
A Call to Regularity

Moshe Y. Vardi∗

Rice University

∗Joint work with D. Calvanese, G. De
Giacomo, and M. Lenzerini

1

Birth of Relational Databases

A Short History of Databases:

• 1950s: Data scattered – each user to herself.

• 1960s: Databases – central data repository.

• 1970: E.F. Codd – relational model

– Data stored in tables (relations)

– First-order logic used to query data

• 1970s: Development of relational database systems,
with SQL as query language.

• 1980s: Relational databases become dominant.

2

Database Query Languages

• Standard database query languages (e.g., SQL 2.0)
are essentially 1st-order.

• Aho and Ullman, 1979: 1st-order languages are
weak; add recursion

• Gallaire and Minker, 1978: add recursion via logic
programs

• SQL 3.0, 1999: recursion added

3

A Theory of Database Query Language

• Chandra-Harel, 1979: A theory of computable
relational queries.

• Chandra-Harel, 1980: Expressiveness and
computational complexity of relational queries.

Expressiveness costs money!!!

• 1st-order queries: LOGSPACE

• Recursive queries: PTIME

4

Datalog

Datalog: Chandra-Harel, 1982

• Function-free logic programs

• Existential, positive fixpoint logic

• Select-project-join-union-recur queries

Example: Transitive Closure

Path(x, y) : − Edge(x, y)

Path(x, y) : − Path(x, z), Path(z, y)

Definition: A program P is bounded if it is equivalent
to a non-recursive program.

Example: Impressionable Shopper

Buys(x, y) : − Trendy(x), Buys(z, y)

Buys(x, y) : − Likes(x, y)

5

Data Complexity

Definitions:

• The stage function sP (n) of a program P is the
least m such that P m(D) = P∞(D) for each D
with at most n elements.

• A query Q is in STAGE(f(n)) if it is expressible
by a program P such that sP (n) is in O(f(n)).

Database complexity and computational complexity:

• STAGE(polylog n) ⊆ NC

• STAGE(poly n) ⊆ PTIME

Gap Theorem [Kanellakis, 1992]:

• P is bounded iff it defines a query in STAGE(1)

• P is unbounded iff it does not define a query in
STAGE(f(n)), for f(n) in o(log n).

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is
undecidable.

6

Research Program - Study Boundary

Parameters:

• Number of derived predicates

• Arity of derived predicates

• Number of rules

• Nonlinear vs. linear (one recursive call per rule)

• I/O convention

GMSV: undecidability holds for linear programs with a
single 4-ary derived predicate.

7

Binary Programs

Binary programs: binary derived predicates.

Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]:
Boundedness is undecidable for programs with a single
binary derived predicate.

Proof: Reduction from halting problem for Turing
machines:

• Σ: tape alphabet

• Base predicates: Zero(x), Succ(x, y), Qa(x) for
a ∈ Σ

• Derived predicates: Fing(x, y)– pointers to
corresponding positions in successive configurations

Cosmadakis, Gaifman, Kanellakis, V., 1988:
Boundedness is decidable for unary programs.

8

Query Containment

Query Optimization: Given Q, find Q′ such that:

• Q ≡ Q′

• Q′ is “easier” than Q

Query Containment: Q1 � Q2 if Q1(B) ⊆ Q2(B)
for all databases B.

Fact: Q ≡ Q′ iff Q � Q′ and Q′ � Q

Consequence: Query containment is a key
database problem.

9

Query Containment

Other applications:

• query reuse

• query reformulation

• information integration

• cooperative query answering

• integrity checking

• . . .

Consequence: Query containment is a
fundamental database problem.

10

Decidability of Query Containment

• SQL: undecidable

– Folk Theorem
– Poor theory and practice of optimization

• SPJU: decidable

– Chandra&Merlin–1977, Sagiv&Yannakakis–1982
– Rich theory and practice of optimization

• Datalog: undecidable

– Shmueli–1977
– Difficult theory and practice of optimization

Unfortunately, most decision problems involving
Datalog are undecidable - almost no interesting,
well-behaved fragments.

11

1990s: Back to Binary Relations

WWW:

• Nodes

• Edges

• Labels

Semistructured Data: WWW, SGML documents,
library catalogs, XML documents, Meta data,

Formally: (D,E,Λ+, λ)

• D - nodes

• E ⊆ D2 - edges

• Λ+ – labels

• λ : E → Λ+ – labeling (alt., also node labels)

12

Path Queries

Active Research Topic: What is the right query
language for semistructured data?

Basic Element of all proposals: path queries

• Q(x, y) : − x L y

• L: formal language over labels

• a· l1 · · · lk ·b

• Q(a, b) holds if l1 · · · lk ∈ L

Example: Regular Path Query

Q(x, y) : − x (Wing · Part+ · Nut) y

13

Path-Query Containment

Q1(x, y) : − x L1 y

Q2(x, y) : − x L2 y

Language-Theoretic Lemma 1:

Q1 � Q2 iff L1 ⊆ L2

Proof: Consider a database

a· l1 · · · lk ·b with l1 · · · lk ∈ L1

Corollary: Path-Query Containment is

• undecidable for context-free path queries

• decidable for regular path queries.

