A Call to Regularity

Moshe Y. Vardi*

Rice University

*Joint work with D. Calvanese, G. De Giacomo, and M. Lenzerini

Birth of Relational Databases

A Short History of Databases:

- 1950s: Data scattered each user to herself.
- 1960s: Databases central data repository.
- 1970: E.F. Codd relational model
- Data stored in tables (relations)
- First-order logic used to query data
- *1970s*: Development of relational database systems, with SQL as query language.
- 1980s: Relational databases become dominant.

Database Query Languages

- Standard database query languages (e.g., SQL 2.0) are essentially 1st-order.
- Aho and Ullman, 1979: 1st-order languages are weak; add *recursion*
- Gallaire and Minker, 1978: add recursion via *logic* programs
- SQL 3.0, 1999: recursion added

A Theory of Database Query Language

- Chandra-Harel, 1979: A theory of computable relational queries.
- Chandra-Harel, 1980: Expressiveness and computational complexity of relational queries.

Expressiveness costs money!!!

- 1st-order queries: *LOGSPACE*
- Recursive queries: *PTIME*

Datalog

Datalog: Chandra-Harel, 1982

- Function-free logic programs
- Existential, positive fixpoint logic
- Select-project-join-union-recur queries

Example: *Transitive Closure*

Path(x, y) := Edge(x, y)Path(x, y) := Path(x, z), Path(z, y)

Definition: A program P is *bounded* if it is equivalent to a non-recursive program.

Example: Impressionable Shopper

Buys(x,y) :- Trendy(x), Buys(z,y)Buys(x,y) :- Likes(x,y)

Data Complexity

Definitions:

- The stage function s_P(n) of a program P is the least m such that P^m(D) = P[∞](D) for each D with at most n elements.
- A query Q is in STAGE(f(n)) if it is expressible by a program P such that $s_P(n)$ is in O(f(n)).

Database complexity and computational complexity:

- $STAGE(polylog n) \subseteq NC$
- $STAGE(poly n) \subseteq PTIME$

Gap Theorem [Kanellakis, 1992]:

- P is bounded iff it defines a query in STAGE(1)
- P is unbounded iff it does not define a query in STAGE(f(n)), for f(n) in $o(\log n)$.

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is undecidable.

Research Program - Study Boundary

Parameters:

- Number of derived predicates
- Arity of derived predicates
- Number of rules
- Nonlinear vs. linear (one recursive call per rule)
- I/O convention

GMSV: undecidability holds for linear programs with a single 4-ary derived predicate.

Binary Programs

Binary programs: binary derived predicates.

Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]: Boundedness is undecidable for programs with a single binary derived predicate.

Proof: Reduction from halting problem for Turing machines:

- Σ : tape alphabet
- Base predicates: $Zero(x), Succ(x, y), Q_a(x)$ for $a \in \Sigma$
- Derived predicates: Fing(x,y)- pointers to corresponding positions in successive configurations

Cosmadakis, Gaifman, Kanellakis, V., 1988: Boundedness is decidable for unary programs.

Query Containment

Query Optimization: Given Q, find Q' such that:

•
$$Q \equiv Q'$$

 $\bullet~Q^\prime$ is "easier" than Q

Query Containment: $Q_1 \sqsubseteq Q_2$ if $Q_1(B) \subseteq Q_2(B)$ for all databases B.

Fact: $Q \equiv Q'$ iff $Q \sqsubseteq Q'$ and $Q' \sqsubseteq Q$

Consequence: Query containment is a *key* database problem.

Query Containment

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking
- . . .

Consequence: Query containment is a *fundamental* database problem.

Decidability of Query Containment

- *SQL*: undecidable
 - Folk Theorem
 - Poor theory and practice of optimization
- SPJU: decidable
 - Chandra&Merlin–1977, Sagiv&Yannakakis–1982
 - Rich theory and practice of optimization
- Datalog: undecidable
 - Shmueli-1977
 - Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable - almost no interesting, well-behaved fragments.

1990s: Back to Binary Relations

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data,

Formally: $(D, E, \Lambda_+, \lambda)$

- D nodes
- $E \subseteq D^2$ edges
- Λ_+ labels
- $\lambda: E \to \Lambda_+$ labeling (alt., also node labels)

Path Queries

Active Research Topic: What is the right query language for semistructured data?

