Reachability Analysis of Rewriting for Software Verification

Thomas Genet

IRISA

Habilitation à diriger des recherches
IRISA - 30 novembre 2009

Motivation : proving safety properties

(1)

$$
\mathrm{n}:=\mathrm{i}
$$

(2)
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

$$
\begin{equation*}
\text { If } i \geq 1 \text { in (1) } \tag{4}
\end{equation*}
$$

$$
\text { i }:=i-1 ;\}
$$

(5)

$$
\text { If } i \geq 1 \text { in (1) }
$$

then

$$
n \geq 1 \text { in (5) }
$$

\qquad
then
(5) with $n=0$ unreachable

Verification using Model-checking

(1) $\{i \geq 1\}$

$$
\mathrm{n}:=\mathrm{i} \text {; }
$$

(2)
(3)
while (i>1) do \{

$$
\text { (5) }, i=?, n=0
$$

Verification using Static Analysis and Abstract Interpretation

$$
D=\mathbb{N}
$$

$D^{\#}$: intervals on \mathbb{N}
(1) $\{i \geq 1\}$
n := i;
(2)
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; }\}
$$

(5) $\{n \geq 1\}$

Verification using Static Analysis and Abstract Interpretation

$$
D=\mathbb{N}
$$

$D^{\#}$: intervals on \mathbb{N}
(1) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[0 ;+\infty[\right.\right.$
n := i;
(2)
(1) $\{i \geq 1\}$
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; }\}
$$

(5) $\{n \geq 1\}$

Verification using Static Analysis and Abstract Interpretation

$$
D=\mathbb{N}
$$

$D^{\#}$: intervals on \mathbb{N}
(1) $\{i \geq 1\}$
$\mathrm{n}:=\mathrm{i}$;
(2)
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; }\}
$$

(5) $\{n \geq 1\}$
(1) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[0 ;+\infty[\right.\right.$
(2) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[1 ;+\infty[\right.\right.$
(3) $i^{\#}=\left[2 ;+\infty\left[, n^{\#}=[1 ;+\infty[\right.\right.$
(4) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[1 ;+\infty[* \#[1 ;+\infty[\right.\right.$

Verification using Static Analysis and Abstract Interpretation

$$
D=\mathbb{N}
$$

$D^{\#}$: intervals on \mathbb{N}
(1) $\{i \geq 1\}$

$$
\mathrm{n}:=\mathrm{i} \text {; }
$$

(2)
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; }\}
$$

(5) $\{n \geq 1\}$
(1) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[0 ;+\infty[\right.\right.$
(2) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[1 ;+\infty[\right.\right.$
(3) $i^{\#}=\left[2 ;+\infty\left[, n^{\#}=[1 ;+\infty[\right.\right.$
(4) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=\left[1 ;+\infty\left[*^{\#}[1 ;+\infty[\right.\right.\right.\right.$
(5) $i^{\#}=\left[1 ;+\infty\left[, n^{\#}=[1 ;+\infty[\right.\right.$

Verification using a Proof Assistant

(1) $\{i \geq 1\}$
n := i;
(2)
while (i>1) do \{
(3)

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; \} }
$$

(5) $\{n \geq 1\}$

Verification using a Proof Assistant

(1) $\{i \geq 1\}$

$$
\mathrm{n}:=\mathrm{i} \text {; }
$$

(2) $\{i \geq 1, n \geq 1\}$ while ($\mathrm{i}>1$) do $\{$
$\{$ invariant $n \geq 1\}$
n := n*(i-1);
(4)

$$
\text { i := i-1; \} }
$$

(5) $\{n \geq 1\}$

Verification using a Proof Assistant

(1) $\{i \geq 1\}$
n := i;
(2) $\{i \geq 1, n \geq 1\}$ while ($i>1$) do \{
\{ invariant $n \geq 1\}$

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i := i-1; \} }
$$

(5) $\{n \geq 1\}$

FORALL (i: int):
i >=1 IMPLIES (GORAL ($\mathrm{x}:$ int) :
$\mathrm{x}=\mathrm{i}$ IMPLIES
(FORALL (iO: int): GORAL (x 0 : int) : $\begin{aligned} \mathrm{xO} & >=1 \text { IMPLIES } \\ \text { iO } & >1 \text { IMPLIES }\end{aligned}$ (FORALL (xi: int): $\mathrm{x} 1=\mathrm{x} 0$ * (iO - 1) IMPLIES x 1 >= 1))))

Verification using a Proof Assistant

(1) $\{i \geq 1\}$

$$
\mathrm{n}:=\mathrm{i} \text {; }
$$

(2) $\{i \geq 1, n \geq 1\}$ while (i>1) do \{
$\{$ invariant $n \geq 1\}$

$$
\mathrm{n}:=\mathrm{n} *(\mathrm{i}-1) ;
$$

(4)

$$
\text { i }:=\text { i-1; }\}
$$

(5) $\{n \geq 1\}$

```
FORALL (i: int):
    i >=1 IMPLIES
    (FORALL (x: int):
    x = i IMPLIES
        (FORALL (iO: int):
        FORALL (x0: int):
        x0 >= 1 IMPLIES
        iO > 1 IMPLIES
        (FORALL (x1: int):
        x1 = x0 * (i0 - 1)
        IMPLIES x1 >= 1))))
```

(skosimp*)
(replace -6 1)
(lemma "both_sides_times_pos_ge1")
(inst -1 "i0!1-1" "x0!1" "1")
(grind)

Proving (un)reachability on infinite state systems

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
- Regular model-checking
- Abstract model-checking, ...

Proving (un)reachability on infinite state systems

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
- Regular model-checking
- Abstract model-checking, ...
+ Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard

Proving (un)reachability on infinite state systems

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
- Regular model-checking
- Abstract model-checking, ...
+ Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard
- Proof assistants
+ If a proof exists, you are likely to succeed
- ... but you may spend weeks, months!

Proving (un)reachability on infinite state systems

- Static analyzers based on abstract interpretation
- Model-checkers adapted to infinite state systems
- Regular model-checking
- Abstract model-checking, ...
+ Both are fully automatic
- When the tool fails, guiding it to finish the proof is hard
- Proof assistants
+ If a proof exists, you are likely to succeed
- ... but you may spend weeks, months!

Is there something in between?

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating
(1) A model-checking algorithm for finite (or regular) systems
(2) An abstraction mechanism for infinite non regular systems
(3) A way to refine, by hand, abstractions if automatic verification fails

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating
(1) A model-checking algorithm for finite (or regular) systems
(2) An abstraction mechanism for infinite non regular systems
(3) A way to refine, by hand, abstractions if automatic verification fails and bonus :
(1) In the end, the same level of confidence as with a Coq proof!

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems

4 Refining abstractions by hand using equations
(5) Tools and applications
(6) Conclusion and further work

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems

4 Refining abstractions by hand using equations
(5) Tools and applications

6 Conclusion and further work

Term Rewriting

- Set of ranked symbols

$$
\begin{aligned}
& \mathcal{F}=\{+, 0,1\} \\
& \mathcal{X}=\{x, y, \ldots\}
\end{aligned}
$$

Term Rewriting

- Set of ranked symbols
- Set of variables

$$
\mathcal{F}=\{+, 0,1\}
$$

- Set of ground terms

$$
\mathcal{T}(\mathcal{F})=\{0,0+1,(0+0)+(0+1), \ldots\}
$$

Term Rewriting

- Set of ranked symbols

$$
\mathcal{F}=\{+, 0,1\}
$$

- Set of variables

$$
\begin{gathered}
\mathcal{X}=\{x, y, \ldots\} \\
\mathcal{T}(\mathcal{F})=\{0,0+1,(0+0)+(0+1), \ldots\} \\
\mathcal{T}(\mathcal{F}, \mathcal{X})=\{x, 0+x, 1+0, \ldots\}
\end{gathered}
$$

- Set of ground terms
- Set of terms

Term Rewriting

- Set of ranked symbols
- Set of variables

$$
\begin{aligned}
& \mathcal{F}=\{+, 0,1\} \\
& \mathcal{X}=\{x, y, \ldots\}
\end{aligned}
$$

- Set of ground terms
- Set of terms $\mathcal{T}(\mathcal{F}, \mathcal{X})=\{x, 0+x, 1+0, \ldots\}$
- Rewrite rules

$$
0+x \rightarrow x
$$

$$
(0+0)+(0+1) \longrightarrow 0+(0+1) \longrightarrow 1
$$

Term Rewriting

- Set of ranked symbols
- Set of variables

$$
\begin{aligned}
& \mathcal{F}=\{+, 0,1\} \\
& \mathcal{X}=\{x, y, \ldots\}
\end{aligned}
$$

