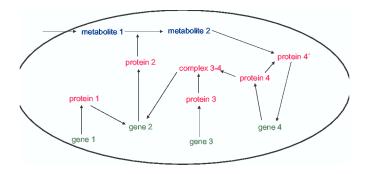
Réseaux biologiques

A. Siegel

Liffré, novembre 2005


Contexte

- On dispose d'un catalogue (plus ou moins exact) des éléments fonctionnels dans la cellule.
- Des nouvelles technologies fournissent des données en masse
 - Mécanismes élementaires: interactions protéines-protéines, interactions protéines-ADN, réactions biochimiques...
 - Etat d'une cellule: expression d'ARN, expression de protéines, phénotype, contentrations de métabolites, flux métaboliques...
- Le niveau gène/protéine atteint ses limites pour expliquer le fonctionnement du vivant.

Réseau biomoléculaire

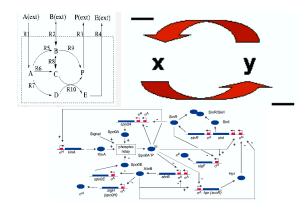
Réseau d'interactions entre des entités biologiques dans une cellule

Source: D. Ropers (Inria Grenoble)

Des sommets

- Gène (séquence d'ADN)
- Protéine (codées à partir d'un gène)
- Complexe protéique
- Métabolites
- Autres composés (ATP, ADP, ...)

Plus ou moins bien référencés dans des bases de données.

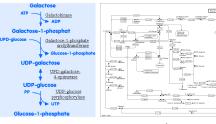

Des interactions

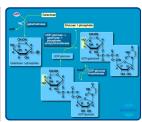
- Transformations de molécules en autre(s) molécule(s)
 - Réaction chimique
 - Expression d'un gène
 - Formation d'un complexe
- Contrôle d'une transformation
 - Catalyse d'une réaction par une enzyme
 - Régulation de l'expression d'un gène
- Divers
 - Co-occurence dans la litterature

Des BDD (plus ou moins fournies) existent pour chaque type d'interaction (Kegg, Amaze, IntAct, Bibliosphere,Bind ...)

Des graphes... Avec quelle signification?

Pour décrire un mécanisme biologique, on utilise différents types de réseaux biomoléculaires.


Sources: J. Gagneur (EMBL), D. Thieffry (IBDM, Marseille), H. De Jong (Inria Grenoble)

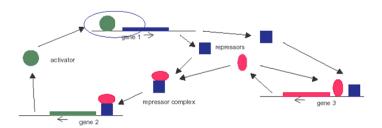


Réseau métabolique

Série de réactions chimiques controlées éventuellement par des enzymes.

Fonction: exploiter et transformer les ressources disponibles en énergie

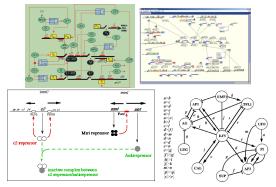
(glycolyse)


Sources: galactosaemia.com, KEGG, www.biocarta.com

Réseau de régulation génétique

Interaction de régulation entre des gènes, des protéines et des petites molécules.

Fonction: production régulée de protéines


Source: Zhi Xie (Lincoln university)

Réseau de régulation génétique

Interaction de régulation entre des gènes, des protéines et des petites molécules.

Fonction: production régulée de protéines

Voie de signalisation

Associations et dissociations de molécules (phosphorylation...).

Fonction : Transport rapide de l'information

(Voie de signalisation de MAPK)

Source: J. Woodgett, emdbiosciences, KEGG

Différents types de réseaux biomoléculaires

- Réseau de régulation génétique
 - Sommets: gènes
 - Arêtes: régulations
 - Données: séquence, expressions de gènes, puces
- Réseau métabolique
 - Sommets: métabolites
 - Arêtes: consommation, production
 - Données: séquence, biochimie, spectrométrie
- Réseau de signalisation
 - Sommets: protéines et état d'activité
 - Arêtes: interactions modifiant les états
 - Données: mesure de modification post-traductionelles.
- Méseau d'interaction protéine-protéine
- Séseau de relations