Basic Element of all proposals: path queries

- Q(x,y) : -x L y
- L: formal language over labels

•
$$a \cdot \underline{l_1} \cdots \underline{l_k} \cdot b$$

• Q(a,b) holds if $l_1 \cdots l_k \in L$

Example: Regular Path Query $Q(x, y) :- x (Wing \cdot Part^+ \cdot Nut) y$

Path-Query Containment

$$Q_1(x,y) := x \ L_1 \ y$$

 $Q_2(x,y) := x \ L_2 \ y$

Language-Theoretic Lemma 1: $Q_1 \sqsubseteq Q_2 \text{ iff } L_1 \subseteq L_2$

Proof: Consider a database $a \cdot \underline{l_1} \cdots \underline{l_k} \cdot b$ with $l_1 \cdots l_k \in L_1$

Corollary: Path-Query Containment is

- undecidable for context-free path queries
- decidable for regular path queries.

Regular Path Queries

Observations:

- A fragment of Transitive-Closure Logic
- A fragment of binary Datalog

- Concatenation:
$$E(x,y) := E_1(x,z), E_2(z,y)$$

- Union: $E(x,y) := E_1(x,y)$
 $E(x,y) := E_2(x,y)$
- Transitive Closure: $P(x,y) := E(x,z)$
 $P(x,y) := E(x,z), E(z,y)$

Consequence:

- Data complexity: NLOGSPACE
- Expression complexity: *PTIME*

Containment: PSPACE-complete, via nondeterministic automata (Stockmeyer, 1973).

Language Containment – Upper Bound

Lemma: $L(E_1) \subseteq L(E_2)$ iff $L(E_1) - L(E_2)) = \emptyset$

Algorithm for checking whether $L(E_1) \subseteq L(E_2)$:

- 1. Construct NFAs A_i such that $L(A_i) = L(E_i) linear blow-up$.
- 2. Construct $\overline{A_2}$ such that $L(\overline{A_2}) = \Sigma^* L(A_2) exponential blow-up.$
- 3. Construct $A = A_1 \times \overline{A_2}$ such that $L(A) = L(E_1) L(E_2) quadratic blow-up$.
- 4. Check if there is a path from start state to final state in A NLOGSPACE.

Bottom Line: *PSPACE*

Two-Way RPQs

Extended Alphabet: $\Lambda_{-} = \{a_{-} : a \in \Lambda_{+}\}$ $\Lambda = \Lambda_{+} \cup \Lambda_{-}$

Inverse Roles:

Part(x, y): y part of x $Part_{-}(x, y)$: x part of y

Example: Step Siblings

 $\begin{array}{lll} Q(x,y) &: - \\ x & [(father_{-} \cdot father) + (mother_{-} \cdot mother)]^{+} & y \end{array}$

Containment: Two-way nondeterministic automata

- Hopcroft and Ullman, 1979: 2DFA
- Hopcroft, Motwani and Ullman, 2000: ???

2NFA

- $A = (\Sigma, S, S_0, \rho, F)$
- Σ finite alphabet
- S finite state set
- $S_0 \subseteq S$ initial states
- $F \subseteq S$ final states
- $\rho: S \times \Sigma \to 2^{S \times \{-1,0,+1\}}$ transition function

Theorem: Rabin&Scott, Shepherdson, 1959 $2NFA \equiv 1NFA$

2RPQ Containment

Difficulties:

- 2NFA \rightarrow 1NFA: exponential blow-up
 - Consequence: Doubly exponential complementation
- Difference between query and language containment
 - $\begin{array}{ll} \ Q_1(x,y) & :- \ x \ Parent \ y \\ Q_2(x,y) & :- \ x \ Parent \cdot Parent_- \cdot Parent \ y \end{array}$
 - $Q_1 \sqsubseteq Q_2$ but $L(Parent) \not\subseteq L(Parent \cdot Parent_- \cdot Parent)$

Back to Basics: $2NFA \rightarrow 1NFA$

Theorem: Vardi, 1988

Let $A=(\Sigma,S,S_0,\rho,F)$ be a 2NFA. There is a 1NFA A^c such that

- $L(A^c) = \Sigma^* L(A)$
- $||A^c|| \in 2^{O(||A||)}$

Proof: Guess a subset-sequence counterexample $a_0 \cdots a_{k-1} \not\in L(A)$ iff there is a sequence T_0, T_1, \cdots, T_k of subsets of S such that

1.
$$S_0 \subseteq T_0$$
 and $T_k \cap F = \emptyset$.

