

Integration of functional genomics data

Laboratoire Bordelais de Recherche en Informatique (UMR)

Centre de Bioinformatique de Bordeaux (Plateforme)

A. De Daruvar – Université Bordeaux 2

Observations and motivations

- Genomics and functional genomics have expanded the focus of cellular biology from individual biomolecular entities towards relationships between those entities.
 <u>Entities</u> : genes, ORFs, proteins...
 <u>Relationships</u> : interactions, complexes, pathways,
 - networks...
- This raises new types of questions and new requirements in terms of data integration.

How to make sense out of new experimental data ?

- Purification of protein complexes.
 Is there a biological knowledge, or information, which <u>significantly</u> groups together the components of a complex ?
- Large scale expression profile analysis. Are there clusters of co-regulated genes that <u>significantly</u> correspond to known biological processes ?

Characteristics of the "new" questions

- The questions start with a set of biomolecular entities (query set).
- The answer should go further than collecting information attached to all members of the query set (what <u>significantly</u> groups members of the set ?).

Example : Analysis of a 13 proteins yeast complex

2 Valine, leucine and isoleucine biosynthesis (16)

- 3 Biodegradation of Xenobiotics (137)
- 1 Glycolysis / Gluconeogenesis (47)
- 2 Oxidative phosphorylation (70)
- 5 Non-enzymes (4312)

Difficulties related to biological information

- Heterogeneity : in terms of semantics (functional and structural information) and in terms of structures (numerical values, discrete attributes, natural language texts,...)
- Dissemination : annotated databases (UNIPROT, EMBL, KEGG,...), literature (MedLine, full text of articles), raw data sources (SMD, ArrayExpress,...).

How to identify a biological criteria which significantly groups components of my query set ?

Proposed strategy

- Principles
 - Use sets of genes, or gene's products, as a unified data structure
 - Convert as much as possible of available biological knowledge into sets (known / target sets)
 - Use a measure of similarity between sets in order to compare a query set with the target sets

System

- Store all the target sets in a database
- Define a standard format to import new sets
- Develop a system that supports queries: comparison of one or several sets against the content of the database in order to fetch similarities

...

Converting biological knowledge into sets

- □ Structural information (InterPro : 1 domain = 1 set)
- □ Functional classification (Kegg : 1 pathway = 1 set)
- Protein interactions (1 complex = 1 set)
- Cellular location (MIPS : 1 compartment = 1 set)
- □ Biliographical references (Pubmed : 1 article = 1 set)
- Expression data (GEO : 1 cluster = 1 set)
- Physico-chemical properties (a IP value range = 1 set)
- Genome structure (1 group of neighbors = 1 set)

Principles of sets comparison

Query set

Sets have to be taken from a define population (an organism).
Due to multiple comparisons, statistical correction is necessary (i.e. Bonferonni) in order to compute an Evalue.

Organization of the sets

- Each set belongs to a criteria (i.e. physical proximity, a given expression data experiment, GO, etc...)
- For a given criteria, there are <u>relationships between sets</u> that can be described in a graph

Single/Multiple query sets

BlastSets system

System up and running and publicly available at http://cbi.labri.fr/outils/BlastSets/

🗮 BlastSets - Mozilla		
Image: Constraint of the second se		
QUERY TASK LIST CREDITS MANUAL Blast	Sets 🔈	
STEP 1 Saccharomyces cerevisiae		
Sequence IDs Classification STEP 2 Vill69c Query Virl214w-a yar068w Or yoll55c Vill59c)n 	
STEP 3 Systematic classification - ENZYME Systematic classification - GO - biological process Target Systematic classification - GO - cellular component Systematic classification - GO - molecular function Systematic classification - SUBCELL	VE CLEAR	
STEP 4 Evalue Results Results Image: Control of the state of the	all results 20 results	 Barriot, R., Poix, J., Groppi, A., Barre, A., Goffard, N., Sherman, D., Dutour, I. & de Daruvar, A. New strategy for the representation and the integration
STEP 5 Query (optional) name		of biomolecular knowledge at a cellular scale. <i>Nucleic Acids Res</i> .
SUBMIT		

Can BlastSets be usefull ?

ex: Large scale expression profile analysis. Are there clusters of co-regulated genes that significantly correspond to known biological processes ?

Interpretation of expression data

- □ Compute an automatic comparison of :
 - sets obtained by hierarchical clustering of real expression data
 - sets corresponding to metabolic pathways
- Compare BlastSets results (pathways that are found most significantly similar to a given node in the hierarchical tree) and published results (obtain by manual exploration of the hierarchical tree)

Results

Results

BlastSets architecture

Knowledge representation : how to define sets?

 Simple for discrete attributes:
 Sub cellular compartments one compartment = one set
 Metabolic pathways one pathway = one set
 Multi-protein complexes one complex = one set
 Not simple otherwise... how to choose the

most appropriate clustering method ?

Comparing different representations

Clustering expression profiles : Hierarchical clustering

Clustering expression profiles : Best neighbors

More groups => more information captured... and more noise!

Assessment procedure using protein complexes

Results : nb. complexes similar to at least one expression cluster

	Spellman experiment ²			Gasch experiment ³		
	Hierarchic al clustering	Neighborhood 60	Neighborhood 100	Hierarchic al clustering	Neighborhood 60	Neighborhood 100
Number of sets	5629	56 300	78 820	5648	56 490	79 086
MIPS Complexes ¹ (1059)	48	51	14	56	89	20
Random complexes (1059)	0	0	0	0	0	0

Obtained using Bonferroni correction

1. MIPS Database - Complex : <u>http://mips.gsf.de/genre/proj/yeast/</u>

2. Spellman PT et al. 1998. "Comprehensive identification of cell cycle-regulated genes of the yeast *Saccharomyces cerevisiae* by microarray hybridization". *Mol Biol Cell* 9(12) : 3273-97

3. Gasch AP et al. 2000. "Genomic expression programs in the response of yeast cells to environmental changes". *Mol Biol Cell* 11(12) : 4241-57

Project on pathways (collaboration with the KEGG)

Assessment of various methods for representing metabolic pathways :

- One KEGG map = one set
- For each map : calculation of elementary modes each of which defines a set

Conclusion / perspectives

 BlastSets implements the concept of neighborhoods (A. Danchin) in order to reveal potential relationships between heterogeneous information.

- The strategy requires optimization of knowledge representation.
- Some computational problems remain to be solved.
- Can the method be implemented as a service provides by the each data source ?

Partners

ACI IMPBIO

- Centre de Bioinformatique Bordeaux (A. de Daruvar, A. Groppi, A. Barré)
- Laboratoire Bordelais de Recherche en Informatique (A. de Daruvar, I. Dutour, D. Sherman, R. Barriot, C. Gaugain)
- Laboratoire de Statistique Mathématique et Applications (J. Poix)
- Unité de Génétique des Génomes Bactériens, Institut Pasteur (A. Danchin)
- UMR INRA/UB2 Génomique Développement Pouvoir Pathogène (A. Blanchard)

Other collaborations :

- INIST (A. Zasadzinski)
- KEGG (M. Kanehisa, J.M. Schwartz, J. Nacher)