Reachability Analysis of Rewriting for
Software Verification

Thomas Genet

IRISA
Habilitation a diriger des recherches

IRISA - 30 novembre 2009

Thomas Genet (IRISA) Reachability Analysis of Rewriting 1/54

Motivation : proving safety properties

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

Ifi>1in @
@ then
n :=1ij;
@ n>1in®
while (i>1) do {
® or
n := nx(i-1) ;
©) Ifi>1in @
i=di-1;)
® then

(® with n =0 unreachable

2 /54

Verification using Model-checking
n|t

‘()l_J_n ‘() L—2 n=7

© {i=1}
n =i \@._1n 1| \@._2n 2\
@
while (i>1) do {
©)
n := nx(i-1) ;
©)
i=1i-1; }
® {n>1} (®.i=1n=1| |©®,i=2,n=2]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 3 /54

Verification using Static Analysis and Abstract
Interpretation

D =N D# : intervals on N
o {i=1} @ i# = [1; 40|, n# = [0; +o0]
n :=1i;
@
while (i>1) do {
©)
n := nx(i-1) ;
@
i=1i-1; }
® {n=1}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 4 /54

Verification using Static Analysis and Abstract
Interpretation

D =N D# : intervals on N
o {i=1} @ i# = [1; 40|, n# = [0; +o0]
n :=1i;
) Q i* = [1; +oo], ntt = [1; +oof
while (i>1) do {
©)
n := n*x(i-1) ;
@
i=1i-1; }
® {n=1}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 4 /54

Verification using Static Analysis and Abstract
Interpretation

D =N D# : intervals on N
o {i>1 © i# = [1; +oo], n# = [0; +od]
© ® i# = [Li+oo], n = [1;+oc]
while (i>1) do {
©) @ i = [2; +oo[, n” = [1; +oo|
n := n*x(i-1) ;
@ @ i* = [1; +oo[, n” = [1; +oo[+7 [1; +o0[
i=1i-1; }
® {n=1}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 4 /54

Verification using Static Analysis and Abstract
Interpretation

D=N D# : intervals on N
O {i=1} @ i# = [1;+oo], n# = [0; +o0]
© ® i# = [Li+oo], n = [1;+oc]
while (i>1) do {
©) @ i = [2; +oo[, n” = [1; +oo|
n := n*x(i-1) ;
@ @ i* = [1; +oo[, n” = [1; +oo[+7 [1; +o0[
i=1i-1; }
® {n>1} ® i# = [1; +oo, n# = [1; +o0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 4 /54

Verification using a Proof Assistant

O {i=z1}

n :=1ij;
while (i>1) do {
nx(i-1) ;

i=i-1; }

© ® © 0O
=]
]

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Verification using a Proof Assistant

O (i1}
n :=1ij;
{i>1,n>1)
while (i>1) do {
{ invariant n > 1}

@
©)
n := nx(i-1) ;
@
®

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Verification using a Proof Assistant

O (i1}
n :=1ij;
{(i>1,n>1}
while (i>1) do {
{ invariant n > 1}
n := n*x(i-1) ;

© ® © O

FORALL (i: int):
i >=1 IMPLIES
(FORALL (x: int):
x = i IMPLIES
(FORALL (iO: int):
FORALL (x0: int):
x0 >= 1 IMPLIES
i0 > 1 IMPLIES
(FORALL (x1: int):
x1 = x0 * (10 - 1)
IMPLIES x1 >= 1))))

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

5 /54

Verification using a Proof Assistant

O {i>1} FORALL (i: int):
n o= i; i >=1 IMPLIES
. (FORALL (x: int):
@ {i 2 1’”_2 1} x = i IMPLIES
while (i>1) do { (FORALL (i0: int):
©) { invariant n > 1} FORALL (x0: int):
n := n*x(i-1) ; x0 >= 1 IMPLIES
@ i0 > 1 IMPLIES
. . (FORALL (x1: int):
i:=1d-15} x1 = x0 * (i0 - 1)
® {n>1} IMPLIES x1 >= 1))))
(skosimp*)

(replace -6 1)

(lemma "both_sides_times_pos_gel")

(inst -1 "i0!1-1" "xO0!1" "1i")
(grind)

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

5 /54

Proving (un)reachability on infinite state systems

@ Static analyzers based on abstract interpretation
@ Model-checkers adapted to infinite state systems

» Regular model-checking
» Abstract model-checking, ...

Thomas Genet (IRISA) Reachability Analysis of Rewriting 6 /54

Proving (un)reachability on infinite state systems

@ Static analyzers based on abstract interpretation
@ Model-checkers adapted to infinite state systems

» Regular model-checking
» Abstract model-checking, ...

+ Both are fully automatic
— When the tool fails, guiding it to finish the proof is hard

Thomas Genet (IRISA) Reachability Analysis of Rewriting 6 /54

Proving (un)reachability on infinite state systems

@ Static analyzers based on abstract interpretation
@ Model-checkers adapted to infinite state systems

» Regular model-checking
» Abstract model-checking, ...

+ Both are fully automatic
— When the tool fails, guiding it to finish the proof is hard

@ Proof assistants
+ If a proof exists, you are likely to succeed

— ... but you may spend weeks, months!

Thomas Genet (IRISA) Reachability Analysis of Rewriting 6 /54

Proving (un)reachability on infinite state systems

@ Static analyzers based on abstract interpretation
@ Model-checkers adapted to infinite state systems

» Regular model-checking
» Abstract model-checking, ...

+ Both are fully automatic
— When the tool fails, guiding it to finish the proof is hard

@ Proof assistants
+ If a proof exists, you are likely to succeed

— ... but you may spend weeks, months!

Is there something in between ?

Thomas Genet (IRISA) Reachability Analysis of Rewriting 6 /54

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

@ A model-checking algorithm for finite (or regular) systems
@ An abstraction mechanism for infinite non regular systems

© A way to refine, by hand, abstractions if automatic verification fails

Thomas Genet (IRISA) Reachability Analysis of Rewriting

7/ 54

Our proposition for (un)reachability analysis

A verification technique based on tree automata completion integrating

@ A model-checking algorithm for finite (or regular) systems
@ An abstraction mechanism for infinite non regular systems

© A way to refine, by hand, abstractions if automatic verification fails

and bonus :

@ In the end, the same level of confidence as with a Coq proof'!

Thomas Genet (IRISA) Reachability Analysis of Rewriting 7 /54

Outline

@ Term rewriting and reachability analysis

© Regular model-checking of term rewriting systems
© Defining abstractions for infinite non regular systems
@ Refining abstractions by hand using equations

© Tools and applications

@ Conclusion and further work

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Outline

@ Term rewriting and reachability analysis

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Term Rewriting

@ Set of ranked symbols F={+,0,1}
@ Set of variables X ={xy,...}

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Term Rewriting

@ Set of ranked symbols F={+,0,1}
@ Set of variables X ={xy,...}
@ Set of ground terms 7(F)={0, 0+1, (0+0)+(0+1),...}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 10 / 54

Term Rewriting

@ Set of ranked symbols F={+,0,1}

@ Set of variables X ={xy,...}

@ Set of ground terms 7(F)={0, 0+1, (0+0)+(0+1),...}
@ Set of terms T(F,X)={x, 0+x, 1+0,...}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 10 / 54

Term Rewriting

@ Set of ranked symbols F={+,0,1}
@ Set of variables X ={xy,...}
@ Set of ground terms 7(F)={0, 0+1, (0+0)+(0+1),...}
@ Set of terms T(F,X)={x, 0+x, 1+0,...}
o Rewrite rules O+x—x
0+ (0+1)