- 2. If $s \in T_i$ and $(t, +1) \in \rho(s, a_i)$, then $t \in T_{i+1}$, for $0 \le i < k$.
- 3. If $s \in T_i$ and $(t,0) \in \rho(s,a_i)$, then $t \in T_i$, for $0 \le i < k$.
- 4. If $s \in T_i$ and $(t, -1) \in \rho(s, a_i)$, then $t \in T_{i-1}$, for $0 < i \le k$.

Foldings

Definition: Let $u, v \in \Lambda^*$. We say that v folds onto u, denoted $v \rightsquigarrow u$, if v can be "folded" on u, e.g.,

 $abb_bc \rightsquigarrow abc.$

Pictorially, $\xrightarrow{a} \cdot \xrightarrow{b} \cdot \xleftarrow{b} \cdot \xrightarrow{b} \cdot \xrightarrow{c} \rightsquigarrow \xrightarrow{a} \cdot \xrightarrow{b} \cdot \xrightarrow{c}$

Definition: Let *E* be an RE over Λ . Then $fold(E) = \{v : u \rightsquigarrow v, u \in L(E)\}.$

Language-Theoretic Lemma 2:

Let $Q_1(x, y) := x E_1 y$ $Q_2(x, y) := x E_2 y$ be 2RPQs. Then $Q_1 \sqsubseteq Q_2$ iff $L(E_1) \subseteq fold(E_2)$.

2RPQ containment

Theorem: Let E be an RE over Λ . There is a 2NFA \tilde{A}_E such that

- $L(\tilde{A}_E) = fold(E)$
- $||\tilde{A}_E|| \in O(||E||)$

Containment $Q_1(x, y) := x E_1 y$ $Q_2(x, y) := x E_2 y$

TFAE

- $Q_1 \sqsubseteq Q_2$
- $L(E_1) \subseteq fold(E_2)$.
- $L(E_1) \subseteq L(\tilde{A}_{E_2}).$
- $L(E_1) \cap L(\tilde{A}_{E_2}^c) = \emptyset$
- $L(A_{E_1} \times \tilde{A}_{E_2}^c) = \emptyset$

Bottom-line: 2RPQ containment is PSPACEcomplete.

View-Based Query Processing

- Global database: B over Λ_+
- Views: $\{V_1, \ldots, V_n\}$, V_i is a query
- View extensions: $\{\mathcal{E}_1, \ldots, \mathcal{E}_n\}$, $\mathcal{E}_i \subseteq V_i(B)$
- Global query Q over Λ
- Local query over V_1, \ldots, V_n

Query Processing

- 1. View-based query answering: approximate Q(B) using view-extension information.
- 2. *View-based query rewriting*: approximate global query by a local query based on view definitions
- 3. View-based query losslessness: Compare global query with its view-based approximation.
- 4. *View-based query containment*: Compare viewbased approximations of two global queries.

View-Based Query Rewriting

- Global database: B over Λ_+
- Views: $\{V_1, \ldots, V_n\}$, V_i is a query
- View extensions: $\{\mathcal{E}_1, \ldots, \mathcal{E}_n\}$, $\mathcal{E}_i \subseteq V_i(B)$
- Global query Q over Λ
- Local query over V_1, \ldots, V_n

Query Rewriting

$$\Delta_{+} = \{v_1, \dots, v_n\}$$
$$\Delta = \Delta_{+} \cup \Delta_{-}$$

- Find regular expression \mathcal{E} over Δ such that $\mathcal{E}[v_i \mapsto V_i, v_{i,-} \mapsto rev(V_i)] \sqsubseteq Q.$
 - $rev(v) = v_{-}, rev(v_{-} = v), rev(e_1 + e_2) = rev(e_1) + rev(e_2), rev(e_1; e_2) = rev(e_2); rev(e_1), rev(e^*) = rev(e)^*$
- Find maximal such \mathcal{E} .

