A Call to Regularity

Moshe Y. Vardi*

Rice University

*Joint work with D. Calvanese, G. De Giacomo, and M. Lenzerini

Birth of Relational Databases

A Short History of Databases:

- 1950s: Data scattered - each user to herself.
- 1960s: Databases - central data repository.
- 1970: E.F. Codd - relational model
- Data stored in tables (relations)
- First-order logic used to query data
- 1970s: Development of relational database systems, with SQL as query language.
- 1980s: Relational databases become dominant.

Database Query Languages

- Standard database query languages (e.g., SQL 2.0) are essentially 1st-order.
- Aho and Ullman, 1979: 1st-order languages are weak; add recursion
- Gallaire and Minker, 1978: add recursion via logic programs
- SQL 3.0, 1999: recursion added

A Theory of Database Query Language

- Chandra-Harel, 1979: A theory of computable relational queries.
- Chandra-Harel, 1980: Expressiveness and computational complexity of relational queries.

Expressiveness costs money!!!

- 1st-order queries: $\operatorname{LOGSPACE}$
- Recursive queries: PTIME

Datalog

Datalog: Chandra-Harel, 1982

- Function-free logic programs
- Existential, positive fixpoint logic
- Select-project-join-union-recur queries

Example: Transitive Closure

$$
\begin{aligned}
& \operatorname{Path}(x, y):-\operatorname{Edge}(x, y) \\
& \operatorname{Path}(x, y):-\operatorname{Path}(x, z), \operatorname{Path}(z, y)
\end{aligned}
$$

Definition: A program P is bounded if it is equivalent to a non-recursive program.

Example: Impressionable Shopper
$\operatorname{Buys}(x, y):-\operatorname{Trendy}(x), \operatorname{Buys}(z, y)$
Buys $(x, y):-\operatorname{Likes}(x, y)$

Data Complexity

Definitions:

- The stage function $s_{P}(n)$ of a program P is the least m such that $P^{m}(D)=P^{\infty}(D)$ for each D with at most n elements.
- A query Q is in $\operatorname{STAGE}(f(n))$ if it is expressible by a program P such that $s_{P}(n)$ is in $O(f(n))$.

Database complexity and computational complexity:

- $S T A G E(\operatorname{polylog} n) \subseteq N C$
- STAGE $($ poly $n) \subseteq P T I M E$

Gap Theorem [Kanellakis, 1992]:

- P is bounded iff it defines a query in $\operatorname{STAGE(1)}$
- P is unbounded iff it does not define a query in $\operatorname{STAGE}(f(n))$, for $f(n)$ in o $(\log n)$.

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is undecidable.

Research Program - Study Boundary

Parameters:

- Number of derived predicates
- Arity of derived predicates
- Number of rules
- Nonlinear vs. linear (one recursive call per rule)
- I/O convention

GMSV: undecidability holds for linear programs with a single 4-ary derived predicate.

Binary Programs

Binary programs: binary derived predicates.
Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]: Boundedness is undecidable for programs with a single binary derived predicate.

Proof: Reduction from halting problem for Turing machines:

- Σ : tape alphabet
- Base predicates: $\operatorname{Zero}(x), \operatorname{Succ}(x, y), Q_{a}(x)$ for $a \in \Sigma$
- Derived predicates: $\operatorname{Fing}(x, y)$ - pointers to corresponding positions in successive configurations

Cosmadakis, Gaifman, Kanellakis, V., 1988: Boundedness is decidable for unary programs.

Query Containment

Query Optimization: Given Q, find Q^{\prime} such that:

- $Q \equiv Q^{\prime}$
- Q^{\prime} is "easier" than Q

Query Containment: $Q_{1} \sqsubseteq Q_{2}$ if $Q_{1}(B) \subseteq Q_{2}(B)$ for all databases B.

Fact: $Q \equiv Q^{\prime}$ iff $Q \sqsubseteq Q^{\prime}$ and $Q^{\prime} \sqsubseteq Q$

Consequence: Query containment is a key database problem.