(O+O)+(0+1)<' 1/\>0+ (I |
(0+0) +

Thomas Genet (IRISA) Reachability Analysis of Rewriting 10 / 54

Term Rewriting

@ Set of ranked symbols F={+,0,1}
@ Set of variables X ={xy,...}
@ Set of ground terms 7(F)={0, 0+1, (0+0)+(0+1),...}
@ Set of terms T(F,X)={x, 0+x, 1+0,...}
o Rewrite rules O0+x—x
0+ (0+1)

m+m+w+n<::j/’ L/:::>o+ 1 o1
(0+0) +

e Term rewriting system (TRS) = set of rewrite rules

0+1—x1

Thomas Genet (IRISA) Reachability Analysis of Rewriting 10 / 54

TRS as a formal model of programs

F = {(_, . _),0,5,"‘,*,@7@7@’@7@}
X:{I7N7X7 Y}

@
n:=ij; (D, 1,N) —(@,1,1)
@ (@,s(s(1), N) = (®,s(s(1)), N)
while (i>1) do { (®,s(1),N) — (®@,s(l),] = N)
® (@,s(h),N) = (D,1],N)
n:=nx(-1; | (@,0,N) - (®,0,N)
©) } (@,5(0),N) = (®,s(0),N)
i:=1i-1;
® 0xX —0

s(X)xY =Y+ (XxY)

Proving safety by (un)reachability analysis :

(D, 1,x) Ar* (®,y,0) with i > 1,x,y € N

Thomas Genet (IRISA) Reachability Analysis of Rewriting 11 / 54

TRS as a formal model of programs

F = {(-7 - —)’0’57"_7*7@7@7@’@7@}
X={ILN,X,Y}
)
n =i (@, 1,N) —(@,1,1)
@ (@,s(s(1), N) — (D,s(s(/)), N)
while (i>1) do { (®,s(1),N) — (@, s(),] =« N)
©) (@,s(1),N) —(D,],N)
n := nx(i-1) ; (®@,0,N) — (®,0,N)
@ } (@,s(0),N) —(®,s(0),N)
i:=1i-1;
® 0% X —0
s(X)xY — Y+ (XxY)
Proving safety by (un)reachability analysis :
(D,i,x) Ar* (®),y,0) with i > 1, x,y €N

Thomas Genet (IRISA) Reachability Analysis of Rewriting 11 / 54

TRS as a formal model of programs

f = {(_7 - _)’ O’ S7 _'_7 *7 @7 @7 @’ @7 @}
X={ILN,X,Y}
@
n:=1i; (D,1,N) — (@, 1,1)
) (@, s(s(1), N) —(®,s(s(/)), N)
while (i>1) do { (®,s(1),N) (@, (I),I* N)
® @.s().N) (@], N)
n := nx(i-1) ; (®@,0,N) — (®,0,N)
@ } (@.5(0).N) — (®.5(0). W)
i:=1i-1;
® 0xX —0
s(X)xY =Y+ (XxY)

Proving safety by (un)reachability analysis :

Thomas Genet (IRISA)

(@, 7,x) Ar" (®,y,0)

Reachability Analysis of Rewriting

with i > 1,x,y € N

11 / 54

Reachability analysis of rewriting
Givena TRS R and s,t € T(F), is s —r* t?

@ Undecidable in general (TRS are Turing-complete)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 12 / 54

Reachability analysis of rewriting
Givena TRS R and s,t € T(F), iss —»r* t7

e Undecidable in general (TRS are Turing-complete)

@ Decidable if R terminates

Thomas Genet (IRISA) Reachability Analysis of Rewriting

12 / 54

Reachability analysis of rewriting
Givena TRS R and s, t € T(F),iss —r* t?

@ Undecidable in general (TRS are Turing-complete)

@ Decidable if R terminates

Ny

where R*(L) ={u | s€e L N s —r" u}

o Decidable, if R*({s}) is finite (= finite model-checking)

Thomas Genet (IRISA) Reachability Analysis of Rewriting

12 / 54

Reachability analysis of rewriting
Givena TRS R and s, t € T(F),iss —r* t?

@ Undecidable in general (TRS are Turing-complete)

@ Decidable if R terminates

Ny

where R*(L) ={u | s€e L N s —r" u}
o Decidable, if R*({s}) is finite (= finite model-checking)

e Decidable, for classes of R such that R*({s}) is regular
(=~ regular model-checking)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 12 / 54

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :

(@, i,x) Ar* (®,y,0) with i > 1,x,y €N

Thomas Genet (IRISA) Reachability Analysis of Rewriting 13 / 54

Reachability analysis of rewriting (extended)

Recall that for verification, the problem we have is :
(@,i,x) =" (®,y,0) with i > 1,x,y € N

which can be seen as :

o > o > ...
.A\Y\.%” N Bad
. > o > - R*(L)

The reachability analysis problem becomes :

R*(£)N Bad = 7]

I
=

Thomas Genet (IRISA) Reachability Analysis of Rewriting 13 / 54

Two applications of reachability analysis of rewriting

R*(L£) N Bad =07

e Java application verification [Boichut, Genet, Jensen, Le Roux, 07]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 14 / 54

Two applications of reachability analysis of rewriting

R*(£)N Bad =07

e Java application verification [Boichut, Genet, Jensen, Le Roux, 07]

@ Cryptographic protocol verification [Genet, Klay, 00]

» L= protocol initial configurations

. R specification of protocol exchanged messages
"~ | deduction rules of the intruder

Thomas Genet (IRISA) Reachability Analysis of Rewriting 14 / 54

Two applications of reachability analysis of rewriting

|R*(£) N Bad = 07]

e Java application verification ~ [Boichut, Genet, Jensen, Le Roux, 07]

@ Cryptographic protocol verification [Genet, Klay, 00]
» L= protocol initial configurations

specification of protocol exchanged messages

> R: . .
deduction rules of the intruder

» Properties : secrecy, authentication, freshness

v

Unbounded number of agents, protocol sessions and intruder actions

Verification of copy-protection on Thomson’s SmartRight protocol
[Genet, Tang-Talpin, Viet Triem Tong, 03]

v

Thomas Genet (IRISA) Reachability Analysis of Rewriting 14 / 54

Outline

© Regular model-checking of term rewriting systems

Thomas Genet (IRISA) Reachability Analysis of Rewriting

How to finitely represent R*(L)?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Thomas Genet (IRISA) Reachability Analysis of Rewriting 16 / 54

How to finitely represent R*(L)?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

o Finite Tree Automata (Regular Term Language)
@ Tree Automata with constraints
° ...

Thomas Genet (IRISA) Reachability Analysis of Rewriting 16 / 54

How to finitely represent R*(L)?

Many formalisms in the litterature :

Set constraints, Horn clauses, Tree Grammars, Tree automata, ...

Tree automata are well adapted (they are also based on rewriting)

o Finite Tree Automata (Regular Term Language)
@ Tree Automata with constraints
° ...

