduction rules of the intruder} \end{array} \right|$
- Properties : secrecy, authentication, freshness
- Unbounded number of agents, protocol sessions and intruder actions
- Verification of copy-protection on Thomson's SmartRight protocol [Genet, Tang-Talpin, Viet Triem Tong, 03]

Outline

2 Regular model-checking of term rewriting systems

- 3 Defining abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
- 6 Conclusion and further work

How to finitely represent $\mathcal{R}^*(\mathcal{L})$?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

How to finitely represent $\mathcal{R}^*(\mathcal{L})$?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

Finite Tree Automata

(Regular Term Language)

• Tree Automata with constraints

How to finitely represent $\mathcal{R}^*(\mathcal{L})$?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

Finite Tree Automata

(Regular Term Language)

• Tree Automata with constraints

We stick to (Non-Deterministic) Finite Tree Automata because :

We want to decide (efficiently) if $\mathcal{R}^*(\mathcal{L}) \cap \textit{Bad} = \emptyset$

- The complexity of the algorithm for \cap is quadratic
- $\bullet\,$ The complexity of the algorithm deciding $=^? \, \emptyset$ is polynomial

• . . .

Plus some classes incomparable with others :

L-IOSLT Linear I/O Separated Layered Transducing (a.k.a. Tree Transducers) [Seki et al. 02]

Constructor Constructor based + constraints on \mathcal{L} [Réty 99]

WOS Well Oriented Systems [Bouajjani, Touili, 02]

G Ground : $s \rightarrow t$

with $s, t \in \mathcal{T}(\mathcal{F})$

G Ground : $s \rightarrow t$

with $s, t \in \mathcal{T}(\mathcal{F})$

RL-M Right-linear and Monadic : $s \to f(x_1, ..., x_n)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

G Ground : $s \rightarrow t$

with $s, t \in \mathcal{T}(\mathcal{F})$

RL-M Right-linear and Monadic : $s \to f(x_1, \dots, x_n)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

L-SM Linear (left and right linear) Semi-Monadic :

 $s \to f(x_1, \dots, x_n, t_1, \dots, t_m)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X}), t_1, \dots, t_n \in \mathcal{T}(\mathcal{F})$

G Ground : $s \rightarrow t$

with $s, t \in \mathcal{T}(\mathcal{F})$

RL-M Right-linear and Monadic : $s \to f(x_1, \dots, x_n)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

L-SM Linear (left and right linear) Semi-Monadic : $s \rightarrow f(x_1, \dots, x_n, t_1, \dots, t_m)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X}), t_1, \dots, t_n \in \mathcal{T}(\mathcal{F})$

Constructor Constructor based + constraints on \mathcal{L}

Representation of $f(s^*(a))$ by tree grammar/tree automaton

Representation of $f(s^*(a))$ by tree grammar/tree automaton

${f(s^*(a))}$	Tree	grammar <i>G</i> axiom : <i>N</i> ₁
N ₁	:=	$f(N_2)$
N <u>2</u>	.—	5(112)
N ₂	:=	а

 $N_1 \rightarrow^*_G f(s(s(a)))$

Representation of $f(s^*(a))$ by tree grammar/tree automaton

	Tree g	rammar G	Tree auto	maton /	4
{f(s*(a))} a>	diom : N_1	${f(s^*(a))}$)}	final state : q 1
N ₁ N ₂ N ₂	:= := :=	f(N ₂) s(N ₂) a	$f(q_2)$ $s(q_2)$ a	\rightarrow \rightarrow \rightarrow	q ₁ q ₂ q ₂
N ₁	$\rightarrow^*_c f(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s$	a)))	f	(s(s(a)))	$)) \rightarrow^*_A q_1$
/v1	\rightarrow_{G}	a)))	/	(S(S(d)))	$\rightarrow_A q_1$

Representation of $f(s^*(a))$ by tree grammar/tree automaton

	Tree g	rammar G	Tree auto	maton /	A
$\{f(s^*(a))\}$)} a>	$kiom : N_1$	${f(s^*(a))}$)}	final state : q 1
N ₁ N ₂ N ₂	:= := :=	f(N ₂) s(N ₂) a	$f(q_2)$ $s(q_2)$ a	\rightarrow \rightarrow \rightarrow	q ₁ q ₂ q ₂
N ₁	$\rightarrow^*_G f(s(s($	a)))	f	(s(s(a))	$)) \rightarrow^*_A q_1$

 $A = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta \rangle \text{ where}$ $\mathcal{Q} = \{q_1, q_2\}, \ \mathcal{Q}_f = \{q_1\}, \ \Delta = \{a \to q_2, s(q_2) \to q_2, f(q_2) \to q_1\}$ $f(s(s(a))) \to_A^* q_1 \text{ and } q_1 \in \mathcal{Q}_f. \text{ Here } \mathcal{L}(A) = \{f(s^*(a))\}$

First step : an upper bound for $\mathcal{R}^*(\mathcal{L})$

[Genet, 98]

Definition (\mathcal{R} -closed tree automaton)

Given a tree automaton ${\cal B}$ and a TRS ${\cal R},\, {\cal B}$ is ${\cal R}\mbox{-}closed$ if

 $\forall l \rightarrow r \in \mathcal{R}, \ \forall q \in \mathcal{Q}, \ \forall \sigma : \mathcal{X} \mapsto \mathcal{Q} :$

$$l\sigma \rightarrow_{\mathcal{B}} ^{*} q \Rightarrow r\sigma \rightarrow_{\mathcal{B}} ^{*} q$$

First step : an upper bound for $\mathcal{R}^*(\mathcal{L})$

[Genet, 98]

Definition (\mathcal{R} -closed tree automaton)

Given a tree automaton ${\cal B}$ and a TRS ${\cal R},\, {\cal B}$ is ${\cal R}\mbox{-}closed$ if

 $\forall l
ightarrow r \in \mathcal{R}$, $\forall q \in \mathcal{Q}$, $\forall \sigma : \mathcal{X} \mapsto \mathcal{Q} :$

$$l\sigma \rightarrow_{\mathcal{B}} ^{*} q \Rightarrow r\sigma \rightarrow_{\mathcal{B}} ^{*} q$$