- Set of ground terms
- Set of terms
- Rewrite rules

$$
\begin{gathered}
\mathcal{T}(\mathcal{F})=\{0,0+1,(0+0)+(0+1), \ldots\} \\
\mathcal{T}(\mathcal{F}, \mathcal{X})=\{x, 0+x, 1+0, \ldots\} \\
0+x \rightarrow x
\end{gathered}
$$

- Term rewriting system (TRS) $=$ set of rewrite rules

With TRS $\mathcal{R}=\{0+x \rightarrow x\}$:

$$
\begin{aligned}
& 0+1 \rightarrow_{\mathcal{R}} 1 \\
& (0+0)+(0+1) \rightarrow_{\mathcal{R}^{*}} 1
\end{aligned}
$$

TRS as a formal model of programs

(1)

$$
\begin{aligned}
& \mathcal{F}=\{(-,-,-), 0, s,+, *,(1), \text { (2), (3), (4), (5) }\} \\
& \mathcal{X}=\{I, N, X, Y\}
\end{aligned}
$$

$$
\mathrm{n}:=\mathrm{i}
$$

while (i>1) do \{

$$
\begin{array}{ll}
(1), I, N) & \rightarrow((2), I, I) \\
\text { (2) } s(s(I)), N) & \rightarrow(3), s(s(I)), N) \\
\text { (3) }, s(I), N) & \rightarrow(4), s(I), I * N) \\
\text { (4) } s(I), N) & \rightarrow(2), I, N) \tag{3}\\
\text { (2) }, 0, N) & \rightarrow(5), 0, N) \\
\text { (2), } s(0), N) & \rightarrow(5), s(0), N) \\
0 * X & \rightarrow 0 \\
s(X) * Y & \rightarrow Y+(X * Y)
\end{array}
$$

Proving safety by (un)reachability analysis :

$$
\left.(1), i, x) \not \nrightarrow \mathcal{R}^{*}(5), y, 0\right)
$$

TRS as a formal model of programs

$$
\begin{aligned}
& \mathcal{F}=\{(-,-,-), 0, s,+, *,(1), \text { (2), (3), (4), (5) }\} \\
& \mathcal{X}=\{I, N, X, Y\}
\end{aligned}
$$

(1)

$$
\begin{array}{ll}
(1), I, N) & \rightarrow((2), I, I) \\
((2), s(s(I)), N) & \rightarrow(3), s(s(I)), N) \\
\text { (3) }, s(I), N) & \rightarrow(4), s(I), I * N) \\
\text { (4) } s(I), N) & \rightarrow((2), I, N) \\
\text { (2) }, 0, N) & \rightarrow(5), 0, N) \\
((2), s(0), N) & \rightarrow(5), s(0), N) \\
0 * X & \rightarrow 0 \\
s(X) * Y & \rightarrow Y+(X * Y)
\end{array}
$$

Proving safety by (un)reachability analysis :

$$
\left.(1), i, x) \not \nrightarrow \mathcal{R}^{*}(5), y, 0\right)
$$

TRS as a formal model of programs

$$
\begin{aligned}
& \mathcal{F}=\{(-,-,-), 0, s,+, *,(1), \text { (2), (3), (4), (5) }\} \\
& \mathcal{X}=\{I, N, X, Y\}
\end{aligned}
$$

(1)

$$
\begin{array}{ll}
(1), I, N) & \rightarrow((2), I, I) \\
(2), s(s(I)), N) & \rightarrow(3), s(s(I)), N) \\
\text { (3) } s(I), N) & \rightarrow(4), s(I), I * N) \\
\text { (4) } s(I), N) & \rightarrow(2), I, N) \\
\text { (2) }, 0, N) & \rightarrow(5), 0, N) \\
((2), s(0), N) & \rightarrow(5), s(0), N) \\
0 * X & \rightarrow 0 \\
s(X) * Y & \rightarrow Y+(X * Y)
\end{array}
$$

Proving safety by (un)reachability analysis :

$$
\left.(1), i, x) \not \nrightarrow \mathcal{R}^{*}(5), y, 0\right)
$$

$$
\text { with } i \geq 1, x, y \in \mathbb{N}
$$

Reachability analysis of rewriting

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow \mathcal{R}^{*} t$?

- Undecidable in general (TRS are Turing-complete)

Reachability analysis of rewriting

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow \mathcal{R}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if \mathcal{R} terminates

Reachability analysis of rewriting

Given a $\operatorname{TRS} \mathcal{R}$ and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow \mathcal{R}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if \mathcal{R} terminates

where $\mathcal{R}^{*}(\mathcal{L})=\left\{u \mid s \in \mathcal{L} \wedge s \rightarrow \mathcal{R}^{*} u\right\}$
- Decidable, if $\mathcal{R}^{*}(\{s\})$ is finite
(\approx finite model-checking)

Reachability analysis of rewriting

Given a TRS \mathcal{R} and $s, t \in \mathcal{T}(\mathcal{F})$, is $s \rightarrow \mathcal{R}^{*} t$?

- Undecidable in general (TRS are Turing-complete)
- Decidable if \mathcal{R} terminates

where $\mathcal{R}^{*}(\mathcal{L})=\left\{u \mid s \in \mathcal{L} \wedge s \rightarrow \mathcal{R}^{*} u\right\}$
- Decidable, if $\mathcal{R}^{*}(\{s\})$ is finite
(\approx finite model-checking)
- Decidable, for classes of \mathcal{R} such that $\mathcal{R}^{*}(\{s\})$ is regular (\approx regular model-checking)

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :

$$
(1), i, x) \nrightarrow_{\mathcal{R}^{*}}(\text { (5) }, y, 0)
$$

$$
\text { with } i \geq 1, x, y \in \mathbb{N}
$$

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :

$$
\left.(1), i, x) \not{\nrightarrow \mathcal{R}^{*}}^{(5)}, y, 0\right)
$$

$$
\text { with } i \geq 1, x, y \in \mathbb{N}
$$

which can be seen as:

The reachability analysis problem becomes:

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \text { Bad }=\emptyset ?
$$

Two applications of reachability analysis of rewriting

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \mathrm{Bad}=\emptyset \text { ? }
$$

- Java application verification
[Boichut, Genet, Jensen, Le Roux, 07]

Two applications of reachability analysis of rewriting

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \operatorname{Bad}=\emptyset ?
$$

- Java application verification [Boichut, Genet, Jensen, Le Roux, 07]
- Cryptographic protocol verification
[Genet, Klay, 00]
- $\mathcal{L}=$ protocol initial configurations
- $\mathcal{R}=\left\lvert\, \begin{aligned} & \text { specification of protocol exchanged messages } \\ & \text { deduction rules of the intruder }\end{aligned}\right.$

Two applications of reachability analysis of rewriting

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \operatorname{Bad}=\emptyset ?
$$

- Java application verification [Boichut, Genet, Jensen, Le Roux, 07]
- Cryptographic protocol verification
[Genet, Klay, 00]
- $\mathcal{L}=$ protocol initial configurations
- $\mathcal{R}=\left\lvert\, \begin{aligned} & \text { specification of protocol exchanged messages } \\ & \text { deduction rules of the intruder }\end{aligned}\right.$
- Properties : secrecy, authentication, freshness
- Unbounded number of agents, protocol sessions and intruder actions
- Verification of copy-protection on Thomson's SmartRight protocol
[Genet, Tang-Talpin, Viet Triem Tong, 03]

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems

4 Refining abstractions by hand using equations
(5) Tools and applications

6 Conclusion and further work

How to finitely represent $\mathcal{R}^{*}(\mathcal{L})$?