We stick to (Non-Deterministic) Finite Tree Automata because :
We want to decide (efficiently) if R*(£) N Bad =0
@ The complexity of the algorithm for N is quadratic

@ The complexity of the algorithm deciding =’ () is polynomial

Thomas Genet (IRISA) Reachability Analysis of Rewriting 16 / 54

R classes where L regular = R*(L) regular

G
RL-M L-SM
-G~
RL-G™! L-GSM
L-FPO
/
RL-FPO L-GFPO

Thomas Genet (IRISA)

G Ground
[Dauchet, Tison, 90], [Brainerd, 69]

RL-M Right-linear and Monadic [Salomaa, 88]
L-SM Linear and Semi-Monadic
[Coquidé et al., 91]
L-G! Linear and inversely Growing
[Jacquemard, 96]
RL-G~! Right-linear and inversely Growing
[Nagaya, Toyama, 99]
L-GSM Linear Generalized Semi-Monadic
[Gyenizse, Vagvolgyi, 98]
L-FPO, RL-FPO (Right)-Linear Finite Path
Overlapping [Takai et al. 00]
L-GFPO Linear Generalized Finite Path
Overlapping [Takai 04]

Reachability Analysis of Rewriting 17 / 54

R classes where L regular = R*(L) regular (II)

Plus some classes incomparable with others :

L-IOSLT Linear |/O Separated Layered Transducing
(a.k.a. Tree Transducers) [Seki et al. 02]

Constructor Constructor based + constraints on £ [Réty 99]

WOS Well Oriented Systems [Bouajjani, Touili, 02]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 18 / 54

R classes where L regular = R*(L) regular (llI)

G Ground : s — t
with s, t € T(F)

Thomas Genet (IRISA) Reachability Analysis of Rewriting

R classes where L regular = R*(L) regular (llI)

G Ground : s — t
with s, t € T(F)

RL-M Right-linear and Monadic : s — f(x1,...,X,)
with s € 7(F, X)

Thomas Genet (IRISA) Reachability Analysis of Rewriting

R classes where L regular = R*(L) regular (llI)

G Ground : s — t
with s, t € T(F)

RL-M Right-linear and Monadic : s — f(x1,...,X,)
with s € 7(F, X)

L-SM Linear (left and right linear) Semi-Monadic :
S — f(Xl,...,Xn,tl,...,tm)
with s € T(F, X), t1,....tp € T(F)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 19 / 54

R classes where L regular = R*(L) regular (llI)

G Ground : s — t
with s, t € T(F)

RL-M Right-linear and Monadic : s — f(x1,...,X,)
with s € 7(F, X)

L-SM Linear (left and right linear) Semi-Monadic :
S — f(Xl,...,Xn,tl,...,tm)
with s € T(F, X), t1,....tp € T(F)

Constructor Constructor based + constraints on £

Thomas Genet (IRISA) Reachability Analysis of Rewriting 19 / 54

Tree automata recognizing regular sets of terms

Representation of f(s*(a)) by tree grammar/tree automaton

Thomas Genet (IRISA) Reachability Analysis of Rewriting 20 / 54

Tree automata recognizing regular sets of terms
Representation of f(s*(a)) by tree grammar/tree automaton

Tree grammar G

{f(s*(a))} axiom : N
N1 = f(Nz)
N2 = S(N2)
N> = a

Ny =75 f(s(s(a)))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 20 / 54

Tree automata recognizing regular sets of terms

Representation of f(s*(a)) by tree grammar/tree automaton

Tree grammar G | Tree automaton A
{f(s*(a))} axiom : Np {f(s*(a))} final state : g;
Ny = f(N2) | f(q2) - q
No = s(N2) | s(q2) - Q@
Ny = a a — @
Ny =75 f(s(s(a))) f(s(s(a))) —a a1

Thomas Genet (IRISA) Reachability Analysis of Rewriting 20 / 54

Tree automata recognizing regular sets of terms

Representation of f(s*(a)) by tree grammar/tree automaton

Tree grammar G

Tree automaton A

{f(s*(a)} axiom : Ny {f(s*(a))} final state : g1
Ny = F(N2) | f(q2) -
Na = s(Na2) s(q2) -
N = a | & — Q2

Ny —% f(s(s(a)))

f(s(s(a))) —a 1

A= (F,Q, Qs A) where

Q={q, ¢} 9 ={q}, A={a— q2,5(q) — g2, f(q2) = a1}

f(s(s(a))) =4 g1 and g1 € Q. Here L(A) = {f(s*(a))}

Thomas Genet (IRISA) Reachability Analysis of Rewriting

20 / 54

A unified algorithm to build R*(L)
First step : an upper bound for R*(L) [Genet, 98]

Definition (R-closed tree automaton)
Given a tree automaton B and a TRS R, B is R-closed if

VI-reR,Vge Q, Vo : X +— Q:

lo —"q = ro—p*q

Thomas Genet (IRISA) Reachability Analysis of Rewriting 21 / 54

A unified algorithm to build R*(L)
First step : an upper bound for R*(L) [Genet, 98]

Definition (R-closed tree automaton)
Given a tree automaton B and a TRS R, B is R-closed if

VI-reR,Vge Q, Vo : X +— Q:

lo —"q = ro—p*q

Theorem (Upper bound)
Given a left-linear TRS R and tree automata A, BB.

L(B) 2 L(A)
= L(B) 2 R*(L(A))

B is R-closed

Thomas Genet (IRISA) Reachability Analysis of Rewriting 21 / 54

A unified algorithm to build R*(L) (1)

Tree automata completion algorithm
@ Input : a TRS R and a tree automaton A
@ Output : a R-closed automaton A},

Thomas Genet (IRISA) Reachability Analysis of Rewriting 22 / 54

A unified algorithm to build R*(L) (1)

Tree automata completion algorithm
@ Input : a TRS R and a tree automaton A
@ Output : a R-closed automaton A},
@ Principle : completion of A with new transitions until it is R-closed

/U_R) ro
Al

q

Thomas Genet (IRISA) Reachability Analysis of Rewriting 22 / 54

A unified algorithm to build R*(L) (1)

Tree automata completion algorithm
@ Input : a TRS R and a tree automaton A
@ Output : a R-closed automaton A7,

@ Principle : completion of A with new transitions until it is R-closed

——>ro
lo =

Al
*

q<—"ak,

Thomas Genet (IRISA) Reachability Analysis of Rewriting 22 / 54

A unified algorithm to build R*(L) (1)

Tree automata completion algorithm
@ Input : a TRS R and a tree automaton A
@ Output : a R-closed automaton A7,

@ Principle : completion of A with new transitions until it is R-closed

/0-—>r0'

R
Al*‘J
q ",

Compute .A%Q,A%, ... until reaching A% a (R-closed) fixpoint

Thomas Genet (IRISA) Reachability Analysis of Rewriting 22 / 54

A unified algorithm to build R*(L) (1)

Tree automata completion algorithm
@ Input : a TRS R and a tree automaton A
@ Output : a R-closed automaton A7,

@ Principle : completion of A with new transitions until it is R-closed

Io'éro'

R
Al*‘J
q ",

Compute .A%Q,A%, ... until reaching A% a (R-closed) fixpoint

A completed into A, = L(A%) 2 L(A)
= L(AR) 2 R*(£(A))
A, is R-closed

Thomas Genet (IRISA) Reachability Analysis of Rewriting 22 / 54

Tree Automata Completion may not terminate

R ={f(x,y) — f(g(x),y)}
.AO

f(q1,92) — qo
a—dqi

b— q

{f(a, b)}

f R f
YARN VRN

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R ={f(x,y) — f(g(x),y)}
.AO

f(q1,92) — qo
a—dqi

b— q

{f(a, b)}

f R f
N VRN
ql o2 g 02

|
ql

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R = {f(x,y) — f(g(x),y)}

.AO
f(q1,92) — qo
a—q
b— q
{f(a, b)}
2° 71
o%f R fj 0
q AN < q
ql o2 g 02

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R = {f(x,y) — f(g(x),y)}

0 AT
f(q1,92) — qo g(q1) — g3
a—qx f(g3,92) — qo Normalization is necessary !
b— qo
{f(a,b)} | {f(a,b),f(g(a) b)}

a AR
0. f R f72q0
LN 2

ql o2 02

g3

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R = {f(x,y) — f(g(x),y)}

0 AT
f(q1,92) — qo g(q1) — g3
a—qx f(g3,92) — qo Normalization is necessary !
b— qo
{f(a,b)} | {f(a,b),f(g(a) b)}

f R f
YARN VRN

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R = {f(x,y) — f(g(x),y)}

0 AL
f(q1,92) — qo g(q1) — g3
a—qx f(g3,92) — qo Normalization is necessary !
b— qo
{f(a,b)} | {f(a,b),f(g(a) b)}

f R f

RN 7N
g3 2 02

g4

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Tree Automata Completion may not terminate

R = {f(x,y) — f(g(x),y)}

0 AL
f(q1,92) — qo g(q1) — g3
a—qx f(g3,92) — qo Normalization is necessary !
b— qo
{f(a,b)} | {f(a,b),f(g(a) b)}

f R f

RN 7N
g3 2 02

g4

Thomas Genet (IRISA) Reachability Analysis of Rewriting 23 / 54

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]
Principle of Exact Normalization Strategy

Normalize new transitions added to A using A when possible, use new
states otherwise.

