Bayesian Networks of Dynamic Systems

> Eric Fabre DistribCom team IRISA/INRIA

HDR Defense – June 14, 2007

belief propagation ostimation optimization dia

distributed monitoring

networks of random variables

networks of automata

networks of random variables

networks of automata

distributed supervision

distributed supervision

Outline

- Static distributed systems from Markov fields to abstract distributed systems
- Networks of automata introduction of the time dimension
- Networks of concurrent systems a partially ordered notion of time
- Applications distributed diagnosis in telecommunication networks
- Perspectives

Outline

Static distributed systems from Markov fields to abstract distributed systems

- Networks of automata introduction of the time dimension
- Networks of concurrent systems a partially ordered notion of time
- Applications distributed diagnosis in telecommunication networks
- Perspectives

How to build a Markov field ?

A collection of variables (sites) : $V_{1}, ..., V_{n}$

How to build a Markov field?

A collection of variables (sites) : $V_1, ..., V_n$

- **Component** :
 - defines local interactions in a *clique* $S_i \subseteq \{V_1, ..., V_n\}$
 - by constraints : legal tuples $s_1 = (v_1, v_2, v_3)$
 - and/or by "soft" constraints : $\phi(s_1) = \phi(v_1, v_2, v_3)$

How to build a Markov field ?

A collection of variables (sites) : $V_{1}, ..., V_{n}$

- **Component** :
 - defines local interactions in a *clique* $S_i \subseteq \{V_1, ..., V_n\}$
 - by constraints : legal tuples $s_1 = (v_1, v_2, v_3)$
 - and/or by "soft" constraints : $\phi(s_1) = \phi(v_1, v_2, v_3)$

$$P(s) \propto \Pi_{i} \phi(s_{i})$$

Composition :

- by shared variables
- conjunction of constraints, product of potentials

Inference : a reduction problem

- □ A typical problem : (Bayesian) inference
 - Some variables are known/fixed by constraints.
 - What is the most likely value / conditional law of the others ?

Inference : a reduction problem

- A typical problem : (Bayesian) inference
 - Some variables are known/fixed by constraints.
 - What is the most likely value / conditional law of the others ?

- Amounts to reducing the global "system" S
 - to variables of interest,
 - by maximizing / summing over all the rejected variables

 $P^{*}(v_{i}) \propto \max_{Vj, j \neq i} P(v)$

Inference : a reduction problem

- □ A typical problem : (Bayesian) inference
 - Some variables are known/fixed by constraints.
 - What is the most likely value / conditional law of the others ?

- Amounts to reducing the global "system" S
 - to variables of interest,
 - by maximizing / summing over all the rejected variables

$$P^*(v_i) \propto \max_{V_{j,j\neq i}} P(v)$$

There exist fast algorithms to do that jointly Kalman, Viterbi, MPM, BCJR, Sum-Product, Belief propagation, ...

A more abstract viewpoint

□ Ingredients :

- variables $V_{max} = \{ V_1, V_2, ... \}$
- "systems" or "components" S_i on these variables
- a composition operator $S = S_1 \land S_2$
- a reduction operator $\Pi_V(S)$ for $V \subseteq V_{max}$

A more abstract viewpoint

Ingredients :

- variables $V_{max} = \{ V_1, V_2, ... \}$
- "systems" or "components" S_i on these variables
- a composition operator $S = S_1 \land S_2$
- a reduction operator $\Pi_V(S)$ for $V \subseteq V_{max}$
- □ <u>Axioms</u> :
 - reductions are projections $\Pi_{V_1} \circ \Pi_{V_2} = \Pi_{V_1 \cap V_2}$
 - systems have a *local effect* $\exists V \subseteq V_{max'}$ $\Pi_V(S) = S$

A more abstract viewpoint

Ingredients :

- variables $V_{max} = \{ V_1, V_2, ... \}$
- "systems" or "components" S_i on these variables
- a composition operator $S = S_1 \land S_2$
- a reduction operator $\Pi_V(S)$ for $V \subseteq V_{max}$
- □ <u>Axioms</u> :
 - reductions are projections $\Pi_{V_1} \circ \Pi_{V_2} = \Pi_{V_1 \cap V_2}$
 - systems have a *local effect* $\exists V \subseteq V_{max}$, $\Pi_V(S) = S$

Graph of a composite system : $S = S_1 \land ... \land S_n$

Central axiom

• S_1 operates on V_1 , S_2 operates on V_2 let $V_3 \supseteq V_1 \cap V_2$ then $\Pi_{V_3}(S_1 \wedge S_2) = \Pi_{V_3}(S_1) \wedge \Pi_{V_3}(S_2)$

- A form of *conditional independence* :
 - no interaction of S_1 and S_2 outside their shared variables.
- The key to fast estimation (reduction) algorithms for Bayesian networks.

