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Motivations

Mobile code dilemmas...

I The untrusted code may cause damages on the system
I intern structure corruption

I The untrusted code may use too many resources
I CPU, memory, SMS...

I The untrusted code may reveal confidential data to an attacker
I phonebook, diary, geo-localisation, camera, audio-recorder...
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Motivations

Solutions

I Cryptographic authentication : a trusted source signs the code
I we don’t trust the code but its source (e.g. phone operator)
I restricts the exchange possibilities : it’s difficult to gain trust if you are not a

big company

I Dynamic checking (sand box, monitoring)
I reduces the execution speed
I programs may raise scaring security exceptions like :

Your program as attempted a forbidden action !
I annoying situation, specially when the program has been signed by a big

company...
I users could progressively loose confidence in mobile code security

I Proof-Carrying Code (PCC)
I no trust required in the code producer
I no runtime overhead

I The three approaches can be combined to take advantages of all
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Motivations

Proof carrying code : principles

Code

CPU

proof
checker

certifying
prover

Proof

I the code is sent with an independently certifiable
certificate (proof)

I the certificate is self-evident and unforgeable
I checking the certificate must be easier than

producing it
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Motivations

The maze metaphor
c©G. Necula

program =maze

proof = red path
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Seminal work

Outline

1 Motivations

2 Seminal work

3 Other instances of PCC

4 PCC by abstract interpretation
A case study : array-bound checks polyhedral analysis
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Seminal work

The Proof Carrying Code’s pioneers

First proposed by Georges Necula (Berkley) and Peter Lee (CMU).
I Necula & Lee, Safe Kernel Extensions Without Run-Time Checking, OSDI’96
I Necula, Proof-Carrying Code, POPL’97
I Necula & Lee, The Design and Implementation of a Certifying Compiler,

PLDI’98
I Necula, Compiling with Proofs, Phd thesis, 1998
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Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

Proof

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.
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Seminal work

The representation and checking for proofs

In this seminal work Necula and Lee used LF1

I a logical framework which allows to define logic systems with their proof
rules and provide a generic proof checker

Advantages :
I the verifier is generic, efficient, and small (and then certainly sound)

Disadvantages :
I certificates are big (sometimes 1000×code !)

Variants :
I LFi is a variant2 where the proof checker infers by itself fragments of the

proof (2.5×code)
I Oracle-based proofs3 reduces drastically this factor (12% of the code)

1R. Harper, F. Honsell and G. Plotkin. A framework for defining logics. Journal of the ACM, 1993.
2G.C. Necula and P. Lee. Efficient Representation and Validation of Proofs. LICS’98
3G.C. Necula and S. P. Rahul. Oracle-based checking of untrusted software. POPL’01
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Seminal work

Certifying prover

The certifying prover
I automatically proves the verification conditions (VC)

I VC must fall in some logic fragments whose decision procedures have been
implemented in the prover

I in the PCC context, proving is not sufficient, detailed proof must be
generated too

I like decision procedures in skeptical proof assistants (Coq, Isabelle, HOL
light,...)

I proof producing decision procedures are more and more considered as an
important software engineering practice to develop proof assistants

Necula’s certifying prover includes
I congruence closure and linear arithmetic decision procedures
I with a Nelson-Oppen architecture for cooperating decision procedures
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Seminal work

Annotation generation
Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

I the transmitted program is the result of the compilation
of a source program written in a type-safe language

I the role of the certifying compiler is
I to check type-safety of the source program
I to generate corresponding annotations in the machine

code to help the VCGen
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Seminal work

One example of PCC’s success
The Touchstone system4 verifies that optimized native machine code
produced by a special Java compiler is memory safe.