Thomas Genet (IRISA) Reachability Analysis of Rewriting 24 / 54

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to A using A when possible, use new
states otherwise.

Theorem

Given a linear TRS R and a tree automaton A, if tree automata
completion with exact normalization strategy terminates on A%, then

L(AR)=R"(£(A))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 24 / 54

Exact Normalization Strategy

[Feuillade, Genet, Viet Triem Tong, 04]

Principle of Exact Normalization Strategy

Normalize new transitions added to .4 using A when possible, use new
states otherwise.

Theorem

Given a linear TRS R and a tree automaton A, if tree automata
completion with exact normalization strategy terminates on A%, then

L(AR)=R"(£(A))

Theorem

Tree automata completion with exact normalization strategy terminates
for TRS in classes : G, L-SM, L-G™ 1, L-GSM, L-FPO and L-GFPO.

Thomas Genet (IRISA) Reachability Analysis of Rewriting 24 / 54

Regular classes covered by tree automata completion

4)
G
RL-M L-SM
L-G!
Constructor | L-IOSLT WOS
A
RL-G™ L-GSM
L-FPO
RL-FPO L-GFPO
\ J

@ with exact normalization strategy
@ with other normalization strategies

@ it also covers TRS and tree automata outside of those classes!

Thomas Genet (IRISA) Reachability Analysis of Rewriting 25 / 54

Outline

9 Defining abstractions for infinite non regular systems

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Outside of the regular classes

o This is generally the case when the TRS models a program

@ We can use over-approximations, i.e.

~
071 m Bad

%
Approx

I
=

A
Y

ApproxNBad =0 = R*(L)NBad =1

Thomas Genet (IRISA) Reachability Analysis of Rewriting 27 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

R ={f(x,y) = f(g(x), ()}
.AO
f(q1,92) — qo
a—aq
b— g

f R f
/N 7N

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

R ={f(x,y) = f(g(x), ()}
.AO
f(q1,92) — qo
a—aq
b— g

f R f
/N 7N
gl g2 g g

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

R ={f(x,y) = f(g(x), ()}
.AO
f(q1,92) — qo
a—aq
b— g

90-—f R f—-q0
/N 7N
gl g2 g g

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x);g(»))}

.AO
f(q1,92) — qo
a—aq
b— g
f-—-q0
VRN
g g
| |
ql g2

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x),8(y))}

AO
f(q1,q2) — qo
a—aq
b—q
f--q0

VERN

g g

| |

gl g2

[(f(gq),y) -> z] -> [g(ql) -> q1 y -> z]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x),8(y))}

.AO
f(q1,92) — qo
a—aq
b— q
f--q0

VRN

g g

| |

ql g2

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
[(f(g(q1),g(q2)) -> z] > [g(ql) > q1 g(q2) -> z]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x),8(y))}

.AO
f(q1,92) — qo
a—aq
b— q
f--q0

VRN

g g

| |

ql g2

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
[f(g(q1),g(q2)) -> q0] -> [g(ql) -> q1 g(g2) -> qO0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x),8(y))}

AO
f(q1,92) — qo
a—aq
b— q
f--q0

VRN

g g

| |

ql g2

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
(f(glgl),g(g2)) -> g0l -> [g(ql) -> q1 g(q2) -> qO0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]
R ={f(x.y) — f(g(x),8(y))}

AO
f(q1,92) — qo
a—aq
b— q
f--q0
VRN

gl g

|

g2

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
(f(glgl),g(g2)) -> g0l -> [g(ql) -> q1 g(q2) -> qO0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

R ={f(x,y) — f(g(x),&8(y))}
A AL

f(q1,92) — qo g(q) — a1

a—q g(q) — qo
b— q | f(q1,90) — qo

f-—-q0
7N\
gl 0

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
[(f(glgl),glg2)) -> q0] —> [g(ql) -> q1 g(q2) -> 0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Building approximations using normalization rules

[Genet and Viet Triem Tong 2001]

R ={f(x,y) — f(g(x),&8(y))}
A AL A2
f(q1,92) — qo g(q1) — a1 | g(q0) — qo

a—q g(q) — qo
b— q | f(q1,90) — qo

f-—-q0
7N\
gl 0

[(f(glqD),y) -> z] -> [g(ql) -> q1 y -> z]
[(f(glgl),glg2)) -> q0] —> [g(ql) -> q1 g(q2) -> 0]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 28 / 54

Normalization rules

The pros :

@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Normalization rules

The pros :

@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

@ Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Normalization rules

The pros :
@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

@ Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons :
@ Ad-hoc solution based on tree automata structure

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Normalization rules

The pros :
@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

@ Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons :
@ Ad-hoc solution based on tree automata structure

@ Hard to write/read

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Normalization rules

The pros :
@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

@ Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons :
@ Ad-hoc solution based on tree automata structure

@ Hard to write/read

@ No formal semantics of normalization rules

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Normalization rules

The pros :
@ Expressive and efficient (crypto and Java verification)
[Genet, Tang-Talpin and Viet Triem Tong, 03]
[Boichut, Genet, Jensen and Le Roux, 07]

@ Adapted for automatic synthesis (integrated in the AVISPA tool)
[Boichut, Héam and Kouchnarenko, 04]

The cons :
@ Ad-hoc solution based on tree automata structure
@ Hard to write/read
@ No formal semantics of normalization rules
°

Precision of approximation is difficult to estimate/compare

Thomas Genet (IRISA) Reachability Analysis of Rewriting 29 / 54

Outline

o Refining abstractions by hand using equations

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Intuition behind equational over-approximations

(1) f(x,y) — f(g(x),y))
R = { 2) f(x,i) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

Cq={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) f(x,y) — f(g(x),y))
R = { 2) f(x,i) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

Co={f(g(a).b)}

1
Cq={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) F(x,y) — Flg(x).y) \
R = { 2) f(Xai) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

Cs={f(9(g(a)).b)}
1

Co={f(g(a).b)}

1
Cq={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) f(x,y) — f(g(x),y))
R = { 2) f(x,i) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

Cs={f(9(g(a)).b)}
1

Co={f(g(a).b)}

1
Cq={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) f(x,y) — f(g(x),y))
R = { 2) f(x,i) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

1

C={f(g"(a).b)}

Cq={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) F(x,y) — Flg(x).y) \
R = { 2) f(X,i”) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)}

Ca={f(g"(a),h"(b))}

1,2

Cs={f(a,n’(b))}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) F(x,y) — Flg(x).y) \
R = { 2) f(X,i”) N f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)}