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

- Given $S = S_1 \land \dots \land S_n$ where S_i operates on V_i
- compute the reduced components $S'_i = \prod_{V_i}(S)$
- i.e. how does S_i change once inserted into the global S?
- This can be solved by Message Passing Algorithms (MPA)

- only involves local computations
- exact if the graph of S is a (hyper-) tree
- can be seen as an asynchronous distributed algorithm

What about systems with loops ?

□ MPA can still be applied...

- but they are sub-optimal.
- They correspond to *turbo-algorithms* : good convergence properties in practice

• How good are their results ?

• Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss '01)

What about systems with loops?

□ MPA can still be applied...

- but they are sub-optimal.
- They correspond to *turbo-algorithms* : good convergence properties in practice

• How good are their results ?

• Local extendibility to a tree around each component.

Local optimality of the max likelyhood estimates (Weiss '01)

Outline

Static distributed systems from Markov fields to abstract distributed systems

Networks of automata introduction of the time dimension

- Networks of concurrent systems a partially ordered notion of time
- Applications

distributed diagnosis in telecommunication networks

Perspectives

Components as dynamic systems

Objective : change "cliques" into dynamic systems

allow components to change the value of their variables

This is hard to do with "3-D" Markov models (interactions in space + time) : so we take another path

Components

- Variables are (labeled) automata
 - $V = (S, T, S^0, \rightarrow, \lambda, \Lambda)$
 - labeling on transitions $\lambda: T \rightarrow \Lambda$
- **D** Interactions : defined by parallel product $V_1 \times V_2$
 - product of state sets $S_1 \times S_2$
 - transitions with identical labels are synchronized
 - transitions with private labels remain private

Components (2)

D Interaction graph of a system $S = V_1 \times ... \times V_n$

shared labels define the local interactions...

- ... but they are not expressed by shared variables.
- Synchronization by *pullback*
 - takes into account the presence of common variables

$$V_1 \times V_2 \times V_3 = (V_1 \times V_2) \land (V_2 \times V_3)$$
$$= S_1 \land S_2$$
Components (2)

D Interaction graph of a system $S = V_1 \times ... \times V_n$

shared labels define the local interactions...

... but they are not expressed by shared variables.

Synchronization by *pullback*

takes into account the presence of common variables

$$V_1 \times V_2 \times V_3 = (V_1 \times V_2) \land (V_2 \times V_3)$$
$$= S_1 \land S_2$$

D Runs of $S = V_1 \times ... \times V_n$ are sequences of events

Different encodings for trajectory sets :

(sub-) language

D Runs of $S = V_1 \times ... \times V_n$ are sequences of events

Different encodings for trajectory sets :

branching process (unfolding)

D Runs of $S = V_1 \times ... \times V_n$ are sequences of events

Different encodings for trajectory sets :

trellis process (time-unfolding)

Where category theory helps...

- Moving to trajectory systems
 - replace each component S by its trellis T(S)

<u>Thm</u> : this functor has a left adjoint, which entails

 $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$

 $S = S_1 \land ... \land S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \land^{\mathsf{T}} ... \land^{\mathsf{T}} \mathcal{T}(S_m)$

Where category theory helps...

- Moving to trajectory systems
 - replace each component S by its trellis T(S)

• <u>Thm</u>: this functor has a left adjoint, which entails $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$ $S = S_1 \wedge ... \wedge S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \wedge^{\mathsf{T}} ... \wedge^{\mathsf{T}} \mathcal{T}(S_m)$

- Interest:
 - we are back to static systems, in factorized form,
 - we get procedures to compute products/pullbacks of trellis processes,
 - products/pullbacks automatically come with a natural notion of *projection* !

Where category theory helps...

- Moving to trajectory systems
 - replace each component S by its trellis T(S)

• <u>Thm</u>: this functor has a left adjoint, which entails $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$ $S = S_1 \wedge ... \wedge S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \wedge^{\mathsf{T}} ... \wedge^{\mathsf{T}} \mathcal{T}(S_m)$

- Interest:
 - we are back to *static systems*, in *factorized form*,
 - we get procedures to compute products/pullbacks of trellis processes,
 - products/pullbacks automatically come with a natural notion of *projection* !