4C. Colby, P. Lee, G.C. Necula, F. Blau, M. Plesko and K. Cline. A certifying compiler for Java.
PLDI’00
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Seminal work

Intermediate conclusions on standard PCC

I an astonish mix between logic, program verification and concrete
security issues,

I still a busy research area,
I PCC must demonstrate its ability to enforce more complex security

policies while conciliating many features :
I small certificates,
I efficient verifier,
I sound verifier,
I effective tools to build certificates,
I effective integration in tomorrow global computers.
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Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?

I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...
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Other instances of PCC

Other instances of PCC (1/2)
An active trend in PCC has focused on soundness
I Touchstone has achieved an impressive level of scalability (programs

with about one million instructions)
I but5 “[...], there were errors in that code that escaped the thorough testing of the

infrastructure”.
I the weak point was the VCGen (23,000 lines of C...)

The following work have tried to reduce the size of the TCB
I by simply removing the VCGen !

I A.W. Appel. Foudational Proof-Carrying Code. LICS’01
I by certifying in a proof assistant the VCGen

I M. Wildmoser and T. Nipkow. Asserting Bytecode Safety. ESOP’05
I by certifying in a proof assistant the checker

I TAL (next slide), certified abstract interpretation (Lecture 4)

5G.C. Necula and R.R. Schneck. A Sound Framework for Untrusted Verification-Condition
Generators. LICS’03
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Other instances of PCC

Other instances of PCC (2/2)

Some work use checkers and proof formats specific to one security property
I Rose’s Lightweight Bytecode Verifier

I ensures type-safety of Java bytecode programs,
I the proof/certificate is a (partial) type annotation,
I now part of the Sun KVM (JVM for embedded devices).

I TAL6 Typed Assembly Language for advanced memory safety
I Abstraction-Carrying Code7 : PCC by abstract interpretation

Such work lose the genericity of the seminal PCC proof checker, but can be
machine checked
I Lightweight Bytecode Verifier (Klein & Nipkow, Barthe & Dufay)
I TAL (Krary)
I Abstraction-Carrying Code (Besson & Jensen & Pichardie)

6G. Morrisett, D. Walker, K. Crary and Neal Glew. From System F to Typed Assembly Language.
POPL’98

7E. Albert, G. Puebla and M. V. Hermenegildo. Abstraction-Carrying Code. LPAR’05
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PCC by abstract interpretation

PCC à la Rose
Rose’s Lightweight Bytecode Verifier is now part of the Sun KVM (JVM for
embedded devices).

Code

KVM

lightweight
verifier

standard
verifier

types

I safety policy = standard Java type safety
I the certificate is a type annotation
I verification is fast and requires very few memory
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PCC by abstract interpretation

Discussing Rose’s approach

Advantages :
I certificates are small,
I certificate verification is fast,
I certificate generation is automatic.

Disadvantages :
I security policy is quite simple
I checker is very ad-hoc (soundness ?)

I formally established using a proof assistant (Nipkow & al)

How can we generalise the approach while keeping a machine checked
soundness proof ?
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PCC by abstract interpretation

Our approach

Generalisation
I based on Abstract Interpretation

Machine checked soundness proof
I rely on the methodology/libraries proposed in Pichardie’s Phd work

Case study
I array access safety for an imperative fragment of Java
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PCC by abstract interpretation

Abstract interpretation

Abstract Interpretation [Cousot and Cousot 77] is a method for designing
approximate semantics of programs.

I application to static analysis : static analysers are computable
approximate semantics of programs

I a static analysis is presented as a post-fixpoint ~p�] of a functional F] in a
lattice

F]
(
~p�]

)
v ~p�]

I ~p�] is computed by complex iterative methods
I but checking a given post-fixpoint is very fast !
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PCC by abstract interpretation

Abstract Interpretation based PCC

Code

JVM

post-fixpoint
checker

post-
fixpoint
solver

post-fixpoint

I no extra-annotation is required
I we have developed a generic technique for fixpoint

compression
I but each post-fixpoint checker is ad-hoc : must be

formally proved sound !
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PCC by abstract interpretation

