
Bayesian Networks
of Dynamic Systems

Eric Fabre
DistribCom team

IRISA/INRIA

HDR Defense – June 14, 2007

Bayesian Networks

of Dynamic Systems

networks of
random variables

networks of
automata

Petri nets concurrent
systems

discrete event
systems

Markov fields distributed
systems

Bayesian Networks

of Dynamic Systems

networks of
random variables

networks of
automata

Petri nets concurrent
systems

discrete event
systems

Markov fields distributed
systems

estimation optimization diagnosis distributed diagnosis

belief
propagation

distributed
monitoring

Bayesian Networks

of Dynamic Systems

category theory + distributed programming

networks of
random variables

networks of
automata

Petri nets concurrent
systems

discrete event
systems

Markov fields distributed
systems

estimation optimization diagnosis distributed diagnosis

belief
propagation

distributed
monitoring

Bayesian Networks

of Dynamic Systems

failure diagnosis in
telecommunication networks

category theory + distributed programming

networks of
random variables

networks of
automata

Petri nets concurrent
systems

discrete event
systems

Markov fields distributed
systems

estimation optimization diagnosis distributed diagnosis

belief
propagation

distributed
monitoring

Bayesian Networks

of Dynamic Systems

failure diagnosis in
telecommunication networks

category theory + distributed programming

networks of
random variables

networks of
automata

Petri nets concurrent
systems

discrete event
systems

Markov fields distributed
systems

M. M. RaynalRaynal

C. C. DoussonDousson

S. S. LafortuneLafortune S. S. GiuaGiua G. G. WinskelWinskelA. A. WillskyWillsky

estimation optimization diagnosis distributed diagnosis

belief
propagation

distributed
monitoring

Bayesian Networks

of Dynamic Systems

Distributed system monitoring…

Distributed system monitoring…

ab c b b a b

caa

centralized supervizor

Distributed system monitoring…

ab c b b a b

caa

Distributed system monitoring…

ab c b b a b

caa

distributed supervision

Distributed system monitoring…

ab c b b a b

caa

distributed supervision

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

How to build a Markov field ?
A collection of variables (sites) : V1,…,Vn

V1

V5

V3

V2

V7

V6

V4
V8

φ(s1)=φ(v1 ,v2 ,v3)

Si ⊆ {V1,…,Vn}
s1=(v1 ,v2 ,v3)

Component :
defines local interactions in a clique
by constraints : legal tuples
and/or by “soft” constraints :

S1

How to build a Markov field ?
A collection of variables (sites) : V1,…,Vn

V1

V5

V3

V2

V7

V6

V4
V8

Composition :
by shared variables
conjunction of constraints, product of potentials

P(s) ∝ Πi φ(si)

S2

S3

S4

φ(s1)=φ(v1 ,v2 ,v3)

Si ⊆ {V1,…,Vn}
s1=(v1 ,v2 ,v3)

Component :
defines local interactions in a clique
by constraints : legal tuples
and/or by “soft” constraints :

S1

How to build a Markov field ?
A collection of variables (sites) : V1,…,Vn

V1

V5

V3

V2

V7

V6

V4
V8

Inference : a reduction problem
A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?

S

V1

V5

V3

V2

V7

V6

V4 V8

Inference : a reduction problem
A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?

S

V1

V5

V3

V2

V7

V6

V4 V8

Amounts to reducing the global “system” S
to variables of interest,
by maximizing / summing over all the rejected variables

P*(vi) ∝ max Vj, j≠i P(v)

Inference : a reduction problem
A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?

S

V1

V5

V3

V2

V7

V6

V4 V8

There exist fast algorithms to do that jointly
Kalman, Viterbi, MPM, BCJR, Sum-Product, Belief propagation, …

Amounts to reducing the global “system” S
to variables of interest,
by maximizing / summing over all the rejected variables

P*(vi) ∝ max Vj, j≠i P(v)

A more abstract viewpoint
Ingredients :

variables
“systems” or “components” Si on these variables
a composition operator
a reduction operator for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax

A more abstract viewpoint
Ingredients :

variables
“systems” or “components” Si on these variables
a composition operator
a reduction operator for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax

ΠV1
◦ ΠV2

= ΠV1 V2

Axioms :
reductions are projections

systems have a local effect ∃ V⊆Vmax, ΠV(S) = S

A more abstract viewpoint
Ingredients :

variables
“systems” or “components” Si on these variables
a composition operator
a reduction operator for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax

ΠV1
◦ ΠV2

= ΠV1 V2

Axioms :
reductions are projections

systems have a local effect ∃ V⊆Vmax, ΠV(S) = S

Graph of a composite system : S = S1Æ … Æ Sn

V1

V2

V4

V5

V3

V7 V8

V6

S1

S4

S2

S3

Central axiom
S1 operates on V1, S2 operates on V2

let then V3 ⊇ V1 V2 ΠV3
(S1ÆS2) = ΠV3

(S1)ÆΠV3
(S2)

A form of conditional independence :
no interaction of S1 and S2 outside their shared variables.
The key to fast estimation (reduction) algorithms for
Bayesian networks.