Query Containment

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking

Consequence: Query containment is a fundamental database problem.

Decidability of Query Containment

- SQL: undecidable
- Folk Theorem
- Poor theory and practice of optimization
- SPJU: decidable
- Chandra\&Merlin-1977, Sagiv\&Yannakakis-1982
- Rich theory and practice of optimization
- Datalog: undecidable
- Shmueli-1977
- Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable - almost no interesting, well-behaved fragments.

1990s: Back to Binary Relations

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data,

Formally: $\left(D, E, \Lambda_{+}, \lambda\right)$

- D - nodes
- $E \subseteq D^{2}$ - edges
- Λ_{+}- labels
- $\lambda: E \rightarrow \Lambda_{+}$- labeling (alt., also node labels)

Path Queries

Active Research Topic: What is the right query language for semistructured data?

Basic Element of all proposals: path queries

- $Q(x, y):-x L y$
- L : formal language over labels
- $a \cdot \underline{l_{1}} \cdots l_{k} \cdot b$
- $Q(a, b)$ holds if $l_{1} \cdots l_{k} \in L$

Example: Regular Path Query

$$
Q(x, y):-x\left(\text { Wing } \cdot \text { Part }^{+} \cdot \text { Nut }\right) y
$$

Path-Query Containment

$Q_{1}(x, y):-x L_{1} y$
$Q_{2}(x, y):-x L_{2} y$

Language-Theoretic Lemma 1:

$$
Q_{1} \sqsubseteq Q_{2} \text { iff } L_{1} \subseteq L_{2}
$$

Proof: Consider a database
$a \cdot \underline{l_{1}} \cdots \xrightarrow{l_{k}} \cdot b$ with $l_{1} \cdots l_{k} \in L_{1}$

Corollary: Path-Query Containment is

- undecidable for context-free path queries
- decidable for regular path queries.

Regular Path Queries

Observations:

- A fragment of Transitive-Closure Logic
- A fragment of binary Datalog
- Concatenation: $E(x, y):-E_{1}(x, z), E_{2}(z, y)$
- Union: $E(x, y):-E_{1}(x, y)$

$$
E(x, y):-E_{2}(x, y)
$$

- Transitive Closure: $P(x, y)$:- $E(x, z)$

$$
P(x, y):-E(x, z), E(z, y)
$$

Consequence:

- Data complexity: NLOGSPACE
- Expression complexity: PTIME

Containment: PSPACE-complete, via nondeterministic automata (Stockmeyer, 1973).

Language Containment - Upper Bound

Lemma: $L\left(E_{1}\right) \subseteq L\left(E_{2}\right)$ iff $\left.L\left(E_{1}\right)-L\left(E_{2}\right)\right)=\emptyset$

Algorithm for checking whether $L\left(E_{1}\right) \subseteq L\left(E_{2}\right)$:

1. Construct NFAs A_{i} such that $L\left(A_{i}\right)=L\left(E_{i}\right)-$ linear blow-up.
2. Construct $\overline{A_{2}}$ such that $L\left(\overline{A_{2}}\right)=\Sigma^{*}-L\left(A_{2}\right)-$ exponential blow-up.
3. Construct $A=A_{1} \times \overline{A_{2}}$ such that $L(A)=L\left(E_{1}\right)-$ $L\left(E_{2}\right)$ - quadratic blow-up.
4. Check if there is a path from start state to final state in $A-N L O G S P A C E$.

Bottom Line: PSPACE

Two-Way RPQs

Extended Alphabet: $\Lambda_{-}=\left\{a_{-}: a \in \Lambda_{+}\right\}$
$\Lambda=\Lambda_{+} \cup \Lambda_{-}$

Inverse Roles:
$\operatorname{Part}(x, y): y$ part of x
Part_(x, y): x part of y

Example: Step Siblings
$Q(x, y):-$
$x\left[(\text { father_ } \cdot \text { father })+\left(\text { mother }{ }_{-} \cdot \text { mother }\right)\right]^{+} y$

Containment: Two-way nondeterministic automata

- Hopcroft and Ullman, 1979: 2DFA
- Hopcroft, Motwani and Ullman, 2000: ???