Différents types de réseaux biomoléculaires

- Réseau de régulation génétique
- 2 Réseau métabolique
- Réseau de signalisation
- 4 Réseau d'interaction protéine-protéine
 - Sommets: protéines
 - Arêtes:interactions physiques
 - double-hybrides, spectrométrie
- Réseau de relations
 - Sommets: gènes
 - Arêtes: relations fonctionnelles
 - Données: séquences, données d'expression, mesures de similarité


Questions biologiques motivant l'études des réseaux

Le développement et la fonction d'un organisme émergent des interactions dans et entre ces différents types de réseaux...

- Aider à structurer, représenter et interpréter des données expérimentales
 - Intégrer différents types de données.
 - Relier les mécanismes décrits aux états du système.
- Comprendre les processus cellulaires
 - Prédire l'état d'une cellule
 - Prédire l'effet d'une modification du système sur ses éléments.
- Aider les expérimentations, en produisant des hypothèses vérifiables sur un système.
- Comparer des réseaux pour différents organismes ou tissus, en rapport avec leur évolution.
- Mieux comprendre la fonction de gènes donnés.

Construire et étudier un modèle: schéma type

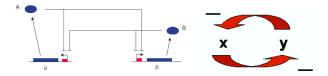
Source: Zhi Xie (Lincoln university)

Questions informatiques

- (Re)construire/identifier des réseaux à partir de données expérimentales ou théoriques
 - Statistiques
 - Contraintes, diagnostic, ILP...
 - Apprentissage (kernel)
 - Comparaison entre organismes
- ② Définir des types de modélisation en fonction
 - du type de système biologique
 - du type de prédictions recherchées
 - du type de données expérimentales disponibles pour la construction et l'exploitation du modèle.
- Analyser le comportement d'un modèle.
- 4 Analyser la structure des réseaux
- Applications

Questions informatiques

- (Re)construire/identifier des réseaux à partir de données expérimentales ou théoriques
- ② Définir des types de modélisation en fonction
- 4 Analyser le comportement d'un modèle.
 - Simulation
 - Etude théorique de propriétés (stabilité...)
 - Prédiction de comportements. Atteignabilité de certains états.
 - Effets du bruit.
- 4 Analyser la structure des réseaux
- Applications


Questions informatiques

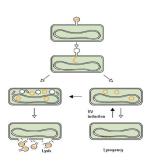
- (Re)construire/identifier des réseaux à partir de données expérimentales ou théoriques
- ② Définir des types de modélisation en fonction
- Analyser le comportement d'un modèle.
- 4 Analyser la structure des réseaux
 - propriétés structurelles (motifs).
 - Réduction de la taillle des modèles; modularité.
 - Comparaison modèles discrets, continus, stochastiques.
 - Entre différents organismes (évolution des réseaux).
- Applications
 - prédire la fonction d'une protéine.
 - Comparer des données aux prédictions d'un modèle
 - Trouver les moyens de contrôler un système ?

Exemple de base: boucle négative

- Analyser le comportement d'un modèle.
 - Simulation
 - Etude théorique de propriétés (stabilité...)
 - Prédiction de comportements. Atteignabilité de certains états.
 - Effets du bruit.

Comment modéliser la dynamique de cette boucle ?

Source: H. De Jong (Inria Grenoble), D. Thieffry (IBDM)

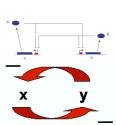

Contexte biologique: phage lambda

 Le Phage Lambda est un virus qui infecte la bactérie E. Coli

On dispose de bons modèles de

- réseaux de régulation

 Lambda P. injecte sont ADN
- Lambda P. Injecte sont ADN dans E. Coli
- Phases de lyse ou lysogénèse en fonction des conditions de concentration.