Many formalisms in the litterature :
Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

How to finitely represent $\mathcal{R}^{*}(\mathcal{L})$?
Many formalisms in the litterature :
Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

- Finite Tree Automata
(Regular Term Language)
- Tree Automata with constraints

How to finitely represent $\mathcal{R}^{*}(\mathcal{L})$?
Many formalisms in the litterature :
Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

- Finite Tree Automata
(Regular Term Language)
- Tree Automata with constraints

We stick to (Non-Deterministic) Finite Tree Automata because:
We want to decide (efficiently) if $\mathcal{R}^{*}(\mathcal{L}) \cap \operatorname{Bad}=\emptyset$

- The complexity of the algorithm for \cap is quadratic
- The complexity of the algorithm deciding $=$? \emptyset is polynomial
\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular

\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular (II)

Plus some classes incomparable with others :
L-IOSLT Linear I/O Separated Layered Transducing (a.k.a. Tree Transducers) [Seki et al. 02]

Constructor Constructor based + constraints on \mathcal{L} [Réty 99]
WOS Well Oriented Systems [Bouajjani, Touili, 02]

\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular (III)

G Ground : $s \rightarrow t$
with $s, t \in \mathcal{T}(\mathcal{F})$

\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular (III)

G Ground : $s \rightarrow t$

$$
\text { with } s, t \in \mathcal{T}(\mathcal{F})
$$

RL-M Right-linear and Monadic $: s \rightarrow f\left(x_{1}, \ldots, x_{n}\right)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular (III)

G Ground : $s \rightarrow t$

$$
\text { with } s, t \in \mathcal{T}(\mathcal{F})
$$

RL-M Right-linear and Monadic : $s \rightarrow f\left(x_{1}, \ldots, x_{n}\right)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

L-SM Linear (left and right linear) Semi-Monadic:

$$
\begin{array}{r}
s \rightarrow f\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m}\right) \\
\text { with } s \in \mathcal{T}(\mathcal{F}, \mathcal{X}), t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{F})
\end{array}
$$

\mathcal{R} classes where \mathcal{L} regular $\Rightarrow \mathcal{R}^{*}(\mathcal{L})$ regular (III)

G Ground : $s \rightarrow t$

$$
\text { with } s, t \in \mathcal{T}(\mathcal{F})
$$

RL-M Right-linear and Monadic $: s \rightarrow f\left(x_{1}, \ldots, x_{n}\right)$ with $s \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

L-SM Linear (left and right linear) Semi-Monadic:

$$
\begin{array}{r}
s \rightarrow f\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{m}\right) \\
\text { with } s \in \mathcal{T}(\mathcal{F}, \mathcal{X}), t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{F})
\end{array}
$$

Constructor Constructor based + constraints on \mathcal{L}

Tree automata recognizing regular sets of terms

Representation of $f\left(s^{*}(a)\right)$ by tree grammar/tree automaton

Tree automata recognizing regular sets of terms

Representation of $f\left(s^{*}(a)\right)$ by tree grammar/tree automaton

$\left\{f\left(s^{*}(a)\right)\right\}$	Tree grammar G axiom $: N_{1}$	
N_{1}	$:=$	$f\left(N_{2}\right)$
N_{2}	$:=$	$s\left(N_{2}\right)$
N_{2}	$:=$	a

$$
N_{1} \rightarrow_{G}^{*} f(s(s(a)))
$$

Tree automata recognizing regular sets of terms

Representation of $f\left(s^{*}(a)\right)$ by tree grammar/tree automaton

	Tree grammar G		Tree automaton A		
$\left\{f\left(s^{*}(a)\right)\right\}$		axiom $: N_{1}$	$f\left(s^{*}(a)\right)$		
		final state $: q_{1}$			
N_{1}	$:=$	$f\left(N_{2}\right)$	$f\left(q_{2}\right)$	\rightarrow	q_{1}
N_{2}	$:=$	$s\left(N_{2}\right)$	$s\left(q_{2}\right)$	\rightarrow	q_{2}
N_{2}	$:=$	a	a	\rightarrow	q_{2}

$$
N_{1} \rightarrow_{G}^{*} f(s(s(a)))
$$

$$
f(s(s(a))) \rightarrow_{A}^{*} q_{1}
$$

Tree automata recognizing regular sets of terms

Representation of $f\left(s^{*}(a)\right)$ by tree grammar/tree automaton

	Tree grammar G	Tree automaton A			
$\left\{f\left(s^{*}(a)\right)\right\}$		axiom $: N_{1}$	$\left\{f\left(s^{*}(a)\right)\right\}$		final state $: q_{1}$
N_{1}	$:=$	$f\left(N_{2}\right)$	$f\left(q_{2}\right)$	\rightarrow	q_{1}
N_{2}	$:=$	$s\left(N_{2}\right)$	$s\left(q_{2}\right)$	\rightarrow	q_{2}
N_{2}	$:=$	a	a	\rightarrow	q_{2}

$$
N_{1} \rightarrow{ }_{G}^{*} f(s(s(a)))
$$

$$
f(s(s(a))) \rightarrow_{A}^{*} q_{1}
$$

$A=\left\langle\mathcal{F}, \mathcal{Q}, \mathcal{Q}_{f}, \Delta\right\rangle$ where
$\mathcal{Q}=\left\{q_{1}, q_{2}\right\}, \mathcal{Q}_{f}=\left\{q_{1}\right\}, \Delta=\left\{a \rightarrow q_{2}, s\left(q_{2}\right) \rightarrow q_{2}, f\left(q_{2}\right) \rightarrow q_{1}\right\}$

$$
f(s(s(a))) \rightarrow_{A}^{*} q_{1} \text { and } q_{1} \in \mathcal{Q}_{f} \text {. Here } \mathcal{L}(A)=\left\{f\left(s^{*}(a)\right)\right\}
$$

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$

First step : an upper bound for $\mathcal{R}^{*}(\mathcal{L})$
[Genet, 98]
Definition (\mathcal{R}-closed tree automaton)
Given a tree automaton \mathcal{B} and a $\operatorname{TRS} \mathcal{R}, \mathcal{B}$ is \mathcal{R}-closed if $\forall I \rightarrow r \in \mathcal{R}, \forall q \in \mathcal{Q}, \forall \sigma: \mathcal{X} \mapsto \mathcal{Q}:$

$$
I \sigma \rightarrow \mathcal{B}^{*} q \Rightarrow r \sigma \rightarrow \mathcal{B}^{*} q
$$

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$
First step : an upper bound for $\mathcal{R}^{*}(\mathcal{L})$
[Genet, 98]
Definition (\mathcal{R}-closed tree automaton)
Given a tree automaton \mathcal{B} and a $\operatorname{TRS} \mathcal{R}, \mathcal{B}$ is \mathcal{R}-closed if $\forall I \rightarrow r \in \mathcal{R}, \forall q \in \mathcal{Q}, \forall \sigma: \mathcal{X} \mapsto \mathcal{Q}:$

$$
I \sigma \rightarrow \mathcal{B}^{*} q \Rightarrow r \sigma \rightarrow \mathcal{B}^{*} q
$$

Theorem (Upper bound)
Given a left-linear $\operatorname{TRS} \mathcal{R}$ and tree automata \mathcal{A}, \mathcal{B}.

$$
\left.\begin{aligned}
& \mathcal{L}(\mathcal{B}) \supseteq \mathcal{L}(\mathcal{A}) \\
& \mathcal{B} \text { is } \mathcal{R} \text {-closed }
\end{aligned} \right\rvert\, \Rightarrow \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$ (II)

Tree automata completion algorithm

- Input : a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R}-closed automaton $\mathcal{A}_{\mathcal{R}}^{*}$

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$ (II)

Tree automata completion algorithm

- Input : a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R}-closed automaton $\mathcal{A}_{\mathcal{R}}^{*}$
- Principle : completion of \mathcal{A} with new transitions until it is \mathcal{R}-closed

$$
\begin{aligned}
& I \sigma \xrightarrow[\mathcal{R}]{ } \underset{\left.\mathcal{A}\right|_{\downarrow}}{ } \quad \text { q } \\
& q
\end{aligned}
$$

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$ (II)

Tree automata completion algorithm

- Input: a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R}-closed automaton $\mathcal{A}_{\mathcal{R}}^{*}$
- Principle: completion of \mathcal{A} with new transitions until it is \mathcal{R}-closed

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$ (II)

Tree automata completion algorithm

- Input : a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R}-closed automaton $\mathcal{A}_{\mathcal{R}}^{*}$
- Principle: completion of \mathcal{A} with new transitions until it is \mathcal{R}-closed

Compute $\mathcal{A}_{\mathcal{R}}^{1}, \mathcal{A}_{\mathcal{R}}^{2}, \ldots$ until reaching $\mathcal{A}_{\mathcal{R}}^{*}$ a (\mathcal{R}-closed) fixpoint

A unified algorithm to build $\mathcal{R}^{*}(\mathcal{L})$ (II)

Tree automata completion algorithm

- Input: a TRS \mathcal{R} and a tree automaton \mathcal{A}
- Output : a \mathcal{R}-closed automaton $\mathcal{A}_{\mathcal{R}}^{*}$
- Principle: completion of \mathcal{A} with new transitions until it is \mathcal{R}-closed