PCC by abstract interpretation
Producer

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ]

untrusted
compressor

Consumer

certificate
verifier

checks if F](pf) v pf and pf v φ]

Safe ?

post-fixpoint

program

post-fixpoint
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PCC by abstract interpretation

Certified PCC by abstract interpretation
Producer

certified
verifier

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ

untrusted
compressor

Consumer

semantics
+

security
policy

certified
verifier

certified (post-fixpoint) verifier

(Coq file)

Coq kernel
+ Coq extraction

extracted
certificate

verifier

checks if F](pf) v pf and pf v φ

Safe ?

post-fixpoint

program

post-fixpoint

inclusion
certificates
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Polyhedral abstract interpretation

Automatic discovery of linear restraints among variables of a program.
P. Cousot and N. Halbwachs. POPL’78.

Patrick Cousot Nicolas Halbwachs

Polyhedral analysis seeks to discover invariant linear equality and inequality
relationships among the variables of an imperative program.
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Convex polyhedra

A convex polyhedron can be defined algebraically as the set of solutions to a
system of linear inequalities.
Geometrically, it can be defined as a finite intersection of half-spaces.
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

while (x<6) {

if (?) {

y = y+2;

};

x = x+1;

}
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State properties are over-approximated by convex polyhedra in Q2.

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}] {x = 1 ∧ 0 6 y 6 2}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}

y = y+2;

{x = 0 ∧ y = 2}

};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}

}
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

At loop headers, we use
heuristics (widening) to
ensure finite convergence.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

O {x 6 2 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}

y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}

};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{1 6 x 6 2 ∧ 0 6 y 6 2x}

}
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At loop headers, we use
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ensure finite convergence.
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{0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}

y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}

};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{1 6 x 6 2 ∧ 0 6 y 6 2x}

}

David Pichardie Proof Carrying Code : a quick tour 27 / 43



PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

By propagation we obtain a
post-fixpoint

which is
enhanced by downward
iteration.

x = 0; y = 0;

{0 6 y 6 2x}

while (x<6) {

if (?) {

{0 6 y 6 2x ∧ x 6 5}

y = y+2;

{2 6 y 6 2x+ 2 ∧ x 6 5}

};

{0 6 y 6 2x+ 2 ∧ 0 6 x 6 5}

x = x+1;

{0 6 y 6 2x ∧ 1 6 x 6 6}

}

{0 6 y 6 2x ∧ 6 6 x}
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Polyhedral analysis

A more complex example.

The analysis accepts to
replace some constants by
parameters.

x = 0; y = A;

{A 6 y 6 2x+ A ∧ x 6 N}

while (x<N) {

if (?) {

{A 6 y 6 2x+ A ∧ x 6 N − 1}

y = y+2;

{A + 2 6 y 6 2x+ A + 2 ∧ x 6 N − 1}

};

{A 6 y 6 2x+ A + 2 ∧ 0 6 x 6 N − 1}

x = x+1;

{A 6 y 6 2x+ A ∧ 1 6 x 6 N}

}

{A 6 y 6 2x+ A ∧ N = x}
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The four polyhedra operations
I ] ∈ Pn × Pn → Pn : convex union

I over-approximates the concrete
union in junction points

I ∩ ∈ Pn × Pn → Pn : intersection
I over-approximates the concrete

intersection after a conditional
intruction

I ~x :=e� ∈ Pn → Pn : affine
transformation

I over-approximates the affectation of
a variable by a linear expression

I O ∈ Pn × Pn → Pn : widening
I ensures (and accelerate)

convergence of (post-)fixpoint
iteration

I includes heuristics to infer loop
invariants

x = 0; y = 0;

P0 = ~y := 0�~x := 0�(Q2) O P4

while (x<6) {

if (?) {

P1 = P0 ∩ {x < 6}

y = y+2;

P2 = ~y := y+ 2�(P1)

};

P3 = P1 ] P2

x = x+1;

P4 = ~x := x+ 1�(P3)