Source: Zhi Xie (Lincoln university)

Contexte biologique: phage lambda

OR1 Cro OR2 OR3 CI

- Si Cro domine, la protéine produite va se lier à OR3.
 - Cl ne peut plus être transcrite
 - Cro augmente
 - CI diminue par dégradation
 - Phase lytique
- Si Cl domine, la protéine produite va se lier à OR1.
 - Cro ne peut plus être transcrite
 - Cl augmente
 - Cro diminue par dégradation
 - Croissance lysogénique

(Modèles complexes pour expliquer la domination de Cro ou CI)

Différents modèles

Graphes d'interactions

Modèles discrets/booléens

Les composants ont un petit nombre d'états qualitatifs.

Fonctions de transitions.

Linéaires par morceaux

formalisme différentiel

les composants ont un nombre fini d'états qualitatifs.

Fonctions seuils.

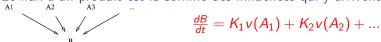
Modèles différentiels

Grand nombre de molécules.

Coefficients stochiométriques et paramètres.

Modèles stochastiques

Petit nombre de molécules.


Lois de probabilités.

Réseaux ?

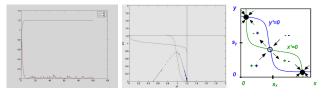
Modélisation différentielle

Le flux d'un produit est la somme des influences qui y arrivent.

- Une équation pour chaque noeud ayant des arêtes entrantes
- les fonctions cinétiques v(A) dépendent du type d'interaction
 - paliers si réaction enzymatique;
 - seuil/sigmoïde si intéraction génétique;
 - linéaire si réaction chimique usuelle.

$$\begin{cases}
\frac{dx}{dt} = k_x F_{s_x}^-(y) - k_{-x} x \\
\frac{dy}{dt} = k_y F_{s_y}^-(x) - k_{-y} y
\end{cases}$$

$$F_s^-(x) = \frac{x^n}{x^n + s^n}$$
.


Dynamique qualitative

 Etats d'équilibre: Les flux sont constants : dB/dt = 0. Système d'équations à résoudre.

$$\left\{ \begin{array}{ll} \frac{dx}{dt} = & k_x F_{s_x}^-(y) - k_{-x} x & = 0 \\ \frac{dy}{dt} = & k_y F_{s_y}^-(x) - k_{-y} y & = 0 \end{array} \right. \left. \left\{ \begin{array}{ll} x = & K_x F_{s_x}^-(y) \\ y = & K_y F_{s_y}^-(x) \end{array} \right.$$

- Convergence des trajectoires vers un état d'équilibre (sous conditions).
- Plusieurs situations possibles en fonction des valeurs des seuils et de la forme des fonctions.

Dynamique qualitative

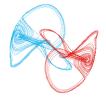
• Etats d'équilibre: Les flux sont constants : $\frac{dB}{dt} = 0$. Système d'équations à résoudre.

$$\begin{cases} \frac{dx}{dt} = k_x F_{s_x}^{-}(y) - k_{-x}x = 0 \\ \frac{dy}{dt} = k_y F_{s_y}^{-}(x) - k_{-y}y = 0 \end{cases} \begin{cases} x = K_x F_{s_x}^{-}(y) \\ y = K_y F_{s_y}^{-}(x) \end{cases}$$

- Convergence des trajectoires vers un état d'équilibre (sous conditions).
- Plusieurs situations possibles en fonction des valeurs des seuils et de la forme des fonctions.

Sources: D. Thieffry

Deux attracteurs stables Un noeud instable


Unique attracteur stable

Modélisation différentielle: cas général

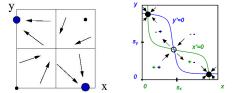
- Les équations d'équilibres ne sont absolument pas linéaires: pas de méthode pour résoudre.
- Très bons outils de simulation
- Diversité des comportements observés et prédits: multistationnarité, oscillations, en fonction des paramètres et des effets de la non-linéarité.
- Dynamique chaotique ?

Question (C. Soulé): est-ce qu'un système différentiel $\frac{dX}{dt} = F(X) - \lambda X$ avec F bornée peut avoir une dynamique cahotique? On n'en sait rien.