14

Regular Path Queries

Observations:

• A fragment of Transitive-Closure Logic

• A fragment of binary Datalog

– Concatenation: E(x, y) : − E1(x, z), E2(z, y)
– Union: E(x, y) : − E1(x, y)

E(x, y) : − E2(x, y)
– Transitive Closure: P (x, y) : − E(x, z)

P (x, y) : − E(x, z), E(z, y)

Consequence:

• Data complexity: NLOGSPACE

• Expression complexity: PTIME

Containment: PSPACE-complete, via nondeterministic
automata (Stockmeyer, 1973).

15

Language Containment – Upper Bound

Lemma: L(E1) ⊆ L(E2) iff L(E1) − L(E2)) = ∅

Algorithm for checking whether L(E1) ⊆ L(E2):

1. Construct NFAs Ai such that L(Ai) = L(Ei) –
linear blow-up.

2. Construct A2 such that L(A2) = Σ∗ − L(A2) –
exponential blow-up.

3. Construct A = A1×A2 such that L(A) = L(E1)−
L(E2) – quadratic blow-up.

4. Check if there is a path from start state to final
state in A – NLOGSPACE.

Bottom Line: PSPACE

16

Two-Way RPQs

Extended Alphabet: Λ− = {a− : a ∈ Λ+}
Λ = Λ+ ∪ Λ−

Inverse Roles:

Part(x, y): y part of x

Part−(x, y): x part of y

Example: Step Siblings

Q(x, y) : −
x [(father− · father) + (mother− · mother)]+ y

Containment: Two-way nondeterministic automata

• Hopcroft and Ullman, 1979: 2DFA

• Hopcroft, Motwani and Ullman, 2000: ???

17

2NFA

A = (Σ, S, S0, ρ, F)

• Σ – finite alphabet

• S – finite state set

• S0 ⊆ S – initial states

• F ⊆ S – final states

• ρ : S × Σ → 2S×{−1,0,+1} – transition function

Theorem: Rabin&Scott, Shepherdson, 1959

2NFA ≡ 1NFA

18

2RPQ Containment

Difficulties:

• 2NFA → 1NFA: exponential blow-up

– Consequence: Doubly exponential complementation

• Difference between query and language containment

– Q1(x, y) : − x Parent y
Q2(x, y) : − x Parent · Parent− · Parent y

– Q1 � Q2 but
L(Parent) �⊆ L(Parent · Parent− · Parent)

19

Back to Basics: 2NFA→1NFA

Theorem: Vardi, 1988

Let A = (Σ, S, S0, ρ, F) be a 2NFA. There is a 1NFA
Ac such that

• L(Ac) = Σ∗ − L(A)

• ||Ac|| ∈ 2O(||A||)

Proof: Guess a subset-sequence counterexample

a0 · · · ak−1 �∈ L(A) iff there is a sequence
T0, T1, · · · , Tk of subsets of S such that

1. S0 ⊆ T0 and Tk ∩ F = ∅.

2. If s ∈ Ti and (t, +1) ∈ ρ(s, ai), then t ∈ Ti+1, for
0 ≤ i < k.

3. If s ∈ Ti and (t, 0) ∈ ρ(s, ai), then t ∈ Ti, for
0 ≤ i < k.

4. If s ∈ Ti and (t,−1) ∈ ρ(s, ai), then t ∈ Ti−1, for
0 < i ≤ k.

20

Foldings

Definition: Let u, v ∈ Λ∗. We say that v folds onto
u, denoted v � u, if v can be “folded” on u, e.g.,

abb−bc � abc.

Pictorially,
a→ · b→ · b← · b→ · c→ �

a→ · b→ · c→

Definition: Let E be an RE over Λ. Then fold(E) =
{v : u � v, u ∈ L(E)}.

Language-Theoretic Lemma 2:

Let Q1(x, y) : − x E1 y
Q2(x, y) : − x E2 y

be 2RPQs. Then Q1 � Q2 iff L(E1) ⊆ fold(E2).

21

2RPQ containment

Theorem: Let E be an RE over Λ. There is a 2NFA
ÃE such that

• L(ÃE) = fold(E)

• ||ÃE|| ∈ O(||E||)

Containment Q1(x, y) : − x E1 y
Q2(x, y) : − x E2 y

TFAE

• Q1 � Q2

• L(E1) ⊆ fold(E2).

• L(E1) ⊆ L(ÃE2).

• L(E1) ∩ L(Ãc
E2

) = ∅

• L(AE1 × Ãc
E2

) = ∅
Bottom-line: 2RPQ containment is PSPACE-
complete.