}

P5 = P0 ∩ {x > 6}

David Pichardie Proof Carrying Code : a quick tour 29 / 43



PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Library for manipulating polyhedra

I Parma Polyhedra Library8 (PPL), NewPolka : complex C/C++ libraries
I They rely on the Double Description Method

I polyhedra are managed using two representations in parallel

s1

s2

s3

r1

r2

I by set of inequalities

P =

 (x, y) ∈ Q2

∣∣∣∣∣∣∣∣
x > −1
x − y > −3
2x + y > −2
x + 2y > −4


I by set of generators

P =

{
λ1s1 + λ2s2 + λ3s3 + µ1r1 + µ2r2 ∈ Q2

∣∣∣∣ λ1, λ2, λ3, µ1, µ2 ∈ R2

λ1 + λ2 + λ3 = 1

}
I operations efficiency strongly depends on the chosen representations, so

they keep both
I We really don’t want this in a Trusted Computes Base !
I But we really don’t want to certify this C/C++ libraries neither !

8Previous tutorial on polyhedra partially comes from http://www.cs.unipr.it/ppl/
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Polyhedra in a PCC framework
Join work with F. Besson, T. Jensen and T. Turpin

Develop a checker of analysis results
I minimize the number of operations to certify
I avoid (some of the most) costly operations

The checker will receive a post-fixpoint + a certificate of certain polyhedra
inclusions to be verified by the checker

We develop one checker for a rich abstract domain based on Farkas lemma

Can accommodate invariants that are obtained
I automatically (intervals, polyhedra,. . . )
I by user-annotation (polynomials, . . . )
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A minimal polyhedral tool-kit
For efficiency and simplicity,
I Polyhedra are represented in constraint form prefixed by existentially

quantified variables
I Constraints are never normalised

Abstract operators are much simpler :
I Assignments do not trigger quantifier elimination ;

~x := e�(P) = ∃x ′, P[x ′/x] ∧ x = e[x ′/x]

I Intersection is just syntactic union of constraints ;
I (Over-approximations) of Convex Hulls are given as untrusted

invariants ;

isUpperBound(P, Q, UB) ≡ P v UB ∧ Q v UB

I Polyhedra inclusion is guided by a certificate ;

isIncluded(P, Q, Cert) ⇒ P v Q
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Certified PCC by abstract interpretation
Producer

certified
verifier

untrusted
post-fixpoint solver

untrusted
compressor

Consumer

semantics
+

security
policy

certified
verifier

certified (post-fixpoint) verifier

(Coq file)

Coq kernel
+ Coq extraction

extracted
certificate

verifier
Safe ?

post-fixpoint

program

post-fixpoint

inclusion
certificates
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PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Checking polyhedra inclusion using certificates

I Inclusion reduces to a conjunction of emptiness problems

P v {q1 > c1, . . . qm > cm}

if and only if
P ∪ {−q1 > −c1 + 1} = ∅∧ . . . ∧ P ∪ {−qm > −cm + 1} = ∅

I Each emptiness reduces to unsatisfiability of linear constraints

∀x1, . . . , xn, ¬

 a1,1, . . . , a1,n
...

am,1, . . . , am,n

 ·

 x1
...

xn

 >

 b1
...

bm


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Unsatisfiability certificates
Lemma (Farkas’s Lemma (Variant))
Let A ∈ Qm×n and b ∈ Qn.

∀x ∈ Qn, ¬(A · x > b)

if and only if

∃(cert ∈ Qm), cert > 0̄, such that
{

At · cert = 0̄
bt · cert > 0

Soundness of certificates is easy (⇐)

Démonstration.
Suppose A · x > b.
Since cert > 0̄ we have (A · x)t · cert > bt · cert.
Now xt · (At · cert) = (xt · At) · cert = (A · x)t · cert.
Hence xt · (At · cert) > bt · cert.
Therefore xt.0̄ = 0 > bt · cert > 0 → contradiction.