Theorem (Upper bound)

Given a left-linear TRS \mathcal{R} and tree automata \mathcal{A}, \mathcal{B} .

$$\left. \begin{array}{c} \mathcal{L}(\mathcal{B}) \supseteq \mathcal{L}(\mathcal{A}) \\ \\ \mathcal{B} \text{ is } \mathcal{R}\text{-closed} \end{array} \right| \ \Rightarrow \ \begin{array}{c} \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A})) \end{array}$$

Tree automata completion algorithm

- \bullet Input : a TRS ${\cal R}$ and a tree automaton ${\cal A}$
- \bullet Output : a $\mathcal{R}\text{-closed}$ automaton $\mathcal{A}_\mathcal{R}^*$

Tree automata completion algorithm

- \bullet Input : a TRS ${\cal R}$ and a tree automaton ${\cal A}$
- \bullet Output : a $\mathcal{R}\text{-closed}$ automaton $\mathcal{A}_\mathcal{R}^*$
- \bullet Principle : completion of ${\cal A}$ with new transitions until it is ${\cal R}\mbox{-closed}$

$$\begin{array}{c} I\sigma \xrightarrow{\mathcal{R}} r\sigma \\ A \downarrow * \\ q \end{array}$$

Tree automata completion algorithm

- \bullet Input : a TRS ${\cal R}$ and a tree automaton ${\cal A}$
- \bullet Output : a $\mathcal{R}\text{-closed}$ automaton $\mathcal{A}_\mathcal{R}^*$
- \bullet Principle : completion of ${\cal A}$ with new transitions until it is ${\cal R}\mbox{-closed}$

Tree automata completion algorithm

- \bullet Input : a TRS ${\cal R}$ and a tree automaton ${\cal A}$
- \bullet Output : a $\mathcal{R}\text{-closed}$ automaton $\mathcal{A}_\mathcal{R}^*$
- $\bullet\,$ Principle : completion of ${\cal A}$ with new transitions until it is ${\cal R}\mbox{-closed}$

Compute $\mathcal{A}^1_{\mathcal{R}}, \mathcal{A}^2_{\mathcal{R}}, \ldots$ until reaching $\mathcal{A}^*_{\mathcal{R}}$ a (\mathcal{R} -closed) fixpoint

Tree automata completion algorithm

- Input : a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R} -closed automaton $\mathcal{A}_{\mathcal{R}}^*$
- Principle : completion of \mathcal{A} with new transitions until it is \mathcal{R} -closed

Compute $\mathcal{A}^{1}_{\mathcal{R}}, \mathcal{A}^{2}_{\mathcal{R}}, \ldots$ until reaching $\mathcal{A}^{*}_{\mathcal{R}}$ a (\mathcal{R} -closed) fixpoint

 $\mathcal{A} \text{ completed into } \mathcal{A}_{\mathcal{R}}^* \Rightarrow \mathcal{L}(\mathcal{A}_{\mathcal{R}}^*) \supseteq \mathcal{L}(\mathcal{A}) \\ \Rightarrow \mathcal{L}(\mathcal{A}_{\mathcal{R}}^*) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$

 $\mathcal{A}_{\mathcal{R}}^{*}$ is $\mathcal{R}\text{-closed}$

$$\mathcal{R} = \{f(x, y) \to f(g(x), y)\}$$

\mathcal{A}^{0}	
$f(q_1,q_2) \to q_0$	
$a ightarrow q_1$	
$b ightarrow q_2$	
$\{f(a,b)\}$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), y)\}$$

\mathcal{A}^{0}	
$f(q_1, q_2) \rightarrow q_0$	
$a ightarrow q_1$	
$b ightarrow q_2$	
$\{f(a,b)\}$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), y)\}$$

\mathcal{A}^{0}	
$f(q_1, q_2) \rightarrow q_0$	
$a ightarrow q_1$	
$b ightarrow q_2$	
$\{f(a,b)\}$	

$$\mathcal{R} = \{f(x, y) \rightarrow f(g(x), y)\}$$

$$\boxed{\begin{array}{c|c} \mathcal{A}^0 & \mathcal{A}^1_{\mathcal{R}} \\ \hline f(q_1, q_2) \rightarrow q_0 & g(q_1) \rightarrow q_3 \\ a \rightarrow q_1 & f(q_3, q_2) \rightarrow q_0 \\ b \rightarrow q_2 & \\ \hline \{f(a, b)\} & \{f(a, b), f(g(a), b)\} \end{array}}$$

Normalization is necessary !

$$\mathcal{R} = \{f(x, y) \rightarrow f(g(x), y)\}$$

$$\boxed{\begin{array}{c|c} \mathcal{A}^0 & \mathcal{A}^1_{\mathcal{R}} \\ \hline f(q_1, q_2) \rightarrow q_0 & g(q_1) \rightarrow q_3 \\ a \rightarrow q_1 & f(q_3, q_2) \rightarrow q_0 \\ b \rightarrow q_2 & \\ \hline \{f(a, b)\} & \{f(a, b), f(g(a), b)\}\end{array}}$$

Normalization is necessary !

 \mathbf{T}

$$\mathcal{R} = \{f(x, y) \rightarrow f(g(x), y)\}$$

$$\boxed{\begin{array}{c|c} \mathcal{A}^0 & \mathcal{A}^1_{\mathcal{R}} \\ \hline f(q_1, q_2) \rightarrow q_0 & g(q_1) \rightarrow q_3 \\ a \rightarrow q_1 & f(q_3, q_2) \rightarrow q_0 \\ b \rightarrow q_2 & \\ \hline \{f(a, b)\} & \{f(a, b), f(g(a), b)\} \end{array}}$$

Normalization is necessary !

$$\begin{array}{c|c} \mathcal{A}^0 & \mathcal{A}^1_{\mathcal{R}} & \dots \\ \hline f(q_1, q_2) \to q_0 & g(q_1) \to q_3 & \dots \\ a \to q_1 & f(q_3, q_2) \to q_0 & \\ b \to q_2 & & \\ \hline \{f(a, b)\} & \{f(a, b), f(g(a), b)\} & \dots \end{array}$$

 $\mathcal{R} - \{f(\mathbf{x}, \mathbf{y}) \rightarrow f(\sigma(\mathbf{y}), \mathbf{y})\}$

Normalization is necessary !

