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How to build a Markov field ?
A collection of variables (sites) :  V1,…,Vn
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φ(s1)=φ(v1 ,v2 ,v3)

Si ⊆ {V1,…,Vn}
s1=(v1 ,v2 ,v3)

Component : 
defines local interactions in a clique
by constraints :  legal tuples
and/or by “soft” constraints : 
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Composition :  
by shared variables
conjunction of constraints, product of potentials

P(s) ∝ Πi φ(si)
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Inference : a reduction problem
A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?
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A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?
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There exist fast algorithms to do that jointly
Kalman, Viterbi, MPM, BCJR, Sum-Product, Belief propagation, …

Amounts to reducing the global “system” S
to variables of interest,
by maximizing / summing over all the rejected variables

P*(vi) ∝ max Vj, j≠i P(v)



A more abstract viewpoint
Ingredients :

variables 
“systems” or “components” Si on these variables 
a composition operator  
a reduction operator              for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax
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a composition operator  
a reduction operator              for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax

ΠV1
◦ ΠV2

= ΠV1 V2

Axioms :
reductions are projections 

systems have a local effect ∃ V⊆Vmax,  ΠV(S) = S

Graph of a composite system : S = S1Æ … Æ Sn
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Central axiom
S1 operates on V1,  S2 operates on V2

let                      then  V3 ⊇ V1 V2 ΠV3
(S1ÆS2) = ΠV3

(S1)ÆΠV3
(S2)

A form of conditional independence :
no interaction of S1 and S2 outside their shared variables.
The key to fast estimation (reduction) algorithms for 
Bayesian networks.
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Modular/distributed reduction algorithms
Problem :

Given                           where Si operates on Vi

compute the reduced components 
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm
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What about systems with loops ?
MPA can still be applied…

but they are sub-optimal.
They correspond to turbo-algorithms : 
good convergence properties in practice

How good are their results ?
Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss ’01)
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Components as dynamic systems
Objective : change “cliques” into dynamic systems

allow components to change the value of their variables

This is hard to do with “3-D” Markov models (interactions in 
space + time) : so we take another path
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Components 
Variables are (labeled) automata

labeling on transitions 

Interactions : defined by parallel product
product of state sets 
transitions with identical labels are synchronized
transitions with private labels remain private

V = (S,T,s0,→,λ,Λ)
λ: T → Λ

V1× V2
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t2

t’3 t’3t1t’1
t’3 t’1t2 t1
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ab’
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S1× S2



Interaction graph of a system 
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables
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V1× V2× V3 = (V1×V2) Æ (V2×V3) 

=     S1     Æ S2

S = V1× … × Vn



Interaction graph of a system 
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables

Components (2)

V1× V2× V3 = (V1×V2) Æ (V2×V3) 

=     S1     Æ S2

S = V1× … × Vn
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Trajectory sets
Runs of                           are sequences of events

Different encodings for trajectory sets :
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Trajectory sets
Runs of                           are sequences of events

Different encodings for trajectory sets :

S = V1× … × Vn
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(time-unfolding)

S = V1× … × Vn

time must be counted 
independently in each Vi
for



Moving to trajectory systems 
replace each component  S  by its trellis 
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒
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Moving to trajectory systems 
replace each component  S  by its trellis 
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒

Interest:
we are back to static systems, in factorized form,
we get procedures to compute products/pullbacks of trellis 
processes,
products/pullbacks automatically come with a natural notion 
of projection !

Thm : the central axiom holds on pullbacks 
and projections of trajectory sets.
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a b c d

a’ b’ c’ d’ e’

aa’

de’
ab’

ac’ ce’

dd’bb’

ba’

bc’ cd’

x T

Example of a product

Drawbacks:
computes all possible interleavings of runs
concurrency is against us…
Not suitable to distributed concurrent systems.

concurrency 
diamonds

synchronization 
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Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable,
preserve only causality links between events:
time is now partially ordered
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Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered
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Components as Petri nets (2)
Composition of automata by “concurrent” product :

disjoint union of state sets (instead of product)

transitions with shared labels are “glued”
transitions with private labels don’t change
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Components as Petri nets (3)
Composition by “concurrent” pullback is also possible

Graph of a distributed system
exactly as before…

S = V1× V2× V3 = (V1×V2) Æ (V2×V3) 

f1 f2

b

a

c

g d

f

g

c
e

c

g

t3 t2 t4t1
t5 t6t1 t4t1 t4

S = V1×…×V
n

= S1Æ…ÆSm



Trajectory sets

Runs of                          are partial orders of events
(also called configurations)

S = V1× … × Vn
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Trajectory sets

Runs of                          are partial orders of events
(also called configurations)

S = V1× … × Vn
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branching process
(unfolding)



Trajectory sets (2)

Branching processes can be further compressed 
into trellis processes (cousin of Merged processes, Khomenko ’05)
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Trajectory sets (2)

Branching processes can be further compressed 
into trellis processes (cousin of Merged processes, Khomenko ’05)
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time is counted 
independently in each Vi

for  S = V1× … × Vn



Category theory again…
Moving to trajectory systems 
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or by its time-unfolding 
Thm : these functors both have a left adjoint
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Category theory again…
Moving to trajectory systems 

replace each component  S  by its unfolding        
or by its time-unfolding 
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

Interest:
We are back to static systems,
we get computation procedures for products and pullbacks,
we get a natural notion of projection,

Thm : the central axiom is valid, 
but only in limited cases.
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Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks
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Magda + Magda 2
Two RNRT projects  (6 years overall)

Partners : Alcatel, France Telecom R&D, Ilog, LIPN
Distributed alarm correlation and failure diagnosis,
implemented above a rule engine.
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Magda + Magda 2
A typical alarm correlation pattern, 
reconstructed with distributed supervisors

St Ouen Aubervilliers

Montrouge Gentilly
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Magda + Magda 2

correlated alarm



VDT contract
Partner : Alcatel R&I + Optical Networks Division (1 year)

alarm correlation for a submarine-line terminal equipment
centralized, but unfolding-based correlation
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Holes in the theory…
Complexity issues…
Distributed optimization
Robustness issues:

alarm selection/rejection, as in chronicles

On-line collection of (partial) results
introduction of true  distributed programming aspects

What for systems with changing architecture ?
e.g. web services, mesh networks, …
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New Applications
Finite complete prefixes in factorized form,

already started with Agnes Madalinski. 

Distributed optimal planning
cooperation project with Univ. of Canberra

Distributed control ?
Probably in connection with game theory aspects. 
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