Ca={f(g"(a),h"(b))}

1,2

Cs={f(a,n’(b))}

S —R/E t & S:ES/ —R t/:Et

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

(1) () — Flg(x).y) *
R = { (2) f(X,i”) ~ f(i h(y})/) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)} Cs={f(g"(a),h"(b))}

Cs={f(a,n’(b))}

s—oriet & s=ps' opt'=ct (eg f(a,b) —r/c f(g(g(g(a))), b))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

Q) f(x,y) — f(g(x),y))
R = { (2) F(x,y) — £(x, h(y)) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)} Cs={f(g"(a),h"(b))}

Cs={f(a,n’(b))}

s—oriet & s=ps' opt'=ct (eg f(a,b) —r/c f(g(g(g(a))), b))
f(a,b) /% e f(a, h(g(b)))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

Q) f(x,y) — f(g(x),y))
R = { (2) F(x,y) — £(x, h(y)) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)} Cs={f(g"(a),h"(b))}

Cs={f(a,n’(b))}

s—oriet & s=ps' opt'=ct (eg f(a,b) —r/c f(g(g(g(a))), b))
f(a,b) /% e f(a, h(g(b))) o f(a, b) /% f(a, h(g(b)))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 31 /54

Intuition behind equational over-approximations

Q) f(x,y) — f(g(x),y))
R = { (2) F(x,y) — £(x, h(y)) prove that f(a, b) Ar* f(a, h(g(b))?

using £ = {g(g(x)) = &(x), h(h(x)) = h(x)}

C={f(g"(a).b)}

Cq={f(a,b)} Cs={f(g"(a),h"(b))}

Cs={f(a,n’(b))}

s—oriet & s=ps' opt'=ct (eg f(a,b) —r/c f(g(g(g(a))), b))
f(a,b) /% e f(a, h(g(b))) o f(a, b) /% f(a, h(g(b)))

[Meseguer, Palomino, Marti-Oliet, 03] [Takai, 04]
31/ 54

Equations for tree automata approximation

[Genet, Rusu, 09]

Simplification relation A ~g A’

Given (u = v) € E and a tree automaton A

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Equations for tree automata approximation

[Genet, Rusu, 09]

Simplification relation A ~»g A’

Given (u = v) € E and a tree automaton A
uoc =g VvOo

A a4l = merging of g; and g» applied to A
q1 q2

Thomas Genet (IRISA) Reachability Analysis of Rewriting 32 /54

Equations for tree automata approximation

[Genet, Rusu, 09]
Simplification relation A ~»g A’
Given (u = v) € E and a tree automaton A
uoc =g VvOo

A a4l = merging of g; and g» applied to A
a1 q2

denoted by A ~~g A’, where A’ = A{q1 — q»}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 32 /54

Equations for tree automata approximation

[Genet, Rusu, 09]
Simplification relation A ~»g A’
Given (u = v) € E and a tree automaton A
uoc =g VvOo

A a4l = merging of g; and g» applied to A
a1 q2

denoted by A ~~g A’, where A’ = A{q1 — q»}

v

After completion step 7/, we propagate E on Ak using ~>g up to a fixpoint

Thomas Genet (IRISA) Reachability Analysis of Rewriting 32 /54

Equations for tree automata approximation

R = {f(x,y) — f(s(x),s(y))} and E = {s(s(x)) = s(x)}
.AO

f(ga, qb) — qo
a—qa

b— qp
L(A%) = {f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Equations for tree automata approximation

R ={f(x,y) = f(s(x),

s(y))} and £ = {s(s(x))

A0 AL

f(ga, qb) — qo f(g1,92) — qo
a—(, () —q1

b— qp s(gp) — a2

L(A%) = {f(a, b)}

L(A) = {f(a, b),
f(s(a), s(P))}

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

=s(x)}

33 /54

Equations for tree automata approximation

R ={f(x,y) — f(s(x),s(y))} and E = {s(s(x)) = s(x)}
A0 AL Az
f(ga, qb) — qo f(q1,92) — qo (g3, qa) — qo
a—q, s(qa) — a1 s(q1) — a3
b— qp s(9p) — a2 s(q2) — qa
L(A%) = {f(a,b)} | L(A") = {f(a,b), | L(A%)={f(a,b),
f(s(a),s(b))} f(s(a),s(b))}

f(s(s(a)), s(s(b)))}

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

33 /54

Equations for tree automata approximation

R ={f(x,y) = f(s(x),s(y))} and E = {s(s(x)) = s(x)}

A0 AL A2

f(9a; 9b) — o f(g1,92) — qo f(g3,94) — qo
a—ds, s(qa) = ¢ s(q1) — a3

b— qp s(gp) — @2 s(q2) — qa

L(A) = {f(a,b)} | L(AY) = {f(a,b), | L(AR)={f(a,b),
f(s(a), s(P))} f(s(a), s(b))}
f(s(s(a)), s(s(b)))}

Thomas Genet (IRISA) Reachability Analysis of Rewriting 33 /54

Equations for tree automata approximation

R ={f(x,y) = f(s(x),s(y))} and E = {s(s(x)) = s(x)}

A0 AL A2

f(9a; 9b) — o f(g1,92) — qo f(g3,94) — qo
a—ds, s(qa) = ¢ s(q1) — a3

b— qp s(gp) — @2 s(q2) — qa

L(A) = {f(a,b)} | L(AY) = {f(a,b), | L(AR)={f(a,b),
f(s(a), s(P))} f(s(a), s(b))}
f(s(s(a)), s(s(b)))}

s(s(ga)) =£ s(qa) s(s(ap)) =£ s(qp)
Voo w7 ' R
as (€A1 s 92

Thomas Genet (IRISA) Reachability Analysis of Rewriting 33 /54

Equations for tree automata approximation

R ={f(x,y) = f(s(x),s(y))} and E = {s(s(x)) = s(x)}

A0 AL A2

f(9a; 9b) — o f(g1,92) — qo f(g3,94) — qo
a—ds, s(qa) = ¢ s(q1) — a3

b— qp s(gp) — @2 s(q2) — qa

L(A) = {f(a,b)} | L(AY) = {f(a,b), | L(AR)={f(a,b),
f(s(a), s(P))} f(s(a), s(b))}
f(s(s(a)), s(s(b)))}

s(s(ga)) =£ s(qa) s(s(ap)) =£ s(qp)
Voo w7 ' R
as = (€A1 s = a2

Thomas Genet (IRISA) Reachability Analysis of Rewriting 33 /54

Equations for tree automata approximation

R ={f(x,y) = f(s(x),s(y))} and E = {s(s(x)) = s(x)}

A AL A2,

f(ga,qb) — qo f(q1,92) — qo (g2, qb) — qo
a—qa s(ga) — a1 s(q1) — a1

b— qp s(qp) — @ s(q2) — q2

L(A) = {f(a,b)} | L(A) = {f(a,b), | L(AR)={f(s"(a).5"(D))}
f(s(a), s(P))}

s(s(ga)) =£ s(qa) s(s(ap)) =£ s(ab)
Vo w7 Voo o 7
as = (€A1 s = Q2

Thomas Genet (IRISA) Reachability Analysis of Rewriting 33 /54

Properties of ~~g

The simplification relation ~~g enjoys the following properties

o If A~>g A" then L(A) C L(A)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 34 / 54

Properties of ~~g

The simplification relation ~~g enjoys the following properties

o If A~>g A" then L(A) C L(A)