�

David Pichardie Proof Carrying Code : a quick tour 35 / 43



PCC by abstract interpretation A case study : array-bound checks polyhedral analysis

Certificate checking

Example
Using the certificate cert = (1; 1; 5), check that 1 1

−1 4
0 −1

 ·
(

x
y

)
>

 2
1
1

 has no solutions.

Checking algorithm.

I Check
(

1 1
−1 4

0 1

)t

·
(

1
1
5

)
=

(
0
0

)
I Check

(
2
1
1

)t

·
(

1
1
5

)
> 0.

�

Checking time complexity is quadratic (matrix-vector product).
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Certificate generation by linear programming

Let A ∈ Qm×n and b ∈ Qn, the set of unsatisfiability certificates is defined as

Cert =

c

∣∣∣∣∣∣
c > 0
bt · c > 0
At · c = 0


Finding an extremal certificate is a linear programming problem

min{ct · 1̄ | c ∈ Cert}

that can be solved
I OverN, by linear integer programming algorithms

(Bad complexity, smallest certificate)
I Over Q, by the Simplex (or interior point methods)

(Good complexity and small certificate – in practise)
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Application : a polyhedral bytecode analyser

We have applied this technique for a Java-like bytecode language with
I (unbounded) integers,
I dynamically created (unidimensional) array of integers,
I static methods (procedures),
I static fields (global variables).

Linear invariant are used to statically checks that all array accesses are within
bounds.

It allows to remove the dynamic check used by standard JVM without risk of
buffer overflow attack.

In practice we could only try to detect statically some valid array accesses and
keep dynamic checks for the other accesses.
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Example : binary search

static int bsearch(int key, int[] vec) {

int low = 0, high = vec.length - 1;

while (0 < high-low) {

int mid = (low + high) / 2;

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

}

return -1;
}

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤ high + 2 · mid ∧ −1 + low ≤ mid ≤
1+high∧high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧2 ≤ |vec0|∧2+high+mid ≤ |vec0|+low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1
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Example : binary search

static int bsearch(int key, int[] vec) {

int low = 0, high = vec.length - 1;

while (0 < high-low) {

int mid = (low + high) / 2;

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

}

return -1;
}

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key∧|vec0| = |vec|∧0 ≤ low < high < |vec0|∧low+high−1 ≤ 2·mid ≤ low+high
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤ high + 2 ·
mid ∧ −1 + low ≤ mid ≤ 1 + high ∧ high ≤ low + mid ∧ 1 + high ≤ 2 · low + mid ∧ 1 + low + mid ≤
|vec0| + high ∧ 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0| + low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1

This is a correct post-fixpoint but there is too many informations (too precise) !
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Example : binary search

static int bsearch(int key, int[] vec) {

int low = 0, high = vec.length - 1;

while (0 < high-low) {

int mid = (low + high) / 2;

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

}

return -1;
}

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key∧|vec0| = |vec|∧0 ≤ low < high < |vec0|∧low+high−1 ≤ 2·mid ≤ low+high
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤ high + 2 ·
mid ∧ −1 + low ≤ mid ≤ 1 + high ∧ high ≤ low + mid ∧ 1 + high ≤ 2 · low + mid ∧ 1 + low + mid ≤
|vec0| + high ∧ 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0| + low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1

This one is less precise but sufficient to ensure the security policy.
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Some preliminary benchmarks

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

Class files are given in bytes, certificates in number of constraints, time in
seconds.
The two checking times in the last column give the checking time with and
without fixpoint pruning.
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Conclusions

The two main slogans of PCC
1 program verification should follow the maze metaphor

I less power consuming for the consumer
I more easy to trust (or prove correct)

2 TCB must be as small, as formal and generic as possible

The next challenges for PCC
1 PCC tools must be able to enforce more expressive security properties
2 certified PCC must reach the scalability level of standard PCC
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