22

View-Based Query Processing

• Global database: B over Λ+

• Views: {V1, . . . , Vn}, Vi is a query

• View extensions: {E1, . . . , En}, Ei ⊆ Vi(B)

• Global query Q over Λ

• Local query over V1, . . . , Vn

Query Processing

1. View-based query answering: approximate Q(B)
using view-extension information.

2. View-based query rewriting: approximate global
query by a local query based on view definitions

3. View-based query losslessness: Compare global
query with its view-based approximation.

4. View-based query containment: Compare view-
based approximations of two global queries.

23

View-Based Query Rewriting

• Global database: B over Λ+

• Views: {V1, . . . , Vn}, Vi is a query

• View extensions: {E1, . . . , En}, Ei ⊆ Vi(B)

• Global query Q over Λ

• Local query over V1, . . . , Vn

Query Rewriting

∆+ = {v1, . . . , vn}
∆ = ∆+ ∪ ∆−

• Find regular expression E over ∆ such that
E [vi �→ Vi, vi,− �→ rev(Vi)] � Q.

– rev(v) = v−, rev(v− = v), rev(e1 + e2) =
rev(e1)+rev(e2), rev(e1; e2) = rev(e2); rev(e1),
rev(e∗) = rev(e)∗

• Find maximal such E .

Example: Q = abcd, V1 = ab, V2 = cd: Q = V1V2

24

Counterexample Method

Candidate Rewriting: w = a1 . . . ak ∈ ∆k

• w is a bad rewriting if
w[vi �→ Vi, vi,− �→ rev(Vi)] �� Q.

• w is a bad rewriting if there are witnesses
w1, . . . , wk ∈ Λ∗ such that w1 . . . wk �� L(Q),
where

– wi ∈ L(Vj) if ai = vj.
– wi ∈ L(rev(Vj)) if ai = vj,−.

• a1w1 . . . akwk: counterexample word

Example: Q = abcd, V1 = ab, V2 = cd

• v1v1: bad rewriting, v1v2: good rewriting

• w1 = ab, w2 = ab: witnesses

• v1w1v1w2: counterexample word

25

Regular Counterexamples

Counterexample Word: a1w1 . . . akwk

1. wi ∈ L(Vj) if ai = vj.

2. wi ∈ L(rev(Vj)) if ai = vj,−.

3. w1 . . . wk �� L(Q)

Checking counterexample words with 2NFA:

• Check (1) and (2) with 2NFA for Vj

• Use folding technique to construct 2NFA to check
w1 . . . wk � L(Q) and then complement.

Complexity: exponential

26

From Counterexamples to Rewritings

Constructing Good Rewritings

1. Construct 1NFA A1 for counterexample words
(exponential).

2. Project out witness words to get 1NFA A2 for bad
rewritings (a1w1 . . . akwk �→ a1 . . . ak) (linear).

3. Complement A2 to get 1NFA A3 for good rewritings
(exponential).

Theorem:

• Construction yields maximal rewriting (represented
by a 1DFA).

• Doubly expoential complexity is optimal.

• Checking whether the rewriting is equivalent to Q
is 2EXPSPACE-complete.

27

Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive
first-order logic, i.e., first-order logic without ∀,∨,¬;
written as a rule

Q(x1, . . . , xn) : − R1(x3, y2, x4), . . . , Rk(x2, y3)

Significance:

• Most common SQL queries (Select-Project-Join)

• Core of Datalog

Example:

Triangle(x, y, z) : − Edge(x, y), Edge(y, z), Edge(z, x)

28

Conjunctive Query Containment

Canonical Database BQ:

• Each variable in Q is a distinct element

• Each subgoal R(x3, y2, x4) of Q gives rise to a tuple
R(x3, y2, x4) in BQ

Fact: (Chandra and Merlin, 1977)

For conjunctive queries Q1 and Q2, TFAE:

• The containment Q1 � Q2 holds

• There is a homomorphism h : BQ2 → BQ1 that is
the identity on distinguished variables.

29

Conjunctive 2RPQ

C2RPQ: Core of all semistructured query languages

Q(x1, . . . , xn) : − y1E1z1, . . . , ymEmzm

• Ei – 2RPQ

Intuition:

• C2RPQs are obtained from CQ by replacing atoms
with REs over Λ.

• C2RPQs are Select-Project-“Regular Join” queries.

Example:

Q(x, y) : − z (Wing · Part+ · Nut) x,
z (Wing · Part+ · Nut) y

30

C2RPQ Containment

Difficulty: Earlier techniques do not apply

• No canonical database

• No language-theoretic lemma

Solution: Combine and extend earlier ideas

• Infinite family of canonical databases

– Each variable in Q is a distinct element
– Each subgoal yiEizi of Q is replaced by a simple

path labeled by a word in L(Ei).

• Represent canonical databases as words over a larger
alphabet

• Develop automata-theoretic characterization of
C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-
complete.

31

In Conclusion

Regular queries:

• A rich but well-behaved fragment of Datalog

• Of special interest for semistructured data

• Beautiful application of classical formal-language
theory

• Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of
regular queries?

• RPQs

• 2RPQs

• C2RPQs

• UC2RPQs

• . . .

32

