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How to build a Markov field ?
A collection of variables (sites) :  V1,…,Vn
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φ(s1)=φ(v1 ,v2 ,v3)

Si ⊆ {V1,…,Vn}
s1=(v1 ,v2 ,v3)

Component : 
defines local interactions in a clique
by constraints :  legal tuples
and/or by “soft” constraints : 
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Composition :  
by shared variables
conjunction of constraints, product of potentials

P(s) ∝ Πi φ(si)
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Inference : a reduction problem
A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?
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to variables of interest,
by maximizing / summing over all the rejected variables
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A typical problem : (Bayesian) inference

Some variables are known/fixed by constraints.
What is the most likely value / conditional law of the others ?
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There exist fast algorithms to do that jointly
Kalman, Viterbi, MPM, BCJR, Sum-Product, Belief propagation, …

Amounts to reducing the global “system” S
to variables of interest,
by maximizing / summing over all the rejected variables

P*(vi) ∝ max Vj, j≠i P(v)



A more abstract viewpoint
Ingredients :

variables 
“systems” or “components” Si on these variables 
a composition operator  
a reduction operator              for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax
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a composition operator  
a reduction operator              for

Vmax = {V1,V2 ,…}

S = S1ÆS2

ΠV(S) V⊆Vmax

ΠV1
◦ ΠV2

= ΠV1�V2

Axioms :
reductions are projections 

systems have a local effect ∃ V⊆Vmax,  ΠV(S) = S

Graph of a composite system : S = S1Æ … Æ Sn
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Central axiom
S1 operates on V1,  S2 operates on V2

let                      then  V3 ⊇ V1�V2 ΠV3
(S1ÆS2) = ΠV3

(S1)ÆΠV3
(S2)

A form of conditional independence :
no interaction of S1 and S2 outside their shared variables.
The key to fast estimation (reduction) algorithms for 
Bayesian networks.

V3

V1
V2

V4

V5
V6

V8

V9
V7

S1 S2

V3



Modular/distributed reduction algorithms
Problem :

Given                           where Si operates on Vi

compute the reduced components 
i.e. how does Si change once inserted into the global S ?

S = S1Æ … Æ Sn

S’i = ΠVi
(S)

This can be solved by Message Passing Algorithms (MPA)

only involves local computations
exact if the graph of S is a (hyper-) tree
can be seen as an asynchronous distributed algorithm
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What about systems with loops ?
MPA can still be applied…

but they are sub-optimal.
They correspond to turbo-algorithms : 
good convergence properties in practice

How good are their results ?
Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss ’01)
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Components as dynamic systems
Objective : change “cliques” into dynamic systems

allow components to change the value of their variables

This is hard to do with “3-D” Markov models (interactions in 
space + time) : so we take another path
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Components 
Variables are (labeled) automata

labeling on transitions 

Interactions : defined by parallel product
product of state sets 
transitions with identical labels are synchronized
transitions with private labels remain private

V = (S,T,s0,→,λ,Λ)
λ: T → Λ

V1× V2
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t2

t’3 t’3t1t’1
t’3 t’1t2 t1
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ab’
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bb’

S1× S2



Interaction graph of a system 
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables
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Components (2)

V1× V2× V3 = (V1×V2) Æ (V2×V3) 

=     S1     Æ S2

S = V1× … × Vn



Interaction graph of a system 
shared labels define the local interactions…

… but they are not expressed by shared variables.

Synchronization by pullback
takes into account the presence of common variables

Components (2)

V1× V2× V3 = (V1×V2) Æ (V2×V3) 

=     S1     Æ S2

S = V1× … × Vn
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Trajectory sets
Runs of                           are sequences of events

Different encodings for trajectory sets :
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Trajectory sets
Runs of                           are sequences of events

Different encodings for trajectory sets :

S = V1× … × Vn
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(time-unfolding)

S = V1× … × Vn

time must be counted 
independently in each Vi
for



Moving to trajectory systems 
replace each component  S  by its trellis 
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒
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Moving to trajectory systems 
replace each component  S  by its trellis 
Thm : this functor has a left adjoint, which entails

Where category theory helps…

T (S)

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1Æ … Æ Sm ⇒

Interest:
we are back to static systems, in factorized form,
we get procedures to compute products/pullbacks of trellis 
processes,
products/pullbacks automatically come with a natural notion 
of projection !