2NFA

$A=\left(\Sigma, S, S_{0}, \rho, F\right)$

- Σ - finite alphabet
- S - finite state set
- $S_{0} \subseteq S$ - initial states
- $F \subseteq S$ - final states
- $\rho: S \times \Sigma \rightarrow 2^{S \times\{-1,0,+1\}}$ - transition function

Theorem: Rabin\&Scott, Shepherdson, 1959 $2 N F A \equiv 1 N F A$

2RPQ Containment

Difficulties:

- 2NFA \rightarrow 1NFA: exponential blow-up
- Consequence: Doubly exponential complementation
- Difference between query and language containment

$$
\begin{aligned}
-Q_{1}(x, y) & :-x \text { Parent } y \\
Q_{2}(x, y) & :-x \text { Parent } \cdot \text { Parent } \cdot \text { Parent } y
\end{aligned}
$$

- $Q_{1} \sqsubseteq Q_{2}$ but L (Parent) $\nsubseteq L($ Parent \cdot Parent_ • Parent $)$

Back to Basics: 2NFA \rightarrow 1NFA

Theorem: Vardi, 1988
Let $A=\left(\Sigma, S, S_{0}, \rho, F\right)$ be a 2NFA. There is a 1NFA A^{c} such that

- $L\left(A^{c}\right)=\Sigma^{*}-L(A)$
- $\left\|A^{c}\right\| \in 2^{O(\|A\|)}$

Proof: Guess a subset-sequence counterexample $a_{0} \cdots a_{k-1} \notin L(A)$ iff there is a sequence $T_{0}, T_{1}, \cdots, T_{k}$ of subsets of S such that

1. $S_{0} \subseteq T_{0}$ and $T_{k} \cap F=\emptyset$.
2. If $s \in T_{i}$ and $(t,+1) \in \rho\left(s, a_{i}\right)$, then $t \in T_{i+1}$, for $0 \leq i<k$.
3. If $s \in T_{i}$ and $(t, 0) \in \rho\left(s, a_{i}\right)$, then $t \in T_{i}$, for $0 \leq i<k$.
4. If $s \in T_{i}$ and $(t,-1) \in \rho\left(s, a_{i}\right)$, then $t \in T_{i-1}$, for $0<i \leq k$.

Foldings

Definition: Let $u, v \in \Lambda^{*}$. We say that v folds onto u, denoted $v \leadsto u$, if v can be "folded" on u, e.g.,

$$
a b b _b c \leadsto a b c .
$$

Pictorially, $\xrightarrow{a} \cdot \xrightarrow{b} \cdot \stackrel{b}{\leftarrow} \cdot \xrightarrow{b} \cdot \xrightarrow{c} \leadsto \xrightarrow{a} \cdot \xrightarrow{b} \cdot \xrightarrow{c}$

Definition: Let E be an RE over Λ. Then fold $(E)=$ $\{v: u \leadsto v, u \in L(E)\}$.

Language-Theoretic Lemma 2:
Let $Q_{1}(x, y):-x E_{1} y$
$Q_{2}(x, y):-x E_{2} y$
be 2 RPQs. Then $Q_{1} \sqsubseteq Q_{2}$ iff $L\left(E_{1}\right) \subseteq \operatorname{fold}\left(E_{2}\right)$.