Compute $\mathcal{A}_{\mathcal{R}}^{1}, \mathcal{A}_{\mathcal{R}}^{2}, \ldots$ until reaching $\mathcal{A}_{\mathcal{R}}^{*}$ a (\mathcal{R}-closed) fixpoint
\mathcal{A} completed into $\mathcal{A}_{\mathcal{R}}^{*} \Rightarrow \mathcal{L}\left(\mathcal{A}_{\mathcal{R}}^{*}\right) \supseteq \mathcal{L}(\mathcal{A})$
$\mathcal{A}_{\mathcal{R}}^{*}$ is \mathcal{R}-closed

$$
\Rightarrow \mathcal{L}\left(\mathcal{A}_{\mathcal{R}}^{*}\right) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

Tree Automata Completion may not terminate

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}
$$

\mathcal{A}^{0}		
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$		
$a \rightarrow q_{1}$		
$b \rightarrow q_{2}$		
$\{f(a, b)\}$		

Tree Automata Completion may not terminate

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}
$$

\mathcal{A}^{0}		
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$		
$a \rightarrow q_{1}$		
$b \rightarrow q_{2}$		
$\{f(a, b)\}$		

Tree Automata Completion may not terminate

$\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}$

\mathcal{A}^{0}	
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$	
$a \rightarrow q_{1}$	
$b \rightarrow q_{2}$	
$\{f(a, b)\}$	

Tree Automata Completion may not terminate

$\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}$

\mathcal{A}^{0}	$\mathcal{A}_{\mathcal{R}}^{1}$	
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$	$g\left(q_{1}\right) \rightarrow q_{3}$	
$a \rightarrow q_{1}$	$f\left(q_{3}, q_{2}\right) \rightarrow q_{0}$	
$b \rightarrow q_{2}$		
$\{f(a, b)\}$	$\{f(a, b), f(g(a), b)\}$	

Normalization is necessary!

Tree Automata Completion may not terminate

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}
$$

\mathcal{A}^{0}	$\mathcal{A}_{\mathcal{R}}^{1}$	
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$	$g\left(q_{1}\right) \rightarrow q_{3}$	
$a \rightarrow q_{1}$	$f\left(q_{3}, q_{2}\right) \rightarrow q_{0}$	
$b \rightarrow q_{2}$		
$\{f(a, b)\}$	$\{f(a, b), f(g(a), b)\}$	

Normalization is necessary!

Tree Automata Completion may not terminate

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}
$$

\mathcal{A}^{0}	$\mathcal{A}_{\mathcal{R}}^{1}$	
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$	$g\left(q_{1}\right) \rightarrow q_{3}$	
$a \rightarrow q_{1}$	$f\left(q_{3}, q_{2}\right) \rightarrow q_{0}$	
$b \rightarrow q_{2}$		
$\{f(a, b)\}$	$\{f(a, b), f(g(a), b)\}$	

Normalization is necessary!

Tree Automata Completion may not terminate

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), y)\}
$$

\mathcal{A}^{0}	$\mathcal{A}_{\mathcal{R}}^{1}$	\cdots
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$	$g\left(q_{1}\right) \rightarrow q_{3}$	\cdots
$a \rightarrow q_{1}$	$f\left(q_{3}, q_{2}\right) \rightarrow q_{0}$	
$b \rightarrow q_{2}$		
$\{f(a, b)\}$	$\{f(a, b), f(g(a), b)\}$	\cdots

Normalization is necessary!

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to \mathcal{A} using \mathcal{A} when possible, use new states otherwise.

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to \mathcal{A} using \mathcal{A} when possible, use new states otherwise.

Theorem

Given a linear $\operatorname{TRS} \mathcal{R}$ and a tree automaton \mathcal{A}, if tree automata completion with exact normalization strategy terminates on $\mathcal{A}_{\mathcal{R}}^{*}$, then

$$
\mathcal{L}\left(\mathcal{A}_{\mathcal{R}}^{*}\right)=\mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to \mathcal{A} using \mathcal{A} when possible, use new states otherwise.

Theorem

Given a linear $\operatorname{TRS} \mathcal{R}$ and a tree automaton \mathcal{A}, if tree automata completion with exact normalization strategy terminates on $\mathcal{A}_{\mathcal{R}}^{*}$, then

$$
\mathcal{L}\left(\mathcal{A}_{\mathcal{R}}^{*}\right)=\mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

Theorem
Tree automata completion with exact normalization strategy terminates for TRS in classes : G, L-SM, L-G ${ }^{-1}$, L-GSM, L-FPO and L-GFPO.

Regular classes covered by tree automata completion

- with exact normalization strategy
- with other normalization strategies
- it also covers TRS and tree automata outside of those classes !

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems

4 Refining abstractions by hand using equations
(5) Tools and applications

6 Conclusion and further work

Outside of the regular classes

- This is generally the case when the TRS models a program
- We can use over-approximations, i.e.

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\}
$$

\mathcal{A}^{0}		
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$		
$a \rightarrow q_{1}$		
$b \rightarrow q_{2}$		

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \begin{array}{|r|r|r|l|}
\hline \mathcal{A}^{0} & & \\
\hline f\left(q_{1}, q_{2}\right) \rightarrow q_{0} \\
a \rightarrow q_{1} \\
b \rightarrow q_{2}
\end{array} \\
& \hline
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\}
$$

\mathcal{A}^{0}		
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$		
$a \rightarrow q_{1}$		
$b \rightarrow q_{2}$		

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\}
$$

\mathcal{A}^{0}		
$f\left(q_{1}, q_{2}\right) \rightarrow q_{0}$		
$a \rightarrow q_{1}$		
$b \rightarrow q_{2}$		

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \begin{array}{rr|r|r|}
\hline \mathcal{A}^{0} & & \\
\hline f\left(q_{1}, q_{2}\right) \rightarrow q_{0} \\
a \rightarrow q_{1} \\
b \rightarrow q_{2}
\end{array} \\
& \hline
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \text { [f(g(q1),y) -> z] -> [g(q1) -> q1 y } \rightarrow \text { z] } \\
& \text { [f(g(q1),g(q2)) -> z] -> [g(q1) -> q1 g(q2) -> z] }
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \text { [f(g(q1),y) -> z] -> [g(q1) -> q1 y } \rightarrow \text { z] } \\
& \text { [f(g(q1),g(q2)) -> q0] -> [g(q1) -> q1 g(q2) -> q0] }
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \text { [f(g(q1),y) -> z] -> [g(q1) -> q1 y } \rightarrow \text { z] } \\
& \text { [f(g(q1),g(q2)) -> q0] -> [g(q1) -> q1 g(q2) -> q0] }
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \begin{array}{rr|r|r|}
\hline \mathcal{A}^{0} & & \\
\hline f\left(q_{1}, q_{2}\right) \rightarrow q_{0} \\
a \rightarrow q_{1} \\
b \rightarrow q_{2}
\end{array} \\
& \hline
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \text { [f(g(q1),y) -> z] -> [g(q1) -> q1 y } \rightarrow \text { z] } \\
& {[f(g(q 1), g(q 2)) \text {-> q0] -> [g(q1) -> q1 g(q2) -> q0] }}
\end{aligned}
$$

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), g(y))\} \\
& \text { [f(g(q1),y) -> z] -> [g(q1) -> q1 y } \rightarrow \text { z] } \\
& {[f(g(q 1), g(q 2)) \text {-> q0] -> [g(q1) -> q1 } g(q 2) ~->~ q 0]}
\end{aligned}
$$

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons:

- Ad-hoc solution based on tree automata structure

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons:

- Ad-hoc solution based on tree automata structure
- Hard to write/read

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons:

- Ad-hoc solution based on tree automata structure
- Hard to write/read
- No formal semantics of normalization rules

Normalization rules

The pros:

- Expressive and efficient
(crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03] [Boichut, Genet, Jensen and Le Roux, 07]
- Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons:

- Ad-hoc solution based on tree automata structure
- Hard to write/read
- No formal semantics of normalization rules
- Precision of approximation is difficult to estimate/compare

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems
(4) Refining abstractions by hand using equations
(5) Tools and applications

6 Conclusion and further work

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}\text { (1) } f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array}\right.$ prove that $f(a, b) \not \nrightarrow \mathcal{R}^{*} f(a, h(g(b))$?
$C_{1}=\{f(a, b)\}$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}\text { (1) } f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array}\right.$ prove that $f(a, b) \nrightarrow \mathcal{R}^{*} f(a, h(g(b))$?