@ ~~f terminates

Thomas Genet (IRISA) Reachability Analysis of Rewriting 34 / 54

Properties of ~~g

The simplification relation ~~g enjoys the following properties

o If A~>g A" then L(A) C L(A)
@ ~~>f terminates

@ ~~g is locally confluent, modulo isomorphism

Thomas Genet (IRISA) Reachability Analysis of Rewriting 34 / 54

Properties of ~~g

The simplification relation ~~g enjoys the following properties

o If A~>g A" then L(A) C L(A)
@ ~~>f terminates
@ ~~g is locally confluent, modulo isomorphism

@ Normal forms of ~»g are unique, modulo isomorphism

Thomas Genet (IRISA) Reachability Analysis of Rewriting

34 /54

Properties of ~~g

The simplification relation ~~g enjoys the following properties
o If A~>g A" then L(A) C L(A)
@ ~~>f terminates
@ ~~g is locally confluent, modulo isomorphism

@ Normal forms of ~»g are unique, modulo isomorphism

= equations of E can be used in any order for W!E

Thomas Genet (IRISA) Reachability Analysis of Rewriting

34 /54

New completion algorithm : from A% to A’H

i-th Completion step

——>r0o
lo =

A%l lAgl

q<e_q/

AT
@ Normalize ro — ¢’ using exact norm. strat. or new states

Thomas Genet (IRISA) Reachability Analysis of Rewriting

35 /54

New completion algorithm : from A% to A’H

i-th Completion step

——>ro
lo =

A@al lAi,;rl

q<e_q/

AT
@ Normalize ro — ¢’ using exact norm. strat. or new states

Simplification

e Find instances of an equation v = v of E in A’+1
uo vo

E
A;{l,g/l* *lAgl,fx
q1 92
y
Thomas Genet (IRISA) Reachability Analysis of Rewriting 35/ 54

New completion algorithm : from A% to A’H

i-th Completion step

——>ro
lo =

A%l lAgl

q<e_q/

AT
@ Normalize ro — ¢’ using exact norm. strat. or new states

Simplification

e Find instances of an equation v = v of E in A’+1
uo vo

E
A;?#l* *lA?{lﬁ/
q1 92
: i+1
@ Rename g> by g1 in Ag

@ Repeat until a fixpoint is reached
y
Thomas Genet (IRISA) Reachability Analysis of Rewriting 35/ 54

Theorems

Theorem (Upper bound)

Let R be a left-linear TRS, A be a tree automaton and E be a set of
linear equations. If completion terminates on A% ¢ then

L(AR,g) 2 R*(L(A))

Thomas Genet (IRISA) Reachability Analysis of Rewriting 36 / 54

Theorems

Theorem (Upper bound)

Let R be a left-linear TRS, A be a tree automaton and E be a set of
linear equations. If completion terminates on .A% £ then

L(AR,g) 2 R*(L(A))

Theorem (Lower bound)

Let R be a left-linear TRS, E a set of linear equations and A a
‘R /E-coherent tree automaton. For any i € N :

Rie(L(A)) 2 L(ARg)
and A%J:- is R/E-coherent.

Thomas Genet (IRISA) Reachability Analysis of Rewriting 36 / 54

Outline

e Tools and applications

Thomas Genet (IRISA) Reachability Analysis of Rewriting

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer|
(Around 13000 lines of Ocaml)
Timbuk provides

o Tree automata implementation with N, U, =’ 0, C, ...

Thomas Genet (IRISA) Reachability Analysis of Rewriting 38 / 54

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer|
(Around 13000 lines of Ocaml)
Timbuk provides
o Tree automata implementation with N, U, =’ 0, C, ...
@ Tree automata completion

» Exact computation of (covered) regular classes
» Approximations with normalization rules/equations

Thomas Genet (IRISA) Reachability Analysis of Rewriting 38 / 54

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer|
(Around 13000 lines of Ocaml)

Timbuk provides

o Tree automata implementation with N, U, =’ 0, C, ...

@ Tree automata completion

» Exact computation of (covered) regular classes
» Approximations with normalization rules/equations

@ Tree automata completion checker

Given a left-linear TRS R and tree automata A, B :

checker(A,R,B) =true = L(B) 2 R"(L(A))

Thomas Genet (IRISA) Reachability Analysis of Rewriting

38 / 54

The Timbuk library

[Genet, Viet Triem Tong, Boichut, Boyer|
(Around 13000 lines of Ocaml)
Timbuk provides

o Tree automata implementation with N, U, =’ 0, C, ...
@ Tree automata completion

» Exact computation of (covered) regular classes
» Approximations with normalization rules/equations

@ Tree automata completion checker

Given a left-linear TRS R and tree automata A, B :
checker(A,R,B) =true = L(B) 2 R*(L(A))

checker extracted from a Coq spec. [Boyer, Genet, Jensen, 08|

Thomas Genet (IRISA) Reachability Analysis of Rewriting 38 / 54

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

R*(£) N Bad = §

_ | A Java byte code program P
| Java Virtual Machine (JVM) semantics

e L= Java Virtual Machine (JVM) initial state

Thomas Genet (IRISA) Reachability Analysis of Rewriting 39 / 54

Applications : Java bytecode verification

[Boichut, Genet, Jensen, Le Roux, 07]

R*(L£) N Bad = §

_ | A Java byte code program P
| Java Virtual Machine (JVM) semantics

L= Java Virtual Machine (JVM) initial state

R*(L)= all JVM states reachable while executing P

Bad= set of forbidden states (e.g. bad control flow, data races, etc.)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 39 / 54

Encoding JVM semantics and bytecode into rewriting

Copster tool [Barré, Hubert, Le Roux, Genet]

@ Translates .class into a left-linear TRS

Thomas Genet (IRISA) Reachability Analysis of Rewriting 40 / 54

Encoding JVM semantics and bytecode into rewriting

Copster tool [Barré, Hubert, Le Roux, Genet]

@ Translates .class into a left-linear TRS

o Copster covers the following Java aspects :
» Class and inheritance
» Object allocation, initialization, access and modification of fields
» Virtual method invocation
» Integer, boolean, characters and string types
» Basic arithmetic and comparisons
» Basic standard library methods (strings, 1/0)

» Basic thread operations (creation, synchronization, join)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 40 / 54

An example of verification performed on a Java program

class Tl extends java.lang.Thread{
private int 1;

public T1i(int 1){this.1=1;}

public void run(){
while (true){
synchronized(Top.lock){
System.out.println(Top.f);

class Top{
public static Object lock;
public static int f;
public static void main(String[]
int i=1;
lock = new Object();
Top.£=0;
while (i<=2){

Top.f=1; Tl t1 = new T1(i++);
System.out.println(Top.£); tl.start();
Top.£=0; 1

333;

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

41 / 54

An example of verification performed on a Java program

class Tl extends java.lang.Thread{
private int 1;

public T1i(int 1){this.1=1;}

public void run(){
while (true){
synchronized(Top.lock){
System.out.println(Top.f);

class Top{
public static Object lock;
public static int f;
public static void main(String[]
int i=1;
lock = new Object();
Top.£=0;
while (i<=2){

Top.f=1; Tl t1 = new T1(i++);
System.out.println(Top.£); tl.start();
Top.£=0; 1

333;

@ Because of thread synchronization with Java locks (semaphores) :
infinite sequences of outputs should be of the form 0,1,0,2,0,1,0,...

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

41 / 54

An example of verification performed on a Java program

class Tl extends java.lang.Thread{
private int 1;

public T1i(int 1){this.1=1;}

public void run(){
while (true){
synchronized(Top.lock){
System.out.println(Top.f);

class Top{
public static Object lock;
public static int f;
public static void main(String[]
int i=1;
lock = new Object();
Top.£=0;
while (i<=2){

Top.£f=1; Tl t1 = new T1(i++);
System.out.println(Top.£); tl.start();
Top.£=0; 1

333;

@ Because of thread synchronization with Java locks (semaphores) :
infinite sequences of outputs should be of the form 0,1,0,2,0,1,0,...