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to ${\cal A}$ using ${\cal A}$ when possible, use new states otherwise.

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to ${\cal A}$ using ${\cal A}$ when possible, use new states otherwise.

Theorem

Given a linear TRS \mathcal{R} and a tree automaton \mathcal{A} , if tree automata completion with exact normalization strategy terminates on $\mathcal{A}_{\mathcal{R}}^*$, then

 $\mathcal{L}(\mathcal{A}_{\mathcal{R}}^{*}){=}\mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))$

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to ${\cal A}$ using ${\cal A}$ when possible, use new states otherwise.

Theorem

Given a linear TRS \mathcal{R} and a tree automaton \mathcal{A} , if tree automata completion with exact normalization strategy terminates on $\mathcal{A}_{\mathcal{R}}^*$, then

 $\mathcal{L}(\mathcal{A}_{\mathcal{R}}^{*}){=}\mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))$

Theorem

Tree automata completion with exact normalization strategy terminates for TRS in classes : G, L-SM, L-G⁻¹, L-GSM, L-FPO and L-GFPO.

Regular classes covered by tree automata completion

- with exact normalization strategy
- with other normalization strategies
- it also covers TRS and tree automata outside of those classes !

Outline

1 Term rewriting and reachability analysis

- 2 Regular model-checking of term rewriting systems
- Optiming abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
- 6 Conclusion and further work

Outside of the regular classes

- This is generally the case when the TRS models a program
- We can use over-approximations, i.e.

 $Approx \cap Bad = \emptyset \quad \Rightarrow \quad \mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

 $\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$ $\boxed{\begin{array}{c} \mathcal{A}^{0} \\ \hline f(q_{1}, q_{2}) \to q_{0} \\ a \to q_{1} \\ b \to q_{2} \end{array}}$

[Genet and Viet Triem Tong 2001]

 $\mathcal{R} = \{f(x, y) \rightarrow f(g(x), g(y))\}$ $\begin{array}{c|c} \mathcal{A}^{0} \\ \hline f(q_{1}, q_{2}) \rightarrow q_{0} \\ a \rightarrow q_{1} \\ b \rightarrow q_{2} \end{array}$

[Genet and Viet Triem Tong 2001]

 $\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$

\mathcal{A}^{0}	
$f(\mathbf{q}_1,\mathbf{q}_2) \rightarrow \mathbf{q}_0$	
$a ightarrow q_1$	
$b \rightarrow q_2$	

[Genet and Viet Triem Tong 2001]

 $\mathcal{R} = \{f(x, y) \rightarrow f(g(x), g(y))\}$ $\begin{array}{c|c} \mathcal{A}^{0} \\ \hline f(q_{1}, q_{2}) \rightarrow q_{0} \\ a \rightarrow q_{1} \\ b \rightarrow q_{2} \end{array}$

$$\begin{array}{c}
f \rightarrow q0 \\
g \quad g \\
| \quad | \\
q1 \quad q2
\end{array}$$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^0	
$f(\mathbf{q_1},\mathbf{q_2}) \rightarrow \mathbf{q_0}$	
$a ightarrow q_1$	
$b \rightarrow q_2$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c} f \rightarrow q0 \\ g & g \\ | & | \\ q1 & q2 \end{array}$$

 $[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^{0}	
$f(\boldsymbol{q_1},\boldsymbol{q_2}) \to \boldsymbol{q_0}$	
$a ightarrow q_1$	
$b \rightarrow q_2$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c} f \rightarrow q0 \\ g & g \\ | & | \\ q1 & q2 \end{array}$$

 $[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$ [f(g(q1),g(q2)) $\rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow z]$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^{0}	
$f(\boldsymbol{q_1},\boldsymbol{q_2}) \to \boldsymbol{q_0}$	
$a ightarrow q_1$	
$b \rightarrow q_2$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c}
f \rightarrow q0 \\
g \quad g \\
| \quad | \\
q1 \quad q2
\end{array}$$

 $[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$ [f(g(q1),g(q2)) $\rightarrow q0$] $\rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow q0]$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^{0}	
$f(\boldsymbol{q_1},\boldsymbol{q_2}) \to \boldsymbol{q_0}$	
$a ightarrow q_1$	
$b \rightarrow q_2$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c}
f \rightarrow q0 \\
g \quad g \\
| \quad | \\
q1 \quad q2
\end{array}$$

 $[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$ [f(g(q1),g(q2)) $\rightarrow q0$] $\rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow q0]$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^0	
$f(\boldsymbol{q_1},\boldsymbol{q_2}) \to \boldsymbol{q_0}$	
$a ightarrow q_1$	
$b ightarrow q_2$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c}
f \rightarrow q0 \\
q1 & g \\
 & | \\
q2
\end{array}$$

 $[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$ [f(g(q1),g(q2)) $\rightarrow q0$] $\rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow q0]$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^0	$\mathcal{A}^1_\mathcal{R}$	
$f(\mathbf{q_1},\mathbf{q_2}) \rightarrow q_0$	$g({m q_1}) o {m q_1}$	
$a ightarrow q_1$	$g(q_2) ightarrow q_0$	
$b ightarrow q_2$	$f(\mathbf{q_1},\mathbf{q_0}) \rightarrow \mathbf{q_0}$	

$$\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$$

$$\begin{array}{c}
f \rightarrow q0 \\
q1 \quad q0
\end{array}$$

$$[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$$

$$[f(g(q1),g(q2)) \rightarrow q0] \rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow q0]$$

[Genet and Viet Triem Tong 2001]

\mathcal{A}^0	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$
$f(\mathbf{q_1},\mathbf{q_2}) \rightarrow q_0$	$g(\mathbf{q_1}) ightarrow q_1$	$g(q_0) ightarrow q_0$
$a ightarrow q_1$	$g(q_2) ightarrow q_0$	
$b ightarrow q_2$	$f(\mathbf{q_1},\mathbf{q_0}) \rightarrow \mathbf{q_0}$	