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}\text { (1) } f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array}\right.$ prove that $f(a, b) \nrightarrow \mathcal{R}^{*} f(a, h(g(b))$?

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \not \nrightarrow \mathcal{R}^{*} f(a, h(g(b)) ?$ using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \nvdash_{\mathcal{R}}{ }^{*} f(a, h(g(b)) ?$ using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \not \nrightarrow \mathcal{R}^{*} f(a, h(g(b)) ?$
using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

Intuition behind equational over-approximations

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{l}
(1) f(x, y) \rightarrow f(g(x), y) \\
(2) f(x, y) \rightarrow f(x, h(y))
\end{array} \quad \text { prove that } f(a, b) \not \mathcal{R}^{*} f(a, h(g(b)) ?\right. \\
& \text { using } E=\{g(g(x))=g(x), h(h(x))=h(x)\}
\end{aligned}
$$

$$
s \rightarrow_{\mathcal{R} / E} t \Leftrightarrow s=E s^{\prime} \rightarrow_{\mathcal{R}} t^{\prime}=_{E} t
$$

Intuition behind equational over-approximations

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{l}
(1) f(x, y) \rightarrow f(g(x), y) \\
(2) f(x, y) \rightarrow f(x, h(y))
\end{array} \quad \text { prove that } f(a, b) \nrightarrow \mathcal{R}^{*} f(a, h(g(b)) ?\right. \\
& \text { using } E=\{g(g(x))=g(x), h(h(x))=h(x)\}
\end{aligned}
$$

$$
s \rightarrow_{\mathcal{R} / E} t \Leftrightarrow s=E_{E} s^{\prime} \rightarrow_{\mathcal{R}} t^{\prime}=_{E} t \quad\left(e . g . f(a, b) \rightarrow_{\mathcal{R} / E} f(g(g(g(a))), b)\right)
$$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \nvdash_{\mathcal{R}}{ }^{*} f(a, h(g(b)) ?$
using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

$s \rightarrow_{\mathcal{R} / E} t \Leftrightarrow s={ }_{E} s^{\prime} \rightarrow_{\mathcal{R}} t^{\prime}={ }_{E} t \quad\left(e . g . f(a, b) \rightarrow_{\mathcal{R} / E} f(g(g(g(a))), b)\right)$ $f(a, b) \nrightarrow_{\mathcal{R} / E}^{*} f(a, h(g(b)))$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \nvdash_{\mathcal{R}}{ }^{*} f(a, h(g(b)) ?$
using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

$$
\begin{array}{ll}
s \rightarrow_{\mathcal{R} / E} t \Leftrightarrow s=E s^{\prime} \rightarrow_{\mathcal{R}} t^{\prime}=_{E} t & \left(e . g . f(a, b) \rightarrow_{\mathcal{R} / E} f(g(g(g(a))), b)\right) \\
f(a, b) \nrightarrow_{\mathcal{R} / E}^{*} f(a, h(g(b))) & \Rightarrow f(a, b) \nrightarrow_{\mathcal{R}}^{*} f(a, h(g(b)))
\end{array}
$$

Intuition behind equational over-approximations
$\mathcal{R}=\left\{\begin{array}{l}(1) f(x, y) \rightarrow f(g(x), y) \\ (2) f(x, y) \rightarrow f(x, h(y))\end{array} \quad\right.$ prove that $f(a, b) \nvdash_{\mathcal{R}}{ }^{*} f(a, h(g(b)) ?$
using $E=\{g(g(x))=g(x), h(h(x))=h(x)\}$

$$
\begin{array}{lll}
s \rightarrow_{\mathcal{R} / E} t \Leftrightarrow s={ }_{E} s^{\prime} \rightarrow_{\mathcal{R}} t^{\prime}={ }_{E} t & \left(\text { e.g. } f(a, b) \rightarrow_{\mathcal{R} / E} f(g(g(g(a))), b)\right) \\
f(a, b) \not_{\mathcal{R} / E}^{*} f(a, h(g(b))) & \Rightarrow & f(a, b) \not \not_{\mathcal{R}}^{*} f(a, h(g(b)))
\end{array}
$$

[Meseguer, Palomino, Marti-Oliet, 03] [Takai, 04]

Equations for tree automata approximation

[Genet, Rusu, 09]
Simplification relation $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$
Given $(u=v) \in E$ and a tree automaton \mathcal{A}

Equations for tree automata approximation

[Genet, Rusu, 09]
Simplification relation $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$
Given $(u=v) \in E$ and a tree automaton \mathcal{A}

$u \sigma=E$	$v \sigma$
$* \downarrow \mathcal{A}$	$\mathcal{A} \downarrow *$

Equations for tree automata approximation

[Genet, Rusu, 09]

Simplification relation $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$

Given $(u=v) \in E$ and a tree automaton \mathcal{A}

$u \sigma=E$	$v \sigma$
$* \downarrow \mathcal{A}$	$\mathcal{A} \downarrow *$

denoted by $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$, where $\mathcal{A}^{\prime}=\mathcal{A}\left\{q_{1} \mapsto q_{2}\right\}$

Equations for tree automata approximation

[Genet, Rusu, 09]

```
Simplification relation \mathcal{A}\mp@subsup{\rightsquigarrow}{E}{}\mp@subsup{\mathcal{A}}{}{\prime}
Given (u=v)\inE and a tree automaton }\mathcal{A
    *u\sigma =E v v\sigma \
denoted by \mathcal{A}\mp@subsup{\rightsquigarrow}{E}{}\mp@subsup{\mathcal{A}}{}{\prime}\mathrm{ , where }\mp@subsup{\mathcal{A}}{}{\prime}=\mathcal{A}{\mp@subsup{q}{1}{}\mapsto\mp@subsup{q}{2}{}}
```

After completion step i, we propagate E on $\mathcal{A}_{\mathcal{R}}^{i}$ using \rightsquigarrow_{E} up to a fixpoint

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{|r|r|r|}
\hline \mathcal{A}^{0} & & \\
\hline f\left(q_{a}, q_{b}\right) \rightarrow q_{0} & & \\
a \rightarrow q_{a} & & \\
b \rightarrow q_{b} & & \\
\hline \mathcal{L}\left(\mathcal{A}^{0}\right)=\{f(a, b)\} & & \\
\hline
\end{array}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{|r|r|r|}
\hline \mathcal{A}^{0} & \mathcal{A}_{\mathcal{R}}^{1} & \\
\hline f\left(q_{a}, q_{b}\right) \rightarrow q_{0} & f\left(q_{1}, q_{2}\right) \rightarrow q_{0} & \\
a \rightarrow q_{a} & s\left(q_{a}\right) \rightarrow q_{1} & \\
b \rightarrow q_{b} & s\left(q_{b}\right) \rightarrow q_{2} & \\
\hline \mathcal{L}\left(\mathcal{A}^{0}\right)=\{f(a, b)\} & \mathcal{L}\left(\mathcal{A}^{1}\right)=\{f(a, b), & \\
& f(s(a), s(b))\} & \\
\hline
\end{array}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{|r|r|r|}
\hline \mathcal{A}^{0} & \mathcal{A}_{\mathcal{R}}^{1} & \mathcal{A}_{\mathcal{R}}^{2} \\
\hline f\left(q_{a}, q_{b}\right) \rightarrow q_{0} & f\left(q_{1}, q_{2}\right) \rightarrow q_{0} & f\left(q_{3}, q_{4}\right) \rightarrow q_{0} \\
a \rightarrow q_{a} & s\left(q_{a}\right) \rightarrow q_{1} & s\left(q_{1}\right) \rightarrow q_{3} \\
b \rightarrow q_{b} & s\left(q_{b}\right) \rightarrow q_{2} & s\left(q_{2}\right) \rightarrow q_{4} \\
\hline \mathcal{L}\left(\mathcal{A}^{0}\right)=\{f(a, b)\} & \mathcal{L}\left(\mathcal{A}^{1}\right)=\{f(a, b), & \mathcal{L}\left(\mathcal{A}_{\mathcal{R}}^{2}\right)=\{f(a, b), \\
& f(s(a), s(b))\} & f(s(a), s(b))\} \\
& & f(s(s(a)), s(s(b)))\} \\
\hline
\end{array}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& s\left(s\left(q_{a}\right)\right)={ }_{E} \quad s\left(q_{a}\right) \\
& \downarrow^{*} \quad \mathcal{A}_{\mathbb{R}}^{2} \quad \mathcal{A}_{\mathcal{R}}^{2} \downarrow^{*} \\
& q_{3} \\
& q_{1}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{cccccccc}
s\left(s\left(q_{a}\right)\right) & = & s\left(q_{a}\right) & s\left(s\left(q_{b}\right)\right) & =E_{E} & s\left(q_{b}\right) \\
\downarrow^{*} & \mathcal{A}_{\mathbb{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} & \downarrow^{*} & \downarrow^{*} & \mathcal{A}_{\mathbb{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} & \downarrow^{*} \\
q_{3} & & & q_{1} & q_{4} & & & \\
q_{2}
\end{array}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{ccccccc}
s\left(s\left(q_{a}\right)\right) & = & s\left(q_{a}\right) & s\left(s\left(q_{b}\right)\right) & =E_{E} & s\left(q_{b}\right) \\
\downarrow^{*} & \mathcal{A}_{\mathbb{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} & \downarrow^{*} & \downarrow^{*} & \mathcal{A}_{\mathbb{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} \\
\downarrow^{*} \\
q_{3} & = & q_{1} & q_{4} & & = & q_{2}
\end{array}
\end{aligned}
$$