@ Subsequences of the form ...

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

i, 0y ... with i > 1 should not occur

41 / 54

An example of verification performed on a Java program

class Tl extends java.lang.Thread{
private int 1;

public Ti(int 1){this.1=1;}

public void run(){
while (true){
synchronized(Top.lock){
System.out.println(Top.f);

class Top{
public static Object lock;
public static int f;
public static void main(Stringl[]
int i=1;
lock = new Object();
Top.£=0;
while (i<=2){

Top.£f=1; Tl t1 = new T1(i++);
System.out.println(Top.£); tl.start();
Top.£=0; 1

1333;

@ Because of thread synchronization with Java locks (semaphores) :
infinite sequences of outputs should be of the form 0,1,0,2,0,1,0,...

@ Subsequences of the form ...

,iy 0, ... with i > 1 should not occur

@ One equation is enough : outstack(x,outstack(y,z))=z

Thomas Genet (IRISA) Reachability Analysis of Rewriting

41 / 54

The RAVAJ Java verification chain

@ RAVAJ is an ANR Project between
LORIA (Nancy), LIFC (Besangon), France Telecom and IRISA

o Certified reachability analysis chain for Java bytecode programs

Java
Application A

Java rewriting
model
specialized for A

Property

Rewriting
Static
Analyzer

Approximation
of reachable
states

Java rewriting
model
specialized for A

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

Ok

Approximation
of reachable
states

Complete

Don’t know

Don’t
know

42 / 54

Outline

@ Conclusion and further work

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult

— R(L) can be computed with TT, not easy with TRS

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult
— R(L) can be computed with TT, not easy with TRS

— Verification of temporal properties more difficult in our case

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult
— R(L) can be computed with TT, not easy with TRS
— Verification of temporal properties more difficult in our case

— Counterexample generation and refinement better defined with TT

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult

— R(L) can be computed with TT, not easy with TRS

— Verification of temporal properties more difficult in our case

— Counterexample generation and refinement better defined with TT

+ Translation of an operationnal semantics into a TRS is easier

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult

— R(L) can be computed with TT, not easy with TRS

— Verification of temporal properties more difficult in our case

— Counterexample generation and refinement better defined with TT
+ Translation of an operationnal semantics into a TRS is easier

+ Precision result w.r.t approximation (i.e. w.r.t. R/E)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Regular (Abstract) Tree Model-Checking

e Comparison between Tree Tranducers and TRS is difficult

— R(L) can be computed with TT, not easy with TRS

— Verification of temporal properties more difficult in our case

— Counterexample generation and refinement better defined with TT
+ Translation of an operationnal semantics into a TRS is easier

+ Precision result w.r.t approximation (i.e. w.r.t. R/E)

~ Equations could be used on TT, and predicate abstraction on TRS

Thomas Genet (IRISA) Reachability Analysis of Rewriting 44 / 54

Comparison with Static Analysis and Abstract
Interpretation

— Regular tree languages are only one particular abstract domain !

Thomas Genet (IRISA) Reachability Analysis of Rewriting 45 / 54

Comparison with Static Analysis and Abstract
Interpretation

— Regular tree languages are only one particular abstract domain !

+ Other domains may be encoded into this one (e.g. for k-CFA)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 45 / 54

Comparison with Static Analysis and Abstract
Interpretation

— Regular tree languages are only one particular abstract domain !
+ Other domains may be encoded into this one (e.g. for k-CFA)

— Abstract interpretation can be optimized w.r.t. the domain

Thomas Genet (IRISA) Reachability Analysis of Rewriting 45 / 54

Comparison with Static Analysis and Abstract
Interpretation

— Regular tree languages are only one particular abstract domain !
+ Other domains may be encoded into this one (e.g. for k-CFA)
— Abstract interpretation can be optimized w.r.t. the domain

+ Refinement of approximation (automatic/by hand)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 45 / 54

Comparison with Static Analysis and Abstract
Interpretation

— Regular tree languages are only one particular abstract domain !
+ Other domains may be encoded into this one (e.g. for k-CFA)
— Abstract interpretation can be optimized w.r.t. the domain

+ Refinement of approximation (automatic/by hand)

+ A unique checker for certifying all approximations

Thomas Genet (IRISA) Reachability Analysis of Rewriting 45 / 54

Comparison with other verification techniques

o Classes of R for which R*(L) is regular
— only left and right linear TRS
— only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes

Thomas Genet (IRISA) Reachability Analysis of Rewriting 46 / 54

Comparison with other verification techniques

o Classes of R for which R*(L) is regular
— only left and right linear TRS
— only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes

@ Others equational abstractions
— Completion is more expensive than a pure rewriting approach
+ Even in the finite case, automata can be faster than tabling rewriting
— Generate equations automatically (in some cases)
+ In practice, strong restrictions on equations (syntactical/coherence)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 46 / 54

Comparison with other verification techniques

o Classes of R for which R*(L) is regular
— only left and right linear TRS
— only free (e.g. no AC) ranked (e.g. no hedge) TRS
+ A common algorithm and an optimized tool for all the covered classes

@ Others equational abstractions
— Completion is more expensive than a pure rewriting approach
+ Even in the finite case, automata can be faster than tabling rewriting
— Generate equations automatically (in some cases)
+ In practice, strong restrictions on equations (syntactical/coherence)

@ Other techniques based on rewriting
— Limited to < regular > properties (e.g. no induction!)
+ Simpler properties = needs less interaction
+ No need for termination or confluence of the TRS

Thomas Genet (IRISA) Reachability Analysis of Rewriting 46 / 54

To sum-up

From the initial (theoretical) idea of tree automata completion, we have
shown that this technique

@ covers many regular classes of the litterature
@ deals with automatic/guided approximations
© is feasible in practice

@ scales up to verify real software

© can be certified using an external proof assistant

Thomas Genet (IRISA) Reachability Analysis of Rewriting 47 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

@ Next year : improve the completion-based verification framework
» Counter-example extraction

» Automatic refinement of equational approximations

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

@ Next year : improve the completion-based verification framework
» Counter-example extraction

» Automatic refinement of equational approximations

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

@ Next year : improve the completion-based verification framework
» Counter-example extraction

» Automatic refinement of equational approximations

» Vizualization of completion divergence

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

@ Next year : improve the completion-based verification framework
» Counter-example extraction

» Automatic refinement of equational approximations

» Vizualization of completion divergence

» Equation inference

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research

@ Now : extend the verification capabilities of tree automata completion

~ lift-up to temporal properties
[Boyer, Genet, 09]

@ Next year : improve the completion-based verification framework
» Counter-example extraction

» Automatic refinement of equational approximations

» Vizualization of completion divergence

» Equation inference

@ Within 3 years : certification of distant computation
(a.k.a. result certification)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 48 / 54

Further Research (II)

@ Extend (word) lattice automata to trees
with T. Legall

@ Improve automatic approximations for crypto. protocols
with Y. Boichut

@ Other applications of R*(L)

» Checking transformations of SQL query
» Checking transformations of UML model
» Javascript programs verification

Thomas Genet (IRISA) Reachability Analysis of Rewriting 49 / 54

Further Research (II)

Since the new completion algorithm is based on :

/0- —ro /0' — I
j
i i instead of i
Aﬂl l*‘ﬁl Aﬁl:/
T s
R

from the e-graph we can obtain the R/E-rewriting graph

Thomas Genet (IRISA) Reachability Analysis of Rewriting 50 / 54

Further Research (II)

Since the new completion algorithm is based on :

lo —==ro /U—R>I’O'

]
Agzl lA%—l instead of A%J/:/
*
€ i+1
ol e
from the e-graph we can obtain the R/E-rewriting graph

R = {f(x,y) — f(g(x),y),
f(x,y) — f(x,h(y))}

E = {g(g(x)) = g(x),
h(h(x)) = h(x)}
L={f(a,b)}

Thomas Genet (IRISA) Reachability Analysis of Rewriting

50 / 54

Further Research (II)

Since the new completion algorithm is based on :

lo —==ro /U—R>I’O'

]
Agzl lA%—l instead of A%J/:/
*
€ i+1
ol e
from the e-graph we can obtain the R/E-rewriting graph

R = {f(x,y) — f(g(x),y),
f(x,y) — f(x,h(y))} e

E = {g(g(x)) = g(x),
h(h(x)) = h(x)} D, ©.