 $\mathcal{R} = \{f(x, y) \to f(g(x), g(y))\}$

$$\begin{array}{c}
f \rightarrow q0 \\
q1 \quad q0
\end{array}$$

$$[f(g(q1),y) \rightarrow z] \rightarrow [g(q1) \rightarrow q1 \quad y \rightarrow z]$$

[f(g(q1),g(q2)) $\rightarrow q0] \rightarrow [g(q1) \rightarrow q1 \quad g(q2) \rightarrow q0]$

The pros :

• Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]

The pros :

- Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool) [Boichut, Héam and Kouchnarenko, 04]

The pros :

- Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
 Adapted for automatic synthesis (integrated in the AVISPA tool)
 - [Boichut, Héam and Kouchnarenko, 04]

The cons :

• Ad-hoc solution based on tree automata structure

The pros :

 Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
 Adapted for automatic synthesis (integrated in the AVISPA tool)

[Boichut, Héam and Kouchnarenko, 04]

The cons :

- Ad-hoc solution based on tree automata structure
- Hard to write/read

The pros :

 Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
 Adapted for automatic synthesis (integrated in the AVISPA tool)

 Adapted for automatic synthesis (integrated in the AVISPA tool) [Boichut, Héam and Kouchnarenko, 04]

The cons :

- Ad-hoc solution based on tree automata structure
- Hard to write/read
- No formal semantics of normalization rules

The pros :

 Expressive and efficient (crypto and Java verification) [Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
 Adapted for automatic synthesis (integrated in the AVISPA tool)

[Boichut, Héam and Kouchnarenko, 04]

The cons :

- Ad-hoc solution based on tree automata structure
- Hard to write/read
- No formal semantics of normalization rules
- Precision of approximation is difficult to estimate/compare

Outline

1 Term rewriting and reachability analysis

- 2 Regular model-checking of term rewriting systems
- 3 Defining abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
- 6 Conclusion and further work

$$C_1={f(a,b)}$$

$$C_{2}=\{f(g(a),b)\}$$

$$C_{2} = \{f(g(a),b)\}$$

$$C_{1}=\{f(a,b)\}$$

using $E = \{g(g(x)) = g(x), h(h(x)) = h(x)\}$

 $s \rightarrow_{\mathcal{R}/E} t \iff s =_E s' \rightarrow_{\mathcal{R}} t' =_E t \quad (e.g. \ f(a,b) \rightarrow_{\mathcal{R}/E} f(g(g(g(a))),b))$

using $E = \{g(g(x)) = g(x), h(h(x)) = h(x)\}$

 $s \to_{\mathcal{R}/E} t \iff s =_E s' \to_{\mathcal{R}} t' =_E t \quad (e.g. \ f(a, b) \to_{\mathcal{R}/E} f(g(g(g(a))), b))$ $f(a, b) \not\to_{\mathcal{R}/E}^* f(a, h(g(b)))$

using $E = \{g(g(x)) = g(x), h(h(x)) = h(x)\}$

 $s \to_{\mathcal{R}/E} t \iff s =_E s' \to_{\mathcal{R}} t' =_E t \quad (e.g. \ f(a, b) \to_{\mathcal{R}/E} f(g(g(g(a))), b))$ $f(a, b) \not\to_{\mathcal{R}/E}^* f(a, h(g(b))) \implies f(a, b) \not\to_{\mathcal{R}}^* f(a, h(g(b)))$

using $E = \{g(g(x)) = g(x), h(h(x)) = h(x)\}$

 $s \rightarrow_{\mathcal{R}/E} t \Leftrightarrow s =_E s' \rightarrow_{\mathcal{R}} t' =_E t \quad (e.g. \ f(a, b) \rightarrow_{\mathcal{R}/E} f(g(g(g(a))), b))$ $f(a, b) \not\rightarrow^*_{\mathcal{R}/E} f(a, h(g(b))) \Rightarrow f(a, b) \not\rightarrow^*_{\mathcal{R}} f(a, h(g(b)))$ [Meseguer, Palomino, Marti-Oliet, 03] [Takai, 04]

Thomas Genet (IRISA)

[Genet, Rusu, 09]

Simplification relation $\mathcal{A} \rightsquigarrow_{\mathcal{E}} \mathcal{A}'$

Given $(u = v) \in E$ and a tree automaton A

[Genet, Rusu, 09]

[Genet, Rusu, 09]

Simplification relation $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$ Given $(u = v) \in E$ and a tree automaton \mathcal{A} $\begin{array}{c|c} u\sigma =_E v\sigma \\ * \downarrow_{\mathcal{A}} & \mathcal{A} \downarrow * \\ q_1 & q_2 \end{array} \Rightarrow \text{ merging of } q_1 \text{ and } q_2 \text{ applied to } \mathcal{A}$ denoted by $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$, where $\mathcal{A}' = \mathcal{A}\{q_1 \mapsto q_2\}$

[Genet, Rusu, 09]

Simplification relation $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$ Given $(u = v) \in E$ and a tree automaton \mathcal{A} $\begin{array}{c} u\sigma =_E v\sigma \\ * \downarrow_{\mathcal{A}} & \mathcal{A} \downarrow * \\ q_1 & q_2 \end{array} \Rightarrow \text{ merging of } q_1 \text{ and } q_2 \text{ applied to } \mathcal{A}$ denoted by $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$, where $\mathcal{A}' = \mathcal{A}\{q_1 \mapsto q_2\}$

After completion step *i*, we propagate *E* on $\mathcal{A}_{\mathcal{R}}^{i}$ using \rightsquigarrow_{E} up to a fixpoint

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^0	
$f(q_a,q_b) ightarrow q_0$	
$a ightarrow q_a$	
$b ightarrow q_b$	
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	
$a ightarrow q_a$	$s(q_{a}) o oldsymbol{q_1}$	
$b ightarrow q_b$	$s(q_b) ightarrow rac{q_2}{q_2}$	
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{f(a, b),$	
	f(s(a), s(b))	