Equations for tree automata approximation

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(s(x), s(y))\} \text { and } E=\{s(s(x))=s(x)\} \\
& \begin{array}{ccccccc}
s\left(s\left(q_{a}\right)\right) & =E & s\left(q_{a}\right) & s\left(s\left(q_{b}\right)\right) & =E & s\left(q_{b}\right) \\
\downarrow^{*} & \mathcal{A}_{\mathcal{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} & \downarrow^{*} & \downarrow^{*} & \mathcal{A}_{\mathbb{R}}^{2} & \mathcal{A}_{\mathbb{R}}^{2} \\
\downarrow^{*} \\
q_{3} & & = & q_{1} & q_{4} & & = \\
q_{2}
\end{array}
\end{aligned}
$$

Properties of \rightsquigarrow_{E}

The simplification relation \rightsquigarrow_{E} enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$

Properties of \rightsquigarrow_{E}

The simplification relation \rightsquigarrow_{E} enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$
- \rightsquigarrow_{E} terminates

Properties of \rightsquigarrow_{E}

The simplification relation \rightsquigarrow_{E} enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$
- \rightsquigarrow_{E} terminates
- \rightsquigarrow_{E} is locally confluent, modulo isomorphism

Properties of \rightsquigarrow_{E}

The simplification relation \rightsquigarrow_{E} enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$
- \rightsquigarrow_{E} terminates
- \rightsquigarrow_{E} is locally confluent, modulo isomorphism
- Normal forms of \rightsquigarrow_{E} are unique, modulo isomorphism

Properties of \rightsquigarrow_{E}

The simplification relation \rightsquigarrow_{E} enjoys the following properties

- If $\mathcal{A} \rightsquigarrow_{E} \mathcal{A}^{\prime}$ then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$
- \rightsquigarrow_{E} terminates
- \rightsquigarrow_{E} is locally confluent, modulo isomorphism
- Normal forms of \rightsquigarrow_{E} are unique, modulo isomorphism
\Rightarrow equations of E can be used in any order for $\rightsquigarrow!E$

New completion algorithm : from $\mathcal{A}_{\mathcal{R}, E}^{i}$ to $\mathcal{A}_{\mathcal{R}, E}^{i+1}$

i-th Completion step

- Normalize $r \sigma \rightarrow q^{\prime}$ using exact norm. strat. or new states

New completion algorithm : from $\mathcal{A}_{\mathcal{R}, E}^{i}$ to $\mathcal{A}_{\mathcal{R}, E}^{i+1}$

i-th Completion step

- Normalize $r \sigma \rightarrow q^{\prime}$ using exact norm. strat. or new states

Simplification

- Find instances of an equation $u=v$ of E in $\mathcal{A}_{\mathcal{R}}^{i+1}$

$$
\begin{array}{cc}
u \sigma \bar{E} & v \sigma \\
\mathcal{A}_{\mathcal{R}}^{i+1}, \notin \mid \downarrow & \\
\downarrow \mid \mathcal{A}_{\mathcal{R}}^{i+1}, \notin \nmid \\
q_{1} & \\
q_{2}
\end{array}
$$

New completion algorithm : from $\mathcal{A}_{\mathcal{R}, E}^{i}$ to $\mathcal{A}_{\mathcal{R}, E}^{i+1}$

i-th Completion step

$$
\begin{gathered}
\left.\mathcal{A}_{\mathcal{R}}^{i}\right|_{\downarrow} ^{l \sigma} \underset{\mathcal{R}}{ } \|_{\substack{\epsilon}} \mathcal{A}_{\mathcal{R}}^{i+1} \\
\quad q \\
\\
\mathcal{A}_{\mathcal{R}}^{i+1}
\end{gathered}
$$

- Normalize $r \sigma \rightarrow q^{\prime}$ using exact norm. strat. or new states

Simplification

- Find instances of an equation $u=v$ of E in $\mathcal{A}_{\mathcal{R}}^{i+1}$

$$
\begin{array}{cc}
u \sigma \bar{E} & v \sigma \\
\mathcal{A}_{\mathcal{R}}^{i+1}, \notin \mid * & \\
\downarrow\left|\mathcal{A}_{\mathcal{R}}^{i+1}, \notin\right| \\
q_{1} & \\
q_{2}
\end{array}
$$

- Rename q_{2} by q_{1} in $\mathcal{A}_{\mathcal{R}}^{i+1}$
- Repeat until a fixpoint is reached

Theorems

Theorem (Upper bound)
Let \mathcal{R} be a left-linear TRS, \mathcal{A} be a tree automaton and E be a set of linear equations. If completion terminates on $\mathcal{A}_{\mathcal{R}, E}^{*}$ then

$$
\mathcal{L}\left(\mathcal{A}_{\mathcal{R}, E}^{*}\right) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

Theorems

Theorem (Upper bound)

Let \mathcal{R} be a left-linear TRS, \mathcal{A} be a tree automaton and E be a set of linear equations. If completion terminates on $\mathcal{A}_{\mathcal{R}, E}^{*}$ then

$$
\mathcal{L}\left(\mathcal{A}_{\mathcal{R}, E}^{*}\right) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

Theorem (Lower bound)

Let \mathcal{R} be a left-linear TRS, E a set of linear equations and \mathcal{A} a \mathcal{R} / E-coherent tree automaton. For any $i \in \mathbb{N}$:

$$
\mathcal{R}_{/ E}^{*}(\mathcal{L}(\mathcal{A})) \supseteq \mathcal{L}\left(\mathcal{A}_{\mathcal{R}, E}^{i}\right)
$$

and $\mathcal{A}_{\mathcal{R}, E}^{i}$ is \mathcal{R} / E-coherent.

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems
4) Refining abstractions by hand using equations
(5) Tools and applications

6 Conclusion and further work

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer]
 (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup,=?{ }^{?} \emptyset, \subseteq, \ldots$

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer] (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup,=? ~ \emptyset, \subseteq, \ldots$
- Tree automata completion
- Exact computation of (covered) regular classes
- Approximations with normalization rules/equations

The Timbuk library

> [Genet, Viet Triem Tong, Boichut, Boyer]
> (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup,=?{ }^{?} \emptyset, \subseteq, \ldots$
- Tree automata completion
- Exact computation of (covered) regular classes
- Approximations with normalization rules/equations
- Tree automata completion checker

Given a left-linear $\operatorname{TRS} \mathcal{R}$ and tree automata \mathcal{A}, \mathcal{B} :

$$
\operatorname{checker}(\mathcal{A}, \mathcal{R}, \mathcal{B})=\text { true } \Rightarrow \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

The Timbuk library

> [Genet, Viet Triem Tong, Boichut, Boyer]
> (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata implementation with $\cap, \cup,=?{ }^{?} \emptyset, \subseteq, \ldots$
- Tree automata completion
- Exact computation of (covered) regular classes
- Approximations with normalization rules/equations
- Tree automata completion checker

Given a left-linear $\operatorname{TRS} \mathcal{R}$ and tree automata \mathcal{A}, \mathcal{B} :

$$
\operatorname{checker}(\mathcal{A}, \mathcal{R}, \mathcal{B})=\text { true } \quad \Rightarrow \quad \mathcal{L}(\mathcal{B}) \supseteq \mathcal{R}^{*}(\mathcal{L}(\mathcal{A}))
$$

checker extracted from a Coq spec. [Boyer, Genet, Jensen, 08]

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \operatorname{Bad}=\emptyset
$$

- $\mathcal{R}=\mid$ A Java byte code program P Java Virtual Machine (JVM) semantics
- $\mathcal{L}=$ Java Virtual Machine (JVM) initial state

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

$$
\mathcal{R}^{*}(\mathcal{L}) \cap \operatorname{Bad}=\emptyset
$$

- $\mathcal{R}=\left\lvert\, \begin{aligned} & \text { A Java byte code program } P \\ & \text { Java Virtual Machine (JVM) semantics }\end{aligned}\right.$
- $\mathcal{L}=$ Java Virtual Machine (JVM) initial state
- $\mathcal{R}^{*}(\mathcal{L})=$ all JVM states reachable while executing P
- Bad $=$ set of forbidden states (e.g. bad control flow, data races, etc.)