V3

V1
V2

V4

V5
V6

V8

V9
V7

S1 S2

V3

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

S2

S1

S4
S3

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

V2

V3

V1

V1

V2

V3

V4 V4

S3 S4

S1

S2

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

V2

V3

V1

V1

V2

V3

V4 V4

S3

S1

S4

S2

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

V2

V3

V1

V1

V2

V3

V4 V4

S3

S1

S4

S2

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

V2

V3

V1

V1

V2
V4

V3

V4

S3

S1

S4

S2

Modular/distributed reduction algorithms
Problem :

Given where Si operates on Vi

compute the reduced components
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm

V2

V3

V1

V1

V2
V4

V3

V4

S3

S1

S4

S2

What about systems with loops ?
MPA can still be applied…

but they are sub-optimal.
They correspond to turbo-algorithms :
good convergence properties in practice

How good are their results ?
Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss ’01)

What about systems with loops ?
MPA can still be applied…

but they are sub-optimal.
They correspond to turbo-algorithms :
good convergence properties in practice

How good are their results ?
Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss ’01)

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

Components as dynamic systems
Objective : change “cliques” into dynamic systems

allow components to change the value of their variables

This is hard to do with “3-D” Markov models (interactions in
space + time) : so we take another path

o1

o3

o2

o4

v0
1

v0
2

v0
3

v0
4

v’
1

v’
2

v0
4

v0
3

v0
3

v’
2

v’
1

v’
1

v’
3

v"
2

v’
4

v’
4

v"
3

v"
4

v’
1

v"
2

V2V1 V3 V4

S1 S2

Components
Variables are (labeled) automata

labeling on transitions

Interactions : defined by parallel product
product of state sets
transitions with identical labels are synchronized
transitions with private labels remain private

V = (S,T,s0,→,λ,Λ)
λ: T → Λ

V1× V2

t2

t2

t’3 t’3t1t’1
t’3 t’1t2 t1

a

b

a’

b’

aa’

ab’

ba’

bb’

S1× S2

Interaction graph of a system
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables

V 5

V 3
V 4

V 2
V 1

S1

S2

S4

S3

S5

Components (2)

V1× V2× V3 = (V1×V2) Æ (V2×V3)

= S1 Æ S2

S = V1× … × Vn

Interaction graph of a system
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables

Components (2)

V1× V2× V3 = (V1×V2) Æ (V2×V3)

= S1 Æ S2

S = V1× … × Vn

λ1

λ3 4λ

λ1 λ2
λ2

V 5

V 3
V 4

V 2
V 1

Trajectory sets
Runs of are sequences of events

Different encodings for trajectory sets :

t3
t4

t1

t2
t5

b c

a

t1

t1

t1

t1

t3

t4

t1

t2

t1

t2

t3

t5

t1

t2

t4

t2

t3

t2

t3

t5

t2

t3(sub-) language

S = V1× … × Vn

Trajectory sets
Runs of are sequences of events

Different encodings for trajectory sets :

t3
t4

t1

t2
t5

b c

a

branching process

t4 t5

t5

t1

t1

t1

t1 t3

t2

t2 t3

t4

a

a

a

a

a

b

b c

c ac

c a

(unfolding)

S = V1× … × Vn

Trajectory sets
Runs of are sequences of events

Different encodings for trajectory sets :

S = V1× … × Vn

t3
t4

t1

t2
t5

b c

a

trellis process

t1

t1

t1

t1

t2

t2 t3

t3

t4

t4t5

t5

a

a

a

a

a

b

b c

c

c

(time-unfolding)

S = V1× … × Vn

time must be counted
independently in each Vi
for

Moving to trajectory systems
replace each component S by its trellis
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒

Moving to trajectory systems
replace each component S by its trellis
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒

Interest:
we are back to static systems, in factorized form,
we get procedures to compute products/pullbacks of trellis
processes,
products/pullbacks automatically come with a natural notion
of projection !