Sources: R. Thomas (ULB. Bruxelles)

- Les fonctions cinétiques sont approximables par des produits et sommes de fonctions à paliers.
- Les régulations génétiques sont bien approximées par des fonctions seuils.

$$\begin{cases}
\frac{dx}{dt} = k_x s^-(y, \theta_x) - k_{-x} & s(x, \theta) \uparrow \\
\frac{dy}{dt} = k_y s^-(x, \theta_y) - k_{-y} & 0
\end{cases}$$



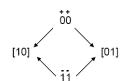
Modélisation linéaire par morceaux

- Les équations sont linéaires sur chaque domaine
- Dans chaque domaine, il y a un unique attracteur
- Simulation du comportement qualitatif
- Etude des attracteurs
- Etude de tous les comportements possibles: model checking

Modélisation linéaire par morceaux

- Les équations sont linéaires sur chaque domaine
- Dans chaque domaine, il y a un unique attracteur
- Simulation du comportement qualitatif
- Etude des attracteurs
- Etude de tous les comportements possibles: model checking

Convergence vers un des deux attracteurs stables (on retrouve qualitativement le comportement général du système différentiel)


Modélisation booléenne

- Les variables sont supposées prendre une valeur 0 ou 1.
- Dynamique asynchrone: on ne bouge qu'une variable à la fois.

Table des attracteurs

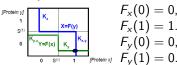
$$\begin{cases} X = \overline{y} \\ Y = \overline{x} \end{cases}$$

Graphe de transition

Deux états d'équilibre

Modélisation booléenne multivaluée

- Abstractions logiques: les concentrations (\hat{x}, \hat{y}) prennent un nombre fini de valeurs.
- \hat{x} prend autant de valeur que le nombre d'arêtes sortant de x.



Sources: D. Thieffry (IBDM, Marseille)

$$\hat{x} = 0$$
 si $x < k_x$
 $\hat{x} = 1$ si $x > k_x$

• L'attracteur (X, Y) d'un état est une fonction F qui décrit la position de l'attracteur vis à vis des seuils.

$$X = F_{x}(\hat{y}), \qquad Y = F_{y}(\hat{x}).$$
 $F_{x}(0) = 1 = K_{x}, \qquad \text{Protein y}$
 $F_{x}(1) = 0 = K_{x,y}.$
 $F_{y}(0) = 1 = K_{y}, \qquad \text{o}$
 $F_{y}(0) = 1 = K_{y,x}.$

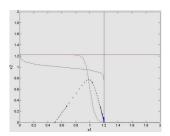
 $F_{x}(0)=0$, $F_{\times}(1) = 1.$ $F_{v}(0) = 0$,

- Etat d'equilibre logique: $X = \hat{x}$.
- Prédiction des états stables et simulations dynamiques.

Modélisation stochastique

- X désigne le nombre de molécules (et pas la concentration)
- p(X, t) est la proba que, à l'instant t, la cellule contienne X_1 molécules du premier produit, etc...
- $\alpha_j \delta t$ est la proba que la réaction j se produise entre t et $t + \delta t$ sachant que la cellule est dans l'état X en t.
- $\beta_j \delta t$ est la proba que la réaction j amène la cellule en l'état X entre t et $t + \delta t$.

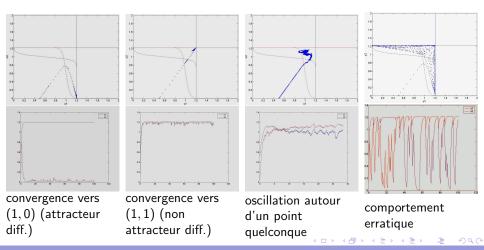
$$p(X, t + \delta t) = p(X, t)(1 - \sum \alpha_j \delta t) + \sum \beta_j \delta t$$


- Simulations
- Richesse des comportements
- Adaptés aux petits nombres de molécules et aux phénomènes de bruits.