Encoding JVM semantics and bytecode into rewriting

Copster tool
[Barré, Hubert, Le Roux, Genet]

- Translates .class into a left-linear TRS

Encoding JVM semantics and bytecode into rewriting

Copster tool

- Translates .class into a left-linear TRS
- Copster covers the following Java aspects :
- Class and inheritance
- Object allocation, initialization, access and modification of fields
- Virtual method invocation
- Integer, boolean, characters and string types
- Basic arithmetic and comparisons
- Basic standard library methods (strings, I/O)
- Basic thread operations (creation, synchronization, join)

An example of verification performed on a Java program

```
class T1 extends java.lang.Thread{
    private int l;
    public T1(int l){this.l=l;}
    public void run(){
    while (true){
    synchronized(Top.lock){
        System.out.println(Top.f);
        Top.f=l;
        System.out.println(Top.f);
        Top.f=0;
    }}}}
```

```
class Top{
    public static Object lock;
    public static int f;
    public static void main(String[]
        int i=1;
        lock = new Object();
        Top.f=0;
        while (i<=2){
        T1 t1 = new T1(i++);
        t1.start();
    }}}
```


An example of verification performed on a Java program

```
class T1 extends java.lang.Thread{
    private int l;
    public T1(int l){this.l=l;}
    public void run(){
    while (true){
    synchronized(Top.lock){
        System.out.println(Top.f);
        Top.f=l;
        System.out.println(Top.f);
        Top.f=0;
    }}}}
```

```
class Top{
    public static Object lock;
    public static int f;
    public static void main(String[]
        int i=1;
        lock = new Object();
        Top.f=0;
        while (i<=2){
        T1 t1 = new T1(i++);
        t1.start();
        }}}
```

- Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form $0,1,0,2,0,1,0, \ldots$

An example of verification performed on a Java program

```
class T1 extends java.lang.Thread{
    private int l;
    public T1(int l){this.l=l;}
    public void run(){
    while (true){
    synchronized(Top.lock){
        System.out.println(Top.f);
        Top.f=l;
        System.out.println(Top.f);
        Top.f=0;
    }}}}
```

```
class Top{
    public static Object lock;
    public static int f;
    public static void main(String[]
        int i=1;
        lock = new Object();
        Top.f=0;
        while (i<=2){
        T1 t1 = new T1(i++);
        t1.start();
        }}}
```

- Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form $0,1,0,2,0,1,0, \ldots$
- Subsequences of the form \ldots, i, i, \ldots with $i \geq 1$ should not occur

An example of verification performed on a Java program

```
class T1 extends java.lang.Thread{
    private int l;
    public T1(int l){this.l=l;}
    public void run(){
    while (true){
    synchronized(Top.lock){
        System.out.println(Top.f);
        Top.f=l;
        System.out.println(Top.f);
        Top.f=0;
    }}}}
```

```
class Top{
    public static Object lock;
    public static int f;
    public static void main(String[]
        int i=1;
        lock = new Object();
        Top.f=0;
        while (i<=2){
        T1 t1 = new T1(i++);
        t1.start();
        }}}
```

- Because of thread synchronization with Java locks (semaphores) : infinite sequences of outputs should be of the form $0,1,0,2,0,1,0, \ldots$
- Subsequences of the form \ldots, i, i, \ldots with $i \geq 1$ should not occur
- One equation is enough : outstack(x,outstack (y, z)) $=z$

The RAVAJ Java verification chain

- RAVAJ is an ANR Project between LORIA (Nancy), LIFC (Besançon), France Telecom and IRISA
- Certified reachability analysis chain for Java bytecode programs

Outline

(1) Term rewriting and reachability analysis
(2) Regular model-checking of term rewriting systems
(3) Defining abstractions for infinite non regular systems

4 Refining abstractions by hand using equations
(5) Tools and applications
(6) Conclusion and further work

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
+ Translation of an operationnal semantics into a TRS is easier

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
+ Translation of an operationnal semantics into a TRS is easier
+ Precision result w.r.t approximation (i.e. w.r.t. \mathcal{R} / E)

Comparison with Regular (Abstract) Tree Model-Checking

- Comparison between Tree Tranducers and TRS is difficult
- $\mathcal{R}(\mathcal{L})$ can be computed with TT, not easy with TRS
- Verification of temporal properties more difficult in our case
- Counterexample generation and refinement better defined with TT
+ Translation of an operationnal semantics into a TRS is easier
+ Precision result w.r.t approximation (i.e. w.r.t. \mathcal{R} / E)
\approx Equations could be used on TT, and predicate abstraction on TRS

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain!

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain!
+ Other domains may be encoded into this one (e.g. for k-CFA)

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain!
+ Other domains may be encoded into this one (e.g. for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain!
+ Other domains may be encoded into this one (e.g. for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain
+ Refinement of approximation (automatic/by hand)

Comparison with Static Analysis and Abstract Interpretation

- Regular tree languages are only one particular abstract domain!
+ Other domains may be encoded into this one (e.g. for k-CFA)
- Abstract interpretation can be optimized w.r.t. the domain
+ Refinement of approximation (automatic/by hand)
+ A unique checker for certifying all approximations

Comparison with other verification techniques

- Classes of \mathcal{R} for which $\mathcal{R}^{*}(\mathcal{L})$ is regular
- only left and right linear TRS
- only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes

Comparison with other verification techniques

- Classes of \mathcal{R} for which $\mathcal{R}^{*}(\mathcal{L})$ is regular
- only left and right linear TRS
- only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes
- Others equational abstractions
- Completion is more expensive than a pure rewriting approach
+ Even in the finite case, automata can be faster than tabling rewriting
- Generate equations automatically (in some cases)
+ In practice, strong restrictions on equations (syntactical/coherence)

Comparison with other verification techniques

- Classes of \mathcal{R} for which $\mathcal{R}^{*}(\mathcal{L})$ is regular
- only left and right linear TRS
- only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes
- Others equational abstractions
- Completion is more expensive than a pure rewriting approach
+ Even in the finite case, automata can be faster than tabling rewriting
- Generate equations automatically (in some cases)
+ In practice, strong restrictions on equations (syntactical/coherence)
- Other techniques based on rewriting
- Limited to < regular» properties (e.g. no induction!)
+ Simpler properties \Rightarrow needs less interaction
+ No need for termination or confluence of the TRS

To sum-up

From the initial (theoretical) idea of tree automata completion, we have shown that this technique
(1) covers many regular classes of the litterature
(2) deals with automatic/guided approximations
(3) is feasible in practice
(9) scales up to verify real software
(3) can be certified using an external proof assistant

Further Research

- Now : extend the verification capabilities of tree automata completion \rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]

Further Research

- Now: extend the verification capabilities of tree automata completion
\rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]
- Next year : improve the completion-based verification framework
- Counter-example extraction
- Automatic refinement of equational approximations

Further Research

- Now: extend the verification capabilities of tree automata completion
\rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]
- Next year : improve the completion-based verification framework
- Counter-example extraction
- Automatic refinement of equational approximations

Further Research

- Now: extend the verification capabilities of tree automata completion
\rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]
- Next year : improve the completion-based verification framework
- Counter-example extraction
- Automatic refinement of equational approximations
- Vizualization of completion divergence

Further Research

- Now: extend the verification capabilities of tree automata completion
\rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]
- Next year : improve the completion-based verification framework
- Counter-example extraction
- Automatic refinement of equational approximations
- Vizualization of completion divergence
- Equation inference

Further Research

- Now: extend the verification capabilities of tree automata completion
\rightsquigarrow lift-up to temporal properties
[Boyer, Genet, 09]
- Next year: improve the completion-based verification framework
- Counter-example extraction
- Automatic refinement of equational approximations
- Vizualization of completion divergence
- Equation inference
- Within 3 years: certification of distant computation (a.k.a. result certification)