2RPQ containment

Theorem: Let E be an RE over Λ. There is a 2 NFA \tilde{A}_{E} such that

- $L\left(\tilde{A}_{E}\right)=$ fold (E)
- $\left\|\tilde{A}_{E}\right\| \in O(\|E\|)$

Containment $Q_{1}(x, y):-x E_{1} y$

$$
Q_{2}(x, y):-x E_{2} y
$$

TFAE

- $Q_{1} \sqsubseteq Q_{2}$
- $L\left(E_{1}\right) \subseteq$ fold $\left(E_{2}\right)$.
- $L\left(E_{1}\right) \subseteq L\left(\tilde{A}_{E_{2}}\right)$.
- $L\left(E_{1}\right) \cap L\left(\tilde{A}_{E_{2}}^{c}\right)=\emptyset$
- $L\left(A_{E_{1}} \times \tilde{A}_{E_{2}}^{c}\right)=\emptyset$

Bottom-line: 2RPQ containment is PSPACEcomplete.

View-Based Query Processing

- Global database: B over Λ_{+}
- Views: $\left\{V_{1}, \ldots, V_{n}\right\}, V_{i}$ is a query
- View extensions: $\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\}, \mathcal{E}_{i} \subseteq V_{i}(B)$
- Global query Q over Λ
- Local query over V_{1}, \ldots, V_{n}

Query Processing

1. View-based query answering: approximate $Q(B)$ using view-extension information.
2. View-based query rewriting: approximate global query by a local query based on view definitions
3. View-based query losslessness: Compare global query with its view-based approximation.
4. View-based query containment: Compare viewbased approximations of two global queries.

View-Based Query Rewriting

- Global database: B over Λ_{+}
- Views: $\left\{V_{1}, \ldots, V_{n}\right\}, V_{i}$ is a query
- View extensions: $\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\}, \mathcal{E}_{i} \subseteq V_{i}(B)$
- Global query Q over Λ
- Local query over V_{1}, \ldots, V_{n}

Query Rewriting
$\Delta_{+}=\left\{v_{1}, \ldots, v_{n}\right\}$
$\Delta=\Delta_{+} \cup \Delta_{-}$

- Find regular expression \mathcal{E} over Δ such that $\mathcal{E}\left[v_{i} \mapsto V_{i}, v_{i,-} \mapsto \operatorname{rev}\left(V_{i}\right)\right] \sqsubseteq Q$.
$-\operatorname{rev}(v)=v_{-}, \operatorname{rev}\left(v_{-}=v\right), \operatorname{rev}\left(e_{1}+e_{2}\right)=$ $\operatorname{rev}\left(e_{1}\right)+\operatorname{rev}\left(e_{2}\right), \operatorname{rev}\left(e_{1} ; e_{2}\right)=\operatorname{rev}\left(e_{2}\right) ; \operatorname{rev}\left(e_{1}\right)$, $\operatorname{rev}\left(e^{*}\right)=\operatorname{rev}(e)^{*}$
- Find maximal such \mathcal{E}.

Example: $Q=a b c d, V_{1}=a b, V_{2}=c d: Q=V_{1} V_{2}$

Counterexample Method

Candidate Rewriting: $w=a_{1} \ldots a_{k} \in \Delta^{k}$

- w is a bad rewriting if $w\left[v_{i} \mapsto V_{i}, v_{i,-} \mapsto \operatorname{rev}\left(V_{i}\right)\right] \not \equiv Q$.
- w is a bad rewriting if there are witnesses $w_{1}, \ldots, w_{k} \in \Lambda^{*}$ such that $w_{1} \ldots w_{k} \nsubseteq L(Q)$, where
- $w_{i} \in L\left(V_{j}\right)$ if $a_{i}=v_{j}$.
- $w_{i} \in L\left(\operatorname{rev}\left(V_{j}\right)\right)$ if $a_{i}=v_{j,-}$.
- $a_{1} w_{1} \ldots a_{k} w_{k}$: counterexample word

Example: $Q=a b c d, V_{1}=a b, V_{2}=c d$

- $v_{1} v_{1}$: bad rewriting, $v_{1} v_{2}$: good rewriting
- $w_{1}=a b, w_{2}=a b$: witnesses
- $v_{1} w_{1} v_{1} w_{2}$: counterexample word

Regular Counterexamples

Counterexample Word: $a_{1} w_{1} \ldots a_{k} w_{k}$

1. $w_{i} \in L\left(V_{j}\right)$ if $a_{i}=v_{j}$.
2. $w_{i} \in L\left(\operatorname{rev}\left(V_{j}\right)\right)$ if $a_{i}=v_{j,-}$.
3. $w_{1} \ldots w_{k} \nsubseteq L(Q)$

Checking counterexample words with 2NFA:

- Check (1) and (2) with 2NFA for V_{j}
- Use folding technique to construct 2NFA to check $w_{1} \ldots w_{k} \sqsubseteq L(Q)$ and then complement.