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	$f(q_3,q_4) ightarrow q_0$
$a ightarrow q_a$	$s(q_a) ightarrow {m q_1}$	$s(q_1) ightarrow q_3$
$b ightarrow q_b$	$s(q_b) ightarrow {m q_2}$	$s(q_2) ightarrow q_4$
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{f(a, b),$	$\mathcal{L}(\mathcal{A}_{\mathcal{R}}^2) = \{f(a, b),$
	f(s(a), s(b))	f(s(a), s(b))
		$f(s(s(a)), s(s(b)))\}$

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	$f(q_3,q_4) ightarrow q_0$
$a ightarrow q_a$	$s(q_a) ightarrow q_1$	$s(q_1) ightarrow q_3$
$b ightarrow q_b$	$s(q_b) ightarrow q_2$	$s(q_2) ightarrow q_4$
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{ f(a, b), $	$\mathcal{L}(\mathcal{A}_{\mathcal{R}}^2) = \{f(a, b),$
	f(s(a), s(b))	f(s(a), s(b))
		$f(s(s(a)), s(s(b)))\}$

$$egin{array}{lll} s(s(q_{a})) &=_{E} & s(q_{a}) \ \downarrow^{*} & \mathcal{A}^{2}_{\mathcal{R}} & \mathcal{A}^{2}_{\mathcal{R}} & \downarrow^{*} \ q_{3} & q_{1} \end{array}$$
Equations for tree automata approximation

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$			
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	$f(q_3,q_4) ightarrow q_0$			
$a ightarrow q_a$	$s(q_{a}) ightarrow q_{1}$	$s(q_1) ightarrow q_3$			
$b ightarrow q_b$	$s(q_b) ightarrow rac{q_2}{q_2}$	$s(q_2) ightarrow q_4$			
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{ f(a, b), $	$\mathcal{L}(\mathcal{A}_{\mathcal{R}}^2) = \{f(a, b), \mid$			
	f(s(a), s(b))	$f(s(a), s(b))\}$			
		$f(s(s(a)), s(s(b)))\}$			
$s(s(q_a)) =_E s(q_a)$ $s(s(q_b)) =_E s(q_b)$					

$s(s(q_a)$) =	<i>E S</i>	(q_a)	s (:	s(q _b))	$=_E$	s(q
\downarrow^*	$\mathcal{A}^2_\mathcal{R}$	$\mathcal{A}_{\mathcal{R}}^2$	\downarrow^*		\downarrow^*	$\mathcal{A}_{\mathcal{R}}^2$	\mathcal{A}_{1}^{2}	$\frac{2}{R} \downarrow^*$
q 3			q_1		q 4			q 2

Equations for tree automata approximation

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$			
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	$f(q_3,q_4) ightarrow q_0$			
$a ightarrow q_a$	$s(q_a) ightarrow {m q_1}$	$s(q_1) ightarrow {old q_3}$			
$b ightarrow q_b$	$s(q_b) ightarrow rac{q_2}{q_2}$	$s(q_2) ightarrow rac{q_4}{q_4}$			
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{ f(a, b), $	$\mathcal{L}(\mathcal{A}_{\mathcal{R}}^2) = \{f(a, b),$			
	f(s(a), s(b))	$f(s(a), s(b))\}$			
		f(s(s(a)), s(s(b)))			
c(c(a)) = c(a) $c(c(a)) = c(a)$					

$s(s(q_a)$	$) =_{E}$	s(q _a)	s(s(q _b))	$=_E$	$s(q_b)$
\downarrow^*	$\mathcal{A}^2_\mathcal{R}$.	$\mathcal{A}^2_{\mathcal{R}} \downarrow^*$	↓* .	$\mathcal{A}^2_{\mathcal{R}} = \mathcal{A}^2_{\mathcal{R}}$	↓*
q 3	=	q_1	q_4	=	q 2

Equations for tree automata approximation

$$\mathcal{R} = \{f(x, y) \rightarrow f(s(x), s(y))\}$$
 and $E = \{s(s(x)) = s(x)\}$

\mathcal{A}^{0}	$\mathcal{A}^1_\mathcal{R}$	$\mathcal{A}^2_\mathcal{R}$
$f(q_a,q_b) ightarrow q_0$	$f(q_1,q_2) ightarrow q_0$	$f(q_a,q_b) ightarrow q_0$
$a ightarrow q_a$	$s(q_a) ightarrow oldsymbol{q_1}$	$s(q_1) \to q_1$
$b ightarrow q_b$	$s(q_b) ightarrow rac{q_2}{q_2}$	$s(q_2) ightarrow q_2$
$\mathcal{L}(\mathcal{A}^0) = \{f(a, b)\}$	$\mathcal{L}(\mathcal{A}^1) = \{f(a, b),$	$\mathcal{L}(\mathcal{A}^2_\mathcal{R}) = \{f(s^*(a), s^*(b))\}$
	f(s(a), s(b))	

$s(s(q_a))$	$=_E$	$s(q_a)$	$s(s(q_b))$	$=_E$	$s(q_b)$
\downarrow^*	$\mathcal{A}^2_{\mathcal{R}}$,	$4^2_{\mathcal{R}} \downarrow^*$	↓* ,	$\mathcal{A}^2_{\mathcal{R}} = \mathcal{A}^2_{\mathcal{P}}$	₂ ↓*
q 3	=	q_1	q_4	=	q 2

The simplification relation \rightsquigarrow_E enjoys the following properties

• If $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

The simplification relation \rightsquigarrow_E enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_E \mathcal{A}'$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$
- \rightsquigarrow_E terminates

The simplification relation \rightsquigarrow_E enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{\mathcal{E}} \mathcal{A}'$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$
- \rightsquigarrow_E terminates
- \rightsquigarrow_E is locally confluent, modulo isomorphism

The simplification relation \rightsquigarrow_E enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{\mathcal{E}} \mathcal{A}'$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$
- \rightsquigarrow_E terminates
- \rightsquigarrow_E is locally confluent, modulo isomorphism
- Normal forms of \rightsquigarrow_E are unique, modulo isomorphism