Thm : the central axiom holds on pullbacks and projections of trajectory sets.

- Drawbacks:
 - computes all possible interleavings of runs
 - <u>concurrency is against us...</u>
 - Not suitable to distributed concurrent systems.

Outline

- Static distributed systems from Markov fields to abstract distributed systems
- Networks of automata introduction of the time dimension

Networks of concurrent systems a partially ordered notion of time

- Applications distributed diagnosis in telecommunication networks
- Perspectives

Objective : represent the concurrency of events

- preserve only causality links between events:
- time is now partially ordered

Objective : represent the concurrency of events

- preserve only causality links between events
- time is now partially ordered

Objective : represent the concurrency of events

- preserve only causality links between events
- time is now partially ordered

Objective : represent the concurrency of events

- preserve only causality links between events
- time is now partially ordered

Objective : represent the concurrency of events

- preserve only causality links between events
- time is now partially ordered

Composition of automata by "concurrent" product :

- disjoint union of state sets (instead of product)
- transitions with shared labels are "glued"
- transitions with private labels don't change

$$S = V_1 \times V_2 \times V_3$$

Composition of automata by "concurrent" product :

- disjoint union of state sets (instead of product)
- transitions with shared labels are "glued"
- transitions with private labels don't change

$$S = V_1 \times V_2 \times V_3$$

Composition by "concurrent" pullback is also possible

$$S = V_1 \times V_2 \times V_3 = (V_1 \times V_2) \land (V_2 \times V_3)$$

□ Graph of a distributed system S = V₁×...×V_n = S₁∧...∧S_m
■ exactly as before...

■ Runs of $S = V_1 \times ... \times V_n$ are *partial orders* of events (also called *configurations*)

■ Runs of $S = V_1 \times ... \times V_n$ are *partial orders* of events (also called *configurations*)

Trajectory sets (2)

 Branching processes can be further compressed into trellis processes (cousin of Merged processes, Khomenko '05)

Trajectory sets (2)

 Branching processes can be further compressed into trellis processes (cousin of Merged processes, Khomenko '05)

time is counted independently in each V_i for $S = V_1 \times ... \times V_n$

Moving to trajectory systems

replace each component S by its unfolding U(S) or by its time-unfolding T(S)

Thm : these functors both have a left adjoint

 $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$

 $S = S_1 \land ... \land S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \land^{\mathsf{T}} ... \land^{\mathsf{T}} \mathcal{T}(S_m)$

Moving to trajectory systems

 replace each component S by its unfolding U(S) or by its time-unfolding T(S)

• Thm : these functors both have a left adjoint $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^T ... \times^T \mathcal{T}(V_n)$ $S = S_1 \wedge ... \wedge S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \wedge^T ... \wedge^T \mathcal{T}(S_m)$

Moving to trajectory systems

• replace each component S by its unfolding $\mathcal{U}(S)$ or by its time-unfolding $\mathcal{T}(S)$

Thm : these functors both have a left adjoint

 $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$

 $S = S_1 \land ... \land S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \land^{\mathsf{T}} ... \land^{\mathsf{T}} \mathcal{T}(S_m)$

□ Interest:

- We are back to *static systems*,
- we get computation procedures for products and pullbacks,
- we get a natural notion of *projection*,

Moving to trajectory systems

• replace each component S by its unfolding $\mathcal{U}(S)$ or by its time-unfolding $\mathcal{T}(S)$

Thm : these functors both have a left adjoint

 $S = V_1 \times ... \times V_n \implies \mathcal{T}(S) = \mathcal{T}(V_1) \times^{\mathsf{T}} ... \times^{\mathsf{T}} \mathcal{T}(V_n)$

 $S = S_1 \land ... \land S_m \implies \mathcal{T}(S) = \mathcal{T}(S_1) \land^{\mathsf{T}} ... \land^{\mathsf{T}} \mathcal{T}(S_m)$

- □ Interest:
 - We are back to static systems,
 - we get computation procedures for products and pullbacks,
 - we get a natural notion of *projection*,

Thm : the central axiom is valid, but only in limited cases.

*

Outline

- Static distributed systems from Markov fields to abstract distributed systems
- Networks of automata introduction of the time dimension
- Networks of concurrent systems a partially ordered notion of time

Applications distributed diagnosis in telecommunication networks

Perspectives

- Two RNRT projects (6 years overall)
 - Partners : Alcatel, France Telecom R&D, Ilog, LIPN
 - Distributed alarm correlation and failure diagnosis,
 - implemented above a rule engine.