Complexity: exponential

From Counterexamples to Rewritings

Constructing Good Rewritings

1. Construct 1NFA A_{1} for counterexample words (exponential).
2. Project out witness words to get 1NFA A_{2} for bad rewritings ($a_{1} w_{1} \ldots a_{k} w_{k} \mapsto a_{1} \ldots a_{k}$) (linear).
3. Complement A_{2} to get 1NFA A_{3} for good rewritings (exponential).

Theorem:

- Construction yields maximal rewriting (represented by a 1DFA).
- Doubly expoential complexity is optimal.
- Checking whether the rewriting is equivalent to Q is 2EXPSPACE-complete.

Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive first-order logic, i.e., first-order logic without \forall, \vee, \neg; written as a rule

$$
Q\left(x_{1}, \ldots, x_{n}\right):-R_{1}\left(x_{3}, y_{2}, x_{4}\right), \ldots, R_{k}\left(x_{2}, y_{3}\right)
$$

Significance:

- Most common SQL queries (Select-Project-Join)
- Core of Datalog

Example:
Triangle $(x, y, z):-\operatorname{Edge}(x, y), \operatorname{Edge}(y, z), \operatorname{Edge}(z, x)$

Conjunctive Query Containment

Canonical Database B^{Q} :

- Each variable in Q is a distinct element
- Each subgoal $R\left(x_{3}, y_{2}, x_{4}\right)$ of Q gives rise to a tuple $R\left(x_{3}, y_{2}, x_{4}\right)$ in B^{Q}

Fact: (Chandra and Merlin, 1977)
For conjunctive queries Q_{1} and Q_{2}, TFAE:

- The containment $Q_{1} \sqsubseteq Q_{2}$ holds
- There is a homomorphism $h: B^{Q_{2}} \rightarrow B^{Q_{1}}$ that is the identity on distinguished variables.

Conjunctive 2RPQ

C2RPQ: Core of all semistructured query languages
$Q\left(x_{1}, \ldots, x_{n}\right):-y_{1} E_{1} z_{1}, \ldots, y_{m} E_{m} z_{m}$

- $E_{i}-2 \mathrm{RPQ}$

Intuition:

- C2RPQs are obtained from CQ by replacing atoms with REs over Λ.
- C2RPQs are Select-Project-"Regular Join" queries.

Example:

$$
\begin{array}{rll}
Q(x, y):-z & \left(\text { Wing } \cdot \text { Part }^{+} \cdot\right. \text { Nut) } & x, \\
z & \left(\text { Wing } \cdot \text { Part }^{+} \cdot\right. \text { Nut) } & y
\end{array}
$$

C2RPQ Containment

Difficulty: Earlier techniques do not apply

- No canonical database
- No language-theoretic lemma

Solution: Combine and extend earlier ideas

- Infinite family of canonical databases
- Each variable in Q is a distinct element
- Each subgoal $y_{i} E_{i} z_{i}$ of Q is replaced by a simple path labeled by a word in $L\left(E_{i}\right)$.
- Represent canonical databases as words over a larger alphabet
- Develop automata-theoretic characterization of C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACEcomplete.

In Conclusion

Regular queries:

- A rich but well-behaved fragment of Datalog
- Of special interest for semistructured data
- Beautiful application of classical formal-language theory
- Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of regular queries?

- RPQs
- $2 R P Q s$
- C2RPQs
- UC2RPQs
- . . .