The simplification relation \rightsquigarrow_E enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{\mathcal{E}} \mathcal{A}'$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$
- \rightsquigarrow_E terminates
- \rightsquigarrow_E is locally confluent, modulo isomorphism
- Normal forms of \rightsquigarrow_E are unique, modulo isomorphism

 \Rightarrow equations of *E* can be used in any order for $\rightsquigarrow_{E}^{!}$

New completion algorithm : from $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i}$ to $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i+1}$

i-th Completion step

• Normalize $r\sigma
ightarrow q'$ using exact norm. strat. or new states

New completion algorithm : from $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i}$ to $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i+1}$

i-th Completion step

• Normalize $r\sigma
ightarrow q'$ using exact norm. strat. or new states

Simplification

• Find instances of an equation u = v of E in $\mathcal{A}_{\mathcal{R}}^{i+1}$

New completion algorithm : from $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i}$ to $\mathcal{A}_{\mathcal{R},\mathcal{E}}^{i+1}$

i-th Completion step

• Normalize $r\sigma
ightarrow q'$ using exact norm. strat. or new states

Simplification

• Find instances of an equation u = v of E in $\mathcal{A}_{\mathcal{R}}^{i+1}$

$$\begin{array}{c|c} u\sigma & = & v\sigma \\ \hline & E & & \downarrow \\ \mathcal{A}_{\mathcal{R}}^{i+1}, \varphi \\ q_1 & q_2 \end{array}$$

- Rename q_2 by q_1 in $\mathcal{A}_{\mathcal{R}}^{i+1}$
- Repeat until a fixpoint is reached

Theorems

Theorem (Upper bound)

Let \mathcal{R} be a left-linear TRS, \mathcal{A} be a tree automaton and \mathcal{E} be a set of linear equations. If completion terminates on $\mathcal{A}^*_{\mathcal{R},\mathcal{E}}$ then $\mathcal{L}(\mathcal{A}^*_{\mathcal{R},\mathcal{E}}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$

Theorems

Theorem (Upper bound)

Let \mathcal{R} be a left-linear TRS, \mathcal{A} be a tree automaton and E be a set of linear equations. If completion terminates on $\mathcal{A}^*_{\mathcal{R},E}$ then

 $\mathcal{L}(\mathcal{A}^*_{\mathcal{R},E}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$

Theorem (Lower bound)

Let \mathcal{R} be a left-linear TRS, E a set of linear equations and \mathcal{A} a \mathcal{R}/E -coherent tree automaton. For any $i \in \mathbb{N}$:

 $\mathcal{R}^*_{/E}(\mathcal{L}(\mathcal{A})) \supseteq \mathcal{L}(\mathcal{A}^i_{\mathcal{R},E})$

and $\mathcal{A}^{i}_{\mathcal{R},E}$ is \mathcal{R}/E -coherent.

Outline

1 Term rewriting and reachability analysis

- 2 Regular model-checking of term rewriting systems
- 3 Defining abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications
 - 6 Conclusion and further work

[Genet, Viet Triem Tong, Boichut, Boyer] (Around 13000 lines of Ocaml)

Timbuk provides

• Tree automata implementation with $\cap, \cup, =$? $\emptyset, \subseteq, \dots$

[Genet, Viet Triem Tong, Boichut, Boyer] (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup, =$? $\emptyset, \subseteq, \dots$
- Tree automata completion
 - Exact computation of (covered) regular classes
 - Approximations with normalization rules/equations

[Genet, Viet Triem Tong, Boichut, Boyer] (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup, =$? $\emptyset, \subseteq, \dots$
- Tree automata completion
 - Exact computation of (covered) regular classes
 - Approximations with normalization rules/equations
- Tree automata completion checker

Given a left-linear TRS \mathcal{R} and tree automata \mathcal{A}, \mathcal{B} :

$$extsf{checker}(\mathcal{A},\mathcal{R},\mathcal{B}) = extsf{true} \quad \Rightarrow \quad \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$$

[Genet, Viet Triem Tong, Boichut, Boyer] (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup, =$? $\emptyset, \subseteq, \dots$
- Tree automata completion
 - Exact computation of (covered) regular classes
 - Approximations with normalization rules/equations
- Tree automata completion checker

Given a left-linear TRS \mathcal{R} and tree automata \mathcal{A}, \mathcal{B} :

$$extsf{checker}(\mathcal{A},\mathcal{R},\mathcal{B}) = extsf{true} \quad \Rightarrow \quad \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$$

checker extracted from a Coq spec.

[Boyer, Genet, Jensen, 08]

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

 $\mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset$

•
$$\mathcal{R} = \begin{vmatrix} A & Java & byte & code & program P \\ Java & Virtual & Machine & (JVM) & semantics \end{vmatrix}$$

• \mathcal{L} = Java Virtual Machine (JVM) initial state

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

 $\mathcal{R}^*(\mathcal{L}) \cap Bad = \emptyset$

- $\mathcal{R} = \begin{vmatrix} A & Java & byte & code & program P \\ Java & Virtual & Machine & (JVM) & semantics \end{vmatrix}$
- $\mathcal{L}=$ Java Virtual Machine (JVM) initial state
- $\mathcal{R}^*(\mathcal{L})$ = all JVM states reachable while executing P
- Bad = set of forbidden states (e.g. bad control flow, data races, etc.)