Moving to trajectory systems
replace each component S by its trellis
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒

Interest:
we are back to static systems, in factorized form,
we get procedures to compute products/pullbacks of trellis
processes,
products/pullbacks automatically come with a natural notion
of projection !

Thm : the central axiom holds on pullbacks
and projections of trajectory sets.

O1

O2

O1 O2

a b c d

a’ b’ c’ d’ e’

aa’

de’
ab’

ac’ ce’

dd’bb’

ba’

bc’ cd’

x T

Example of a product

Drawbacks:
computes all possible interleavings of runs
concurrency is against us…
Not suitable to distributed concurrent systems.

concurrency
diamonds

synchronization

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable,
preserve only causality links between events:
time is now partially ordered

o1

o3

o2

o4

v0
1

v0
2

v0
3

v0
4

v’
1

v’
2

v0
4

v0
3

v0
3

v’
2

v’
1

v’
1

v’
3

v"
2

v’
4

v’
4

v"
3

v"
4

v’
1

v"
2

V2V1 V3 V4

S1 S2

Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered

o1

o3

o2

o4

v0
1

v0
2

v0
3

v0
4

v’
1

v’
2

v’
3

v"
2

v’
4

v"
3

v"
4

v’
1

v"
2

V2V1 V3 V4

S1 S2

Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered

o3

o4

o2

o1

v0
1

v0
2

v0
3

v0
4

v’
3

v"
2

v"
3

v"
4

v’
1

v"
2

V2V1 V3 V4

v’
4

v’
2

v’
1

S1 S2

Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered

o4

o3

o1

o2

v0
1

v0
2

v0
3

v0
4

v"
3

v"
4

v’
1

v"
2

V2V1 V3 V4

v’
3

v"
2

v’
2

v’
1

v’
4

S1 S2

Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered

o3

o1

o2

o4

v0
1

v0
2

v0
3

v0
4

v’
1

v"
2

V2V1 V3 V4

v’
3

v"
2

v’
2

v’
1

v’
4

v"
3

v"
4

v"
3

v"
4

S1 S2

Components as Petri nets (2)
Composition of automata by “concurrent” product :

disjoint union of state sets (instead of product)

transitions with shared labels are “glued”
transitions with private labels don’t change

b

a

c

g d

e f

t3 t2 t1 t’4t’1
t4 t5 t6

S = V1× V2 × V3

Components as Petri nets (2)
Composition of automata by “concurrent” product :

disjoint union of state sets (instead of product)

transitions with shared labels are “glued”
transitions with private labels don’t change

c

g

b

a d

e f

t3 t2 t5 t6

t1t’1 t’4t4

S = V1× V2 × V3

Components as Petri nets (3)
Composition by “concurrent” pullback is also possible

Graph of a distributed system
exactly as before…

S = V1× V2× V3 = (V1×V2) Æ (V2×V3)

f1 f2

b

a

c

g d

f

g

c
e

c

g

t3 t2 t4t1
t5 t6t1 t4t1 t4

S = V1×…×V
n

= S1Æ…ÆSm

Trajectory sets

Runs of are partial orders of events
(also called configurations)

S = V1× … × Vn

c

g

b

a d

e f

t3 t2 t1 t4 t5 t6

c

a g

d
cb

b

ega

t4t3

t1

t1

a g

d
cb

b d

ega

t4t3

t1

t5t2

Trajectory sets

Runs of are partial orders of events
(also called configurations)

S = V1× … × Vn

c

g

b

a d

e f

t3 t2 t1 t4 t5 t6

c

a g

d
cb

b

ega

t4t3

t1

t1

a g

d
cb

b d

ega

t4t3

t1

t5t2

branching process
(unfolding)

Trajectory sets (2)

Branching processes can be further compressed
into trellis processes (cousin of Merged processes, Khomenko ’05)

c

g

b

a d

e f

t3 t2 t1 t4 t5 t6

. . .
c c

a g

b
d

cb

b b bb d

egaa f

t6t4t3 t3

t2 t1

t5t1t2t1t2

Trajectory sets (2)

Branching processes can be further compressed
into trellis processes (cousin of Merged processes, Khomenko ’05)

c

g

b

a d

e f

t3 t2 t1 t4 t5 t6

a g

d

a

b

eg f

b c

dc

. . .

t3 t4 t6

t5t1t1t2

t2 t1

time is counted
independently in each Vi

for S = V1× … × Vn

Category theory again…
Moving to trajectory systems

replace each component S by its unfolding
or by its time-unfolding
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

Category theory again…
Moving to trajectory systems

replace each component S by its unfolding
or by its time-unfolding
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

a g

d

ea

b c

b c

f

d

g

a

a

g

g

c

c

d

d

e

e

f

f

b

b

t2

t2 t1

t5

t6

t4t3

t1 t1

t3

t1

t4

t1 t5t4

t5t4

t6

t2 t1

t2 t1

.