- □ Two RNRT projects (6 years overall)
 - Partners : Alcatel, France Telecom R&D, Ilog, LIPN
 - Distributed alarm correlation and failure diagnosis,
 - implemented above a rule engine.

 A typical alarm correlation pattern, reconstructed with distributed supervisors

AS Current USM (0) : Alarm Sublist : vd gentilly						
Sublist Action Display Navigation						
Name COUNTERS Total						
vd gentilly	9					
9 0 0 0 0	0 9 0					
Critical Major Minor Warning Indet	Clear NACK ACK					
Friendly Name	Friendly Additional Name Text		Probable ause (nam	Correlated Notification Flag	eti Notification un Identifier	
VD gentillyIspi_westIspi	detection d'une perte de signal causee par un equipement homologue			los	YES	
VD gentillyIspi_westIspi	NOT_DIAGNOSED			disabled	NO	
VD gentillylspi_westlspi mecanisme ALS			tf	NO (1003	
VD gentillylrs_levelims_westims reception de MS_AIS (ais cause par un composant de niveau inferieur)			ms_ais	YES	1004	
VD gentillylrs_levellms_westims NOT_DIAGNOSED			disabled	NO (1005	
VD gentillyirs_levelims_levelihop_levelictp_west_blocklau3 detection d'une AIS cause par un composant de niveau inferieur ou par un composant distant			au_ais	YES	1006	
VD gentillylrs_levellms_levellnop_levelictp_west_blocklau3 NOT_DIAGNOSED			disabled	NO (1007	
gentillyIrs_levelIms_levelIhop_levelIctp_west_blocklau4 detection d'une AIS cause par un composant de niveau inferieur ou par un composant distant			au_ais	YES 0	1016	
VD gentillyirs_levelims_levelihop_levelictp_west_blocklau4	NOT_DIAGNOSED			disabled		1017
correlated alarm						
AS Current USM (0) : Alarm Sublist : correlated alarms						
Sublist Action Display Navigation Help						
Name COUNTERS Total correlated alarms 3 3 0 0 0 3 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3						
Friendly Name	Additional Text	Probable Cause (name)	Correlated Notification Flag	Notification Identifier	ı	$\mathbb{N}_{\mathbb{Z}}$
VD gentillyIrs_levelims_levelims_westi	tion de MS_AIS (ais cause par un composant de niveau inferieur	ms_ais Y	'ES 1	004		h. 20
VD gentillyIspi_westIspi meca	nisme ALS	tf N	10 1	003		
VD gentillyIspi_westIspi NOT	DIAGNOSED	disabled N	10 1	002		
		Selec	ted : O	fou	rcroy0	-
VDT contract

- Partner : Alcatel R&I + Optical Networks Division (1 year)
 - alarm correlation for a submarine-line terminal equipment
 - centralized, but unfolding-based correlation

Outline

- Static distributed systems from Markov fields to abstract distributed systems
- Networks of automata introduction of the time dimension
- Networks of concurrent systems a partially ordered notion of time

Applications

distributed diagnosis in telecommunication networks

Holes in the theory...

- Complexity issues...
- Distributed optimization
 - Robustness issues: alarm selection/rejection, as in <u>chronicles</u>
- On-line collection of (partial) results introduction of true <u>distributed programming</u> aspects
- What for systems with changing architecture ? e.g. web services, mesh networks, ...

Holes in the theory...

- Complexity issues...
- Distributed optimization
- Robustness issues: alarm selection/rejection, as in <u>chronicles</u>
- On-line collection of (partial) results introduction of true <u>distributed programming</u> aspects
- What for systems with changing architecture ? e.g. web services, mesh networks, ...

New Applications

- Finite complete prefixes in factorized form, already started with Agnes Madalinski.
- Distributed optimal planning cooperation project with Univ. of Canberra
- Distributed control ?
 Probably in connection with game theory aspects.

Special thanks to

Armen Aghasaryan Albert Benveniste Thomas Chatain **Didier Devaurs** Christophe Dousson Claude Jard **Christine Guillemot** Arnaud Guyader Stefan Haar Christoforos Hadjicostis **Guy-Bertrand Kamga** Mutlu Koca Bruno Marquie Agnes Madalinski Patrick Perez Vincent Pigourier Helia Pouyllau Laurie Ricker Aline Roumy Mark Smith Alexandre Skrzypczak Julien Thomas Franck Wielgus

• • •