Thm : the central axiom holds on pullbacks 
and projections of trajectory sets.
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O1 O2

a b c d

a’ b’ c’ d’ e’

aa’

de’
ab’

ac’ ce’

dd’bb’

ba’

bc’ cd’

x T

Example of a product

Drawbacks:
computes all possible interleavings of runs
concurrency is against us…
Not suitable to distributed concurrent systems.

concurrency 
diamonds

synchronization 
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Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable,
preserve only causality links between events:
time is now partially ordered
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Components as Petri nets
Objective : represent the concurrency of events

replace the global clock by local clocks, one for each variable
preserve only causality links between events
time is now partially ordered
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Components as Petri nets (2)
Composition of automata by “concurrent” product :

disjoint union of state sets (instead of product)

transitions with shared labels are “glued”
transitions with private labels don’t change
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Components as Petri nets (3)
Composition by “concurrent” pullback is also possible

Graph of a distributed system
exactly as before…

S = V1× V2× V3 = (V1×V2) Æ (V2×V3) 

f1 f2

b

a

c

g d

f

g

c
e

c

g

t3 t2 t4t1
t5 t6t1 t4t1 t4

S = V1×…×V
n

= S1Æ…ÆSm



Trajectory sets

Runs of                          are partial orders of events
(also called configurations)

S = V1× … × Vn
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Trajectory sets

Runs of                          are partial orders of events
(also called configurations)

S = V1× … × Vn
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branching process
(unfolding)



Trajectory sets (2)

Branching processes can be further compressed 
into trellis processes (cousin of Merged processes, Khomenko ’05)
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Trajectory sets (2)

Branching processes can be further compressed 
into trellis processes (cousin of Merged processes, Khomenko ’05)
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time is counted 
independently in each Vi

for  S = V1× … × Vn



Category theory again…
Moving to trajectory systems 

replace each component  S  by its unfolding        
or by its time-unfolding 
Thm : these functors both have a left adjoint
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Category theory again…
Moving to trajectory systems 

replace each component  S  by its unfolding        
or by its time-unfolding 
Thm : these functors both have a left adjoint

T (S) = T (V1) ×T … ×T T (Vn)S = V1× … × Vn ⇒
T (S) = T (S1) ÆT … ÆT T (Sm)S = S1 Æ … Æ Sm ⇒

U(S)
T (S)

Interest:
We are back to static systems,
we get computation procedures for products and pullbacks,
we get a natural notion of projection,

Thm : the central axiom is valid, 
but only in limited cases.
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Static distributed systems
from Markov fields to abstract distributed systems

Networks of automata
introduction of the time dimension

Networks of concurrent systems
a partially ordered notion of time

Applications
distributed diagnosis in telecommunication networks
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Magda + Magda 2
Two RNRT projects  (6 years overall)

Partners : Alcatel, France Telecom R&D, Ilog, LIPN
Distributed alarm correlation and failure diagnosis,
implemented above a rule engine.
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Magda + Magda 2
A typical alarm correlation pattern, 
reconstructed with distributed supervisors

St Ouen Aubervilliers

Montrouge Gentilly
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Magda + Magda 2

correlated alarm



VDT contract
Partner : Alcatel R&I + Optical Networks Division (1 year)

alarm correlation for a submarine-line terminal equipment
centralized, but unfolding-based correlation
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Holes in the theory…
Complexity issues…
Distributed optimization
Robustness issues:

alarm selection/rejection, as in chronicles

On-line collection of (partial) results
introduction of true  distributed programming aspects

What for systems with changing architecture ?
e.g. web services, mesh networks, …
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New Applications
Finite complete prefixes in factorized form,

already started with Agnes Madalinski. 

Distributed optimal planning
cooperation project with Univ. of Canberra

Distributed control ?
Probably in connection with game theory aspects. 
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