Category theory again…
Moving to trajectory systems

replace each component S by its unfolding
or by its time-unfolding
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

Interest:
We are back to static systems,
we get computation procedures for products and pullbacks,
we get a natural notion of projection,

Category theory again…
Moving to trajectory systems

replace each component S by its unfolding
or by its time-unfolding
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

Interest:
We are back to static systems,
we get computation procedures for products and pullbacks,
we get a natural notion of projection,

Thm : the central axiom is valid,
but only in limited cases.

A computation example

O1 O2S1 S2dg

c e fb

a

c

g

t1 t4 t5 t6t2 t4t3 t1
γ

γ

ααβ

β

α
γ δ γ

δ

A computation example

g

c
d

eg

g e

f

dc

c d

fa

b

a

a

b

g

c

b b b

g

b c

t4

t1

t6

t5

t4 t6

t5t1

t1

γ γ

γ

. . .

γ

δ

δ
t1t2t2

t1

t4

t1

t3 t3

t2

. . .

α α α α

β β

α α

c

A computation example

g

c

g

g

c

a

b

a

a

b

g

c

g

d

eg

g e

f

c d

t4

t1 t5

t4 t6

t1

t4

t1

*

*

*

t1

t4t3 t3

t2

β β

α α

γ γ

γ

δ

A computation example

g

g

c

g

c

a

b

a

a

b

g

c

g

d

g e

f

d

g

c

e

t4

t1t1

t4t3 t3

t2

t4

t5

t6

t1

t4

t1

β β

α α

γ

γ

δ

γ

*

*

*

A computation example

g

g

c

g

c

g

c
d

eg

g e

f

c d

a

a

b

g

c

ga

b

t4

t1

t4

t1

*

*

*

t4

t1 t5

t4 t6

t1

γ γ

γ

δ

t1

t4t3t3

t2

β

αα

β

A computation example

g

c

a

a

b

g

c

g

d

g e

f

d

t1

t4t3 t4

t5

t6

t1

β

α

γ

γ

δ

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

Magda + Magda 2
Two RNRT projects (6 years overall)

Partners : Alcatel, France Telecom R&D, Ilog, LIPN
Distributed alarm correlation and failure diagnosis,
implemented above a rule engine.

Magda + Magda 2
Two RNRT projects (6 years overall)

Partners : Alcatel, France Telecom R&D, Ilog, LIPN
Distributed alarm correlation and failure diagnosis,
implemented above a rule engine.

Montrouge

Magda + Magda 2
A typical alarm correlation pattern,
reconstructed with distributed supervisors

St Ouen Aubervilliers

Montrouge Gentilly

TFLOS

TF LOS

MS-AIS
MS-AIS

disabled AU-AIS

AU-AIS

AU-AISAU-AIS

disabled
disabled

AU-AIS AU-AIS disabled

Magda + Magda 2

correlated alarm

VDT contract
Partner : Alcatel R&I + Optical Networks Division (1 year)

alarm correlation for a submarine-line terminal equipment
centralized, but unfolding-based correlation

Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks

Perspectives

Outline

Holes in the theory…
Complexity issues…
Distributed optimization
Robustness issues:

alarm selection/rejection, as in chronicles

On-line collection of (partial) results
introduction of true distributed programming aspects

What for systems with changing architecture ?
e.g. web services, mesh networks, …

Holes in the theory…
Complexity issues…
Distributed optimization
Robustness issues:

alarm selection/rejection, as in chronicles

On-line collection of (partial) results
introduction of true distributed programming aspects

What for systems with changing architecture ?
e.g. web services, mesh networks, …

New Applications
Finite complete prefixes in factorized form,

already started with Agnes Madalinski.

Distributed optimal planning
cooperation project with Univ. of Canberra

Distributed control ?
Probably in connection with game theory aspects.

Special thanks to
Armen Aghasaryan
Albert Benveniste
Thomas Chatain
Didier Devaurs

Christophe Dousson
Claude Jard

Christine Guillemot
Arnaud Guyader

Stefan Haar
Christoforos Hadjicostis
Guy-Bertrand Kamga

Mutlu Koca
Bruno Marquie

Agnes Madalinski
Patrick Perez

Vincent Pigourier
Helia Pouyllau
Laurie Ricker
Aline Roumy
Mark Smith

Alexandre Skrzypczak
Julien Thomas
Franck Wielgus

…