Encoding JVM semantics and bytecode into rewriting

Copster tool

[Barré, Hubert, Le Roux, Genet]

• Translates .class into a *left-linear* TRS

Encoding JVM semantics and bytecode into rewriting

Copster tool

[Barré, Hubert, Le Roux, Genet]

- Translates .class into a left-linear TRS
- Copster covers the following Java aspects :
 - Class and inheritance
 - Object allocation, initialization, access and modification of fields
 - Virtual method invocation
 - Integer, boolean, characters and string types
 - Basic arithmetic and comparisons
 - Basic standard library methods (strings, I/O)
 - Basic thread operations (creation, synchronization, join)

```
class T1 extends java.lang.Thread{
    private int l;
```

```
public T1(int l){this.l=l;}
```

```
public void run(){
  while (true){
    synchronized(Top.lock){
        System.out.println(Top.f);
        Top.f=l;
        System.out.println(Top.f);
        Top.f=0;
    }}}
```

```
class Top{
  public static Object lock;
  public static int f;
  public static void main(String[]
    int i=1;
    lock = new Object();
    Top.f=0;
    while (i<=2){
      T1 t1 = new T1(i++);
      t1.start();
    }}}</pre>
```

```
class T1 extends java.lang.Thread{
 private int 1;
 public T1(int l){this.l=l;}
 public void run(){
    while (true){
      synchronized(Top.lock){
         System.out.println(Top.f);
         Top.f=1;
         System.out.println(Top.f);
         Top.f=0;
      }}}
```

```
class Top{
  public static Object lock;
  public static int f;
  public static void main(String[]
    int i=1;
    lock = new Object();
    Top.f=0;
    while (i<=2){
      T1 t1 = new T1(i++);
      t1.start();
    }}}</pre>
```

• Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form 0, 1, 0, 2, 0, 1, 0, ...

```
class T1 extends java.lang.Thread{
 private int 1;
 public T1(int l){this.l=l;}
 public void run(){
    while (true){
      synchronized(Top.lock){
         System.out.println(Top.f);
         Top.f=1;
         System.out.println(Top.f);
         Top.f=0;
      }}}
```

```
class Top{
  public static Object lock;
  public static int f;
  public static void main(String[]
    int i=1;
    lock = new Object();
    Top.f=0;
    while (i<=2){
      T1 t1 = new T1(i++);
      t1.start();
    }}}</pre>
```

• Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form 0, 1, 0, 2, 0, 1, 0, ...

• Subsequences of the form \ldots, i, i, \ldots with $i \ge 1$ should not occur

```
class T1 extends java.lang.Thread{
 private int 1;
 public T1(int l){this.l=l;}
 public void run(){
    while (true){
      synchronized(Top.lock){
         System.out.println(Top.f);
         Top.f=1;
         System.out.println(Top.f);
         Top.f=0;
      }}}
```

```
class Top{
  public static Object lock;
  public static int f;
  public static void main(String[]
    int i=1;
    lock = new Object();
    Top.f=0;
    while (i<=2){
      T1 t1 = new T1(i++);
      t1.start();
    }}}</pre>
```

• Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form 0, 1, 0, 2, 0, 1, 0, ...

- Subsequences of the form \ldots, i, i, \ldots with $i \geq 1$ should not occur
- One equation is enough : outstack(x,outstack(y,z))=z

The RAVAJ Java verification chain

- RAVAJ is an ANR Project between LORIA (Nancy), LIFC (Besançon), France Telecom and IRISA
- Certified reachability analysis chain for Java bytecode programs

Outline

1 Term rewriting and reachability analysis

- 2 Regular model-checking of term rewriting systems
- 3 Defining abstractions for infinite non regular systems
- 4 Refining abstractions by hand using equations
- 5 Tools and applications

• Comparison between Tree Tranducers and TRS is difficult

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
- + Translation of an operationnal semantics into a TRS is easier

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
- + Translation of an operationnal semantics into a TRS is easier
- + Precision result w.r.t approximation (i.e. w.r.t. \mathcal{R}/E)

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
- + Translation of an operationnal semantics into a TRS is easier
- + Precision result w.r.t approximation (i.e. w.r.t. \mathcal{R}/E)
- pprox Equations could be used on TT, and predicate abstraction on TRS

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain !
- Regular tree languages are only one particular abstract domain !
- + Other domains may be encoded into this one (e.g. for k-CFA)

- Regular tree languages are only one particular abstract domain !
- + Other domains may be encoded into this one (e.g. for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain

- Regular tree languages are only one particular abstract domain !
- + Other domains may be encoded into this one (*e.g.* for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain
- + Refinement of approximation (automatic/by hand)

- Regular tree languages are only one particular abstract domain !
- + Other domains may be encoded into this one (e.g. for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain
- + Refinement of approximation (automatic/by hand)
- + A unique checker for certifying all approximations

Comparison with other verification techniques

- Classes of $\mathcal R$ for which $\mathcal R^*(\mathcal L)$ is regular
 - only left and right linear TRS
 - only free (e.g. no AC) ranked (e.g. no hedge) TRS
 - + A common algorithm and an optimized tool for all the covered classes

Comparison with other verification techniques

- \bullet Classes of ${\mathcal R}$ for which ${\mathcal R}^*({\mathcal L})$ is regular
 - only left and right linear TRS
 - only free (e.g. no AC) ranked (e.g. no hedge) TRS
 - + A common algorithm and an optimized tool for all the covered classes
- Others equational abstractions
 - Completion is more expensive than a pure rewriting approach
 - + Even in the finite case, automata can be faster than tabling rewriting
 - Generate equations automatically (in some cases)
 - + In practice, strong restrictions on equations (syntactical/coherence)

Comparison with other verification techniques

- \bullet Classes of ${\mathcal R}$ for which ${\mathcal R}^*({\mathcal L})$ is regular
 - only left and right linear TRS
 - only free (e.g. no AC) ranked (e.g. no hedge) TRS
 - + A common algorithm and an optimized tool for all the covered classes
- Others equational abstractions
 - Completion is more expensive than a pure rewriting approach
 - + Even in the finite case, automata can be faster than tabling rewriting
 - Generate equations automatically (in some cases)
 - + In practice, strong restrictions on equations (syntactical/coherence)
- Other techniques based on rewriting
 - Limited to « regular » properties (e.g. no induction !)
 - + Simpler properties \Rightarrow needs less interaction
 - + No need for termination or confluence of the TRS

To sum-up

From the initial (theoretical) idea of tree automata completion, we have shown that this technique

- O covers many regular classes of the litterature
- eals with automatic/guided approximations
- 3 is feasible in practice
- scales up to verify real software
- S can be certified using an external proof assistant

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

- Next year : improve the completion-based verification framework
 - Counter-example extraction
 - Automatic refinement of equational approximations

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

- Next year : improve the completion-based verification framework
 - Counter-example extraction
 - Automatic refinement of equational approximations

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

- Next year : improve the completion-based verification framework
 - Counter-example extraction
 - Automatic refinement of equational approximations
 - Vizualization of completion divergence