L= {f(a,b)} (o)

Thomas Genet (IRISA) Reachability Analysis of Rewriting

50 / 54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >
. .. € . ..
o Epsilon transitions g — g’ representing rewriting between classes

Thomas Genet (IRISA) Reachability Analysis of Rewriting 51 / 54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >
. .. € . ..
o Epsilon transitions g — g’ representing rewriting between classes

R={s—t,u—v}

E={s=u}
New completion Old completion
S——t S——t
/ /
i {
E|l E|
\\ \
u—V u—m—m—mVv
R R
Thomas Genet (IRISA) Reachability Analysis of Rewriting

51 /54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >
. .. € . ..
o Epsilon transitions g — g’ representing rewriting between classes

R={s—t,u—v}
E={s=u}
New completion

S——t

Old completion

S——1t

7)A
4 az /4 %

=

Thomas Genet (IRISA) Reachability Analysis of Rewriting

51 /54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >
. .. € . ..
o Epsilon transitions g — g’ representing rewriting between classes

R={s—t,u—v}
E={s=u}
New completion

S——t

Old completion

S——1t

7)A R
Ald q2 4
- oz
Ell o El @
X 2
Ja @ v A4
A,%/ u——m-—>v
uUu—m—mYV R
R
Thomas Genet (IRISA) Reachability Analysis of Rewriting

51 /54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >
. .. € . ..
o Epsilon transitions g — g’ representing rewriting between classes

R={s—t,u—v}
E={s=u}
New completion

S——t—— 10D

R

Old completion

S——t—— 1D
da " da R
Al G2 < qa NP/
/ A
|
E{l d1 El 401
\ g
| A 3 <<—gs & ‘AA A
AT§/ ATﬁ/ Uyu—mVv—\WwWw
U——=VvV —>=\ R
R R
Thomas Genet (IRISA) Reachability Analysis of Rewriting

51 /54

R /E-Coherent tree automata
In the tree automata we distinguish between

e Transitions f(q1,...,qn) — q recognizing < equivalence classes >

e Epsilon transitions g — g’ representing rewriting between classes

Definition (/R /E-coherent automaton)

Let A= (F, Q, Qf, A) be a tree automaton, R a TRS and E a set of
equations. The automaton A is said to be R /E-coherent if

Vge Q:3s e T(F):

SR GANVEET(F): (t =% g=s=£ t) A(t —a" = s—/et)]

Thomas Genet (IRISA) Reachability Analysis of Rewriting 51 / 54

Benchmarks

Combinatory NSPK View-Only | Java prog. 1 | Java prog. 2
TRS nb of rules 1 13 15 279 303
Initial Aut. size 43/23 14 /4 21/18 26 /49 33/33
Timbuk 2.2 :
Final Aut. size 8043 /23 151 /16 730/ 74 1127 /334 751 /335
Time (secs) 51.1 19.7 6420 25266 37387
Timbuk 3.0 :
Final Aut. size 8043 /23 259 /104 | 353/100
Time (secs) 60.1 3.1 2452
Tom-based :
Final Aut. size 8043 /23 171 /21 938 /89 1974 / 637 1611 /672
Time (secs) 5.9 5.9 150 360 303
Bddbddb-based :
Final Aut. size ?7/25 ?7/183 ?/97
Time (secs) 0.008 2.9 33

Thomas Genet (IRISA)

Reachability Analysis of Rewriting

52 / 54

Applications : Java bytecode verification (I1)
Proving safety properties on Java bytecode using reachability analysis

Java Source . java

Java Byte Code .class

class TestList{
public static void main(String[] argv){

List lpos=null;
InvList lneg=null;
int x;
boolean pos;
pos= true;
try {x=System.in.read()};}
catch(java.io.IOException e){x=0;}

while (x != -1){
if (pos) {lpos= new List(x, lpos);
pos=false;}

else {lneg= new InvList(x, lneg);
pos=true;}
try {x=System.in.read();}
catch(java.io.IOException e){x=0;}
}
}

public static void main(java.l
Code:
0: aconst_null
1 astore_1
2 aconst_null
3: astore_2
4: iconst_1
5 istore 4
7: getstatic #2; //
10: invokevirtual #3; //
13: istore_3

47: new
50: dup
51: iload_3

Thomas Genet (IRISA) Reachability Analysis of Rewriting 53 / 54

Encoding JVM semantics and bytecode into rewriting (I1)

(m,pc,x iy s,)
(mypc+1,x+y:s,l)

Encoding of an add bytecode add :

Thomas Genet (IRISA) Reachability Analysis of Rewriting

Encoding JVM semantics and bytecode into rewriting (I1)

(m,pc,x iy s,)
(mypc+1,x+y:s,l)

Encoding of an add bytecode add :

public static void foo(...)
@ Associate add bytecode to m, pc .
11 add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 54 / 54

Encoding JVM semantics and bytecode into rewriting (I1)

add - (m,pc,x iy s,)

Encoding of an add bytecode TmopctLxty s,

public static void foo(...)
@ Associate add bytecode to m, pc .
11 add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

@ Pop x and y, start evaluation of (x + y)
xframe(add,m,pc,stack(y,stack(x,s)),1) -> xframe(xadd(x,y),m,pc,s,1)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 54 / 54

Encoding JVM semantics and bytecode into rewriting (I1)

(m,pc,x iy s,)
(mypc+1,x+y:s,l)

Encoding of an add bytecode add :

public static void foo(...)
@ Associate add bytecode to m, pc .
11 : add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

@ Pop x and y, start evaluation of (x + y)
xframe(add,m,pc,stack(y,stack(x,s)),1) -> xframe(xadd(x,y),m,pc,s,1)

© Compute (x +y)

xadd(...) => ...
. => result(x)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 54 / 54

Encoding JVM semantics and bytecode into rewriting (I1)

add - (m,pc,x iy s,)

Encoding of an add bytecode TmopctLxty s,

public static void foo(...)
@ Associate add bytecode to m, pc .
11 : add

frame(foo,11,s,1) -> xframe(add,foo,11,s,1)

@ Pop x and y, start evaluation of (x + y)
xframe(add,m,pc,stack(y,stack(x,s)),1) -> xframe(xadd(x,y),m,pc,s,1)

© Compute (x +y)

xadd(...) => ...
. => result(x)

@ Push the result on top of s and move to next pc
xframe(result(x),m,pc,s,l) -> frame(m,next(pc),stack(x,s),1)

Thomas Genet (IRISA) Reachability Analysis of Rewriting 54 / 54

	Term rewriting and reachability analysis
	Regular model-checking of term rewriting systems
	Defining abstractions for infinite non regular systems
	Refining abstractions by hand using equations
	Tools and applications
	Conclusion and further work