Example: Q = abcd, $V_1 = ab$, $V_2 = cd$: $Q = V_1V_2$

Counterexample Method

Candidate Rewriting: $w = a_1 \dots a_k \in \Delta^k$

- w is a bad rewriting if $w[v_i \mapsto V_i, v_{i,-} \mapsto rev(V_i)] \not\sqsubseteq Q.$
- w is a *bad* rewriting if there are *witnesses* $w_1, \ldots, w_k \in \Lambda^*$ such that $w_1 \ldots w_k \not\sqsubseteq L(Q)$, where

$$- w_i \in L(V_j) \text{ if } a_i = v_j.$$

$$- w_i \in L(rev(V_j)) \text{ if } a_i = v_{j,-}.$$

• $a_1w_1 \dots a_kw_k$: counterexample word

Example: Q = abcd, $V_1 = ab$, $V_2 = cd$

• v_1v_1 : bad rewriting, v_1v_2 : good rewriting

•
$$w_1 = ab$$
, $w_2 = ab$: witnesses

• $v_1w_1v_1w_2$: counterexample word

Regular Counterexamples

Counterexample Word: $a_1w_1 \dots a_kw_k$

1.
$$w_i \in L(V_j)$$
 if $a_i = v_j$.

- 2. $w_i \in L(rev(V_j))$ if $a_i = v_{j,-}$.
- 3. $w_1 \ldots w_k \not\sqsubseteq L(Q)$

Checking counterexample words with 2NFA:

- Check (1) and (2) with 2NFA for V_j
- Use folding technique to construct 2NFA to check $w_1 \dots w_k \sqsubseteq L(Q)$ and then complement.

Complexity: exponential

From Counterexamples to Rewritings

Constructing Good Rewritings

- 1. Construct 1NFA A_1 for counterexample words *(exponential)*.
- 2. Project out witness words to get 1NFA A_2 for bad rewritings $(a_1w_1 \dots a_kw_k \mapsto a_1 \dots a_k)$ (*linear*).
- 3. Complement A_2 to get 1NFA A_3 for good rewritings *(exponential)*.

Theorem:

- Construction yields maximal rewriting (represented by a 1DFA).
- Doubly expoential complexity is optimal.
- Checking whether the rewriting is equivalent to Q is 2EXPSPACE-complete.

Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive first-order logic, i.e., first-order logic without \forall, \lor, \neg ; written as a rule

 $Q(x_1, \ldots, x_n) := R_1(x_3, y_2, x_4), \ldots, R_k(x_2, y_3)$

Significance:

- Most common SQL queries (*Select-Project-Join*)
- Core of Datalog

Example:

Triangle(x, y, z) : - Edge(x, y), Edge(y, z), Edge(z, x)

Conjunctive Query Containment

Canonical Database B^Q :

- Each variable in Q is a distinct element
- Each subgoal $R(x_3, y_2, x_4)$ of Q gives rise to a tuple $R(x_3, y_2, x_4)$ in B^Q

Fact: (Chandra and Merlin, 1977) For conjunctive queries Q_1 and Q_2 , TFAE:

- The containment $Q_1 \sqsubseteq Q_2$ holds
- There is a homomorphism $h: B^{Q_2} \to B^{Q_1}$ that is the identity on distinguished variables.

Conjunctive 2RPQ

C2RPQ: Core of all semistructured query languages $Q(x_1, \ldots, x_n) := -y_1 E_1 z_1, \ldots, y_m E_m z_m$

• $E_i - 2RPQ$

Intuition:

- C2RPQs are obtained from CQ by replacing atoms with REs over $\Lambda.$
- C2RPQs are Select-Project-"Regular Join" queries.

Example:

$$Q(x,y) := z \quad (Wing \cdot Part^+ \cdot Nut) \quad x,$$

 $z \quad (Wing \cdot Part^+ \cdot Nut) \quad y$

C2RPQ Containment

Difficulty: Earlier techniques do not apply

- No canonical database
- No language-theoretic lemma

Solution: Combine and extend earlier ideas

- Infinite family of canonical databases
 - Each variable in Q is a distinct element
 - Each subgoal $y_i E_i z_i$ of Q is replaced by a simple path labeled by a word in $L(E_i)$.
- Represent canonical databases as words over a larger alphabet
- Develop automata-theoretic characterization of C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-complete.

In Conclusion

Regular queries:

- A rich but well-behaved fragment of Datalog
- Of special interest for semistructured data
- Beautiful application of classical formal-language theory
- Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of regular queries?

- RPQs
- 2RPQs
- C2RPQs
- UC2RPQs
- . . .