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

- Next year : improve the completion-based verification framework
 - Counter-example extraction
 - Automatic refinement of equational approximations
 - Vizualization of completion divergence
 - Equation inference

Now : extend the verification capabilities of tree automata completion
 ~> lift-up to temporal properties

- Next year : improve the completion-based verification framework
 - Counter-example extraction
 - Automatic refinement of equational approximations
 - Vizualization of completion divergence
 - Equation inference
- Within 3 years : certification of distant computation (a.k.a. result certification)

• Extend (word) lattice automata to trees

with T. Legall

• Improve automatic approximations for crypto. protocols

with Y. Boichut

• Other applications of $\mathcal{R}^*(\mathcal{L})$

- Checking transformations of SQL query
- Checking transformations of UML model
- Javascript programs verification

Since the new completion algorithm is based on :

from the ϵ -graph we can obtain the \mathcal{R}/E -rewriting graph

Since the new completion algorithm is based on :

from the ϵ -graph we can obtain the \mathcal{R}/E -rewriting graph

$$\mathcal{R} = \{f(x, y) \to f(g(x), y), \\ f(x, y) \to f(x, h(y))\}$$

$$E = \{g(g(x)) = g(x), h(h(x)) = h(x)\}$$

 $\mathcal{L} = \{f(a, b)\}$

Since the new completion algorithm is based on :

from the ϵ -graph we can obtain the \mathcal{R}/E -rewriting graph

$$\mathcal{R} = \{f(x, y) \rightarrow f(g(x), y), \\ f(x, y) \rightarrow f(x, h(y))\}$$
$$E = \{g(g(x)) = g(x), \\ h(h(x)) = h(x)\}$$
$$\mathcal{L} = \{f(a, b)\}$$

Thomas Genet (IRISA)

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

In the tree automata we distinguish between

- Transitions $f(q_1, \ldots, q_n) \rightarrow q$ recognizing « equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q'$ representing rewriting between classes

Definition $(\mathcal{R}/E$ -coherent automaton)

Let $\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta \rangle$ be a tree automaton, \mathcal{R} a TRS and E a set of equations. The automaton \mathcal{A} is said to be \mathcal{R}/E -coherent if $\forall q \in \mathcal{Q} : \exists s \in \mathcal{T}(\mathcal{F})$:

$$s \rightarrow_{\mathcal{A}}^{\not < \ast} q \land [\forall t \in \mathcal{T}(\mathcal{F}) : (t \rightarrow_{\mathcal{A}}^{\not < \ast} q \Rightarrow s =_{E} t) \land (t \rightarrow_{\mathcal{A}}^{\ast} q \Rightarrow s \rightarrow_{\mathcal{R}/E}^{\ast} t)]$$

Benchmarks

va prog. 2 303 33 / 33
303 33 / 33
33 / 33
51 / 335
37387
511 / 672
303

Applications : Java bytecode verification (II)

Proving safety properties on Java bytecode using reachability analysis

Java Source . java	Java Byte Code .class
<pre>class TestList{</pre>	
<pre>public static void main(String[] argv){</pre>	
List lpos=null;	public static void main(java.l
<pre>InvList lneg=null;</pre>	Code:
int x;	0: aconst_null
boolean pos;	1: astore_1
pos= true;	2: aconst_null
<pre>try {x=System.in.read()};}</pre>	3: astore_2
<pre>catch(java.io.IOException e){x=0;}</pre>	4: iconst_1
while (x != -1){	5: istore 4
<pre>if (pos) {lpos= new List(x, lpos);</pre>	7: getstatic #2; //
<pre>pos=false;}</pre>	10: invokevirtual #3; //
<pre>else {lneg= new InvList(x, lneg);</pre>	13: istore_3
<pre>pos=true;}</pre>	
<pre>try {x=System.in.read();}</pre>	47: new
<pre>catch(java.io.IOException e){x=0;}</pre>	50: dup
}	51: iload_3
3	

Encoding of an add bytecode

$$\mathsf{add}:\frac{(m,pc,x::y::s,l)}{(m,pc+1,x+y::s,l)}$$

Encoding of an add bytecode

$$\mathsf{add}:\frac{(m,pc,x::y::s,l)}{(m,pc+1,x+y::s,l)}$$

• Associate add bytecode to *m*, *pc*

public static void foo(...)
...
11 : add

frame(foo,11,s,l) -> xframe(add,foo,11,s,l)

Encoding of an add bytecode

$$\mathsf{add}:\frac{(m,pc,x::y::s,l)}{(m,pc+1,x+y::s,l)}$$

```
• Associate add bytecode to m, pc
```

public static void foo(...)
 ...
 11 : add

frame(foo,11,s,l) -> xframe(add,foo,11,s,l)

Pop x and y, start evaluation of (x + y)

xframe(add,m,pc,stack(y,stack(x,s)),l) -> xframe(xadd(x,y),m,pc,s,l)

Encoding of an add bytecode

$$\mathsf{add}:\frac{(m,pc,x::y::s,l)}{(m,pc+1,x+y::s,l)}$$

```
• Associate add bytecode to m, pc
```

public static void foo(...)
 ...
 11 : add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

Pop x and y, start evaluation of (x + y)
xframe(add,m,pc,stack(y,stack(x,s)),l) -> xframe(xadd(x,y),m,pc,s,l)

Outpute (x + y)
xadd(...) -> ...
... -> result(x)

Encoding of an add bytecode

$$\mathsf{add}:\frac{(m,pc,x::y::s,l)}{(m,pc+1,x+y::s,l)}$$

```
• Associate add bytecode to m, pc
```

public static void foo(...)
 ...
 11 : add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

Pop x and y, start evaluation of (x + y)
xframe(add,m,pc,stack(y,stack(x,s)),l) -> xframe(xadd(x,y),m,pc,s,l)

- Show Compute (x + y)
 xadd(...) -> ...
 ... -> result(x)
- Push the result on top of s and move to next pc xframe(result(x),m,pc,s,1) -> frame(m,next(pc),stack(x,s),1)

Thomas Genet (IRISA)