Further Research (II)

- Extend (word) lattice automata to trees
with T. Legall
- Improve automatic approximations for crypto. protocols

with Y. Boichut

- Other applications of $\mathcal{R}^{*}(\mathcal{L})$
- Checking transformations of SQL query
- Checking transformations of UML model
- Javascript programs verification

Further Research (II)

Since the new completion algorithm is based on :

from the ϵ-graph we can obtain the \mathcal{R} / E-rewriting graph

Further Research (II)

Since the new completion algorithm is based on :

from the ϵ-graph we can obtain the \mathcal{R} / E-rewriting graph

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), y), \\
& f(x, y) \rightarrow f(x, h(y))\} \\
& E=\{g(g(x))=g(x), \\
& h(h(x))=h(x)\} \\
& \mathcal{L}=\{f(a, b)\}
\end{aligned}
$$

Further Research (II)

Since the new completion algorithm is based on :

from the ϵ-graph we can obtain the \mathcal{R} / E-rewriting graph

$$
\begin{aligned}
& \mathcal{R}=\{f(x, y) \rightarrow f(g(x), y), \\
& f(x, y) \rightarrow f(x, h(y))\} \\
& E=\{g(g(x))=g(x), \\
& h(h(x))=h(x)\} \\
& \mathcal{L}=\{f(a, b)\}
\end{aligned}
$$

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing $<$ equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing <equivalence classes»
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

$$
\begin{aligned}
& \mathcal{R}=\{s \rightarrow t, u \rightarrow v\} \\
& E=\{s=u\}
\end{aligned}
$$

New completion

Old completion

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing <equivalence classes»
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

$$
\begin{aligned}
& \mathcal{R}=\{s \rightarrow t, u \rightarrow v\} \\
& E=\{s=u\}
\end{aligned}
$$

New completion

Old completion

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing $<$ equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

$$
\begin{aligned}
& \mathcal{R}=\{s \rightarrow t, u \rightarrow v\} \\
& E=\{s=u\}
\end{aligned}
$$

New completion

Old completion

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing $<$ equivalence classes »
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

$$
\begin{aligned}
& \mathcal{R}=\{s \rightarrow t, u \rightarrow v\} \\
& E=\{s=u\}
\end{aligned}
$$

New completion

Old completion

\mathcal{R} / E-Coherent tree automata

In the tree automata we distinguish between

- Transitions $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ recognizing <equivalence classes»
- Epsilon transitions $q \xrightarrow{\epsilon} q^{\prime}$ representing rewriting between classes

Definition (\mathcal{R} / E-coherent automaton)

Let $\mathcal{A}=\left\langle\mathcal{F}, \mathcal{Q}, \mathcal{Q}_{f}, \Delta\right\rangle$ be a tree automaton, \mathcal{R} a TRS and E a set of equations. The automaton \mathcal{A} is said to be \mathcal{R} / E-coherent if $\forall q \in \mathcal{Q}: \exists s \in \mathcal{T}(\mathcal{F}):$

$$
s \rightarrow_{\mathcal{A}}^{\notin *} q \wedge\left[\forall t \in \mathcal{T}(\mathcal{F}):\left(t \rightarrow_{\mathcal{A}}^{\notin *} q \Rightarrow s=_{E} t\right) \wedge\left(t \rightarrow_{\mathcal{A}}^{*} q \Rightarrow s \rightarrow_{\mathcal{R} / E}^{*} t\right)\right]
$$

Benchmarks

	Combinatory	NSPK	View-Only	Java prog. 1	Java prog. 2
TRS nb of rules	1	13	15	279	303
Initial Aut. size	$43 / 23$	$14 / 4$	$21 / 18$	$26 / 49$	$33 / 33$
Timbuk 2.2 :					
Final Aut. size	$8043 / 23$	$151 / 16$	$730 / 74$	$1127 / 334$	$751 / 335$
Time (secs)	51.1	19.7	$\mathbf{6 4 2 0}$	25266	37387
Timbuk 3.0:					
Final Aut. size	$8043 / 23$	$259 / 104$	$353 / 100$		
Time (secs)	$\mathbf{6 0 . 1}$	$\mathbf{3 . 1}$	2452		
Tom-based :					
Final Aut. size	$8043 / 23$	$171 / 21$	$938 / 89$	$1974 / 637$	$1611 / 672$
Time (secs)	$\mathbf{5 . 9}$	$\mathbf{5 . 9}$	$\mathbf{1 5 0}$	$\mathbf{3 6 0}$	303
Bddbddb-based :					
Final Aut. size	$? / 25$	$? / 183$	$? / 97$		
Time (secs)	$\mathbf{0 . 0 0 8}$	$\mathbf{2 . 9}$	$\mathbf{3 . 3}$		

Applications: Java bytecode verification (II)

Proving safety properties on Java bytecode using reachability analysis

Java Source .java	Java Byte Code .class
class TestList $\{$	
public static void main(String[] argv) $\{$ List lpos=null;	public static void main(java
InvList lneg=null;	Code:
int x ;	0: aconst_null
boolean pos;	1: astore_1
pos= true;	2: aconst_null
try $\{\mathrm{x}=$ System.in.read() $\}$; $\}$	3: astore_2
catch(java.io.IOException e) $\{\mathrm{x}=0$; $\}$	4: iconst_1
while (x ! = -1) $\{$	5: istore 4
if (pos) \{lpos= new List(x, lpos);	7: getstatic \#2;
pos=false; $\}$	10: invokevirtual \#3;
```else {lneg= new InvList(x, lneg); pos=true;}```	13: istore_3
try $\{\mathrm{x}=$ System.in.read() ; \}	47: new
catch(java.io. IOException e) $\{\mathrm{x}=0 ;\}$	50: dup
$\}$ 边	51: iload_3

Encoding JVM semantics and bytecode into rewriting (II)

| Encoding of an add bytecode $\quad$ add : $\frac{(m, p c, x:: y:: s, I)}{(m, p c+1, x+y:: s, I)}$ |
| :--- | :--- |

## Encoding JVM semantics and bytecode into rewriting (II)

Encoding of an add bytecode	add : $\frac{(m, p c, x:: y:: s, l)}{(m, p c+1, x+y:: s, l)}$

- public static void foo(...)
(1) Associate add bytecode to $m, p c$

$$
11: \quad \text { add }
$$

frame(foo,11,s,l) -> xframe(add,foo,11,s,l)

## Encoding JVM semantics and bytecode into rewriting (II)

Encoding of an add bytecode

$$
\text { add }: \frac{(m, p c, x:: y:: s, l)}{(m, p c+1, x+y:: s, l)}
$$

(1) Associate add bytecode to $m, p c$
public static void foo(...)

11 : add
frame(foo,11,s,l) -> xframe(add,foo,11,s,l)
(2) Pop $x$ and $y$, start evaluation of $(x+y)$
xframe(add,m,pc,stack(y,stack(x,s)),l) -> xframe(xadd(x,y),m,pc,s,l)

## Encoding JVM semantics and bytecode into rewriting (II)

Encoding of an add bytecode

$$
\text { add }: \frac{(m, p c, x:: y:: s, l)}{(m, p c+1, x+y:: s, l)}
$$

(1) Associate add bytecode to $m, p c$
public static void foo(...)

11: add
frame(foo, 11,s,l) -> xframe(add,foo, 11,s,1)
(3) Pop $x$ and $y$, start evaluation of $(x+y)$
xframe (add,m,pc,stack(y,stack(x,s)),l) -> xframe(xadd (x,y),m,pc,s,l)

- Compute $(x+y)$ xadd(...) -> ...
... -> result(x)


## Encoding JVM semantics and bytecode into rewriting (II)

Encoding of an add bytecode

$$
\text { add }: \frac{(m, p c, x:: y:: s, l)}{(m, p c+1, x+y:: s, l)}
$$

(1) Associate add bytecode to $m, p c$
public static void foo(...)
...
11 : add
frame(foo,11,s,l) -> xframe(add,foo,11,s,l)
(3) Pop $x$ and $y$, start evaluation of $(x+y)$ xframe(add,m,pc,stack(y,stack(x,s)),l) $\rightarrow$ xframe(xadd(x,y),m,pc,s,l)
(3) Compute $(x+y)$ xadd (...) -> ...
... -> result(x)
(9) Push the result on top of $s$ and move to next $p c$ xframe(result( x ),m,pc,s,l) -> frame (m,next (pc), stack( $\mathrm{x}, \mathrm{s}$ ) ,l)