Modélisation stochastique: Exemple

$$\begin{cases} \frac{dx}{dt} = -x + \frac{\alpha_1}{1 + \gamma y^n} \\ \frac{dy}{dt} = -y + \frac{\alpha_2}{1 + \gamma x^n} \end{cases}$$

 γ est un processus de Markov

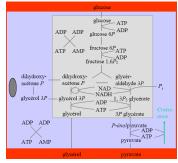


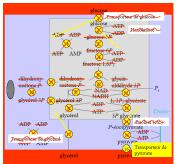
Sources: O. Radulescu (IRMAR, Rennes)

- Deux états: $\gamma(t) \in \{0,1\}$
- Un saut après un temps moyen $\tau = \exp[(T_1 + T_2)^{-1}].$
- Proba de saut $0 \rightarrow 1$: $\pi_1 = \frac{T_2}{T_1 + T_2}$
- Proba de saut $1 \rightarrow 0$: $\pi_2 = \frac{T_1}{T_1 + T_2}$


Modélisation stochastique: Exemple

Beaucoup plus de comportements que dans le cas différentiel

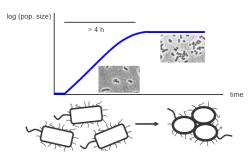

Application différentielle


- Les modéles différentiels sont une idéalisation qui permettent de générer des simulations et des prédictions qualitatives.
 Mais ne permettent pas nécessairement une description du point de vue biologique.
- Principalement utilisé pour l'étude des réseaux métaboliques.
- Simulations de comportements (Gepasi; P. Mendes)
- Analyse convexe: décomposition des réseaux en voies élémentaires (Flux Balance Analysis)
- Etude et descriptions de trajectoires.

Application différentielle: round-up

Le seul moyen d'amener une cellule à la mort par surproduction non controlée lors de la glycolyse est d'agir sur les transporteurs du pyruvate

Sources: A. Cornish-Bowden (IBSM, Marseille)



Application PL: E. Coli

Réseaux ?

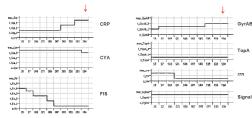
- Sous l'effet d'un stress nutritionnel, E. Coli passe en phase stationnaire (croissance lente)
- La transition est contrôlée par un réseau de régulation génétique intégrant divers signaux environnementaux

- Peu de données qualitatives
- Modèle de la réponse au stress
 - lecture de la biblio
 - modèle linéaire par morceaux (7 équations)
 - modélisation des boites noires à l'aide de simulations différentielles

Sources: D. Ropers, H. De Jong (Inria Grenoble)

Application PL: E. Coli

- Sous l'effet d'un stress nutritionnel, E. Coli passe en phase stationnaire (croissance lente)
- La transition est contrôlée par un réseau de régulation génétique intégrant divers signaux environnementaux
- Peu de données qualitatives
- Modèle de la réponse au stress
 - lecture de la biblio
 - modèle linéaire par morceaux (7 équations)
 - modélisation des boites noires à l'aide de simulations différentielles

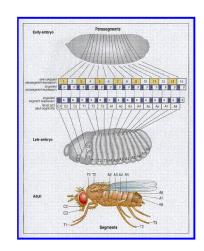

rentielles Sources: D. Ropers, H. De Jong (Inria, Grenoble)

Prédiction d'oscillations en cours de vérification

Application PL: E. Coli

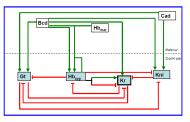
- Sous l'effet d'un stress nutritionnel, E. Coli passe en phase stationnaire (croissance lente)
- La transition est contrôlée par un réseau de régulation génétique intégrant divers signaux environnementaux
- Peu de données qualitatives
- Modèle de la réponse au stress
 - lecture de la biblio
 - modèle linéaire par morceaux (7 équations)
 - modélisation des boites noires à l'aide de simulations différentielles

Simulation of transition from exponential to stationary phase State transition graph with 26 states generated in < 1 s, single equilibrium state

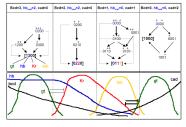

Sources: D. Ropers, H. De Jong (Inria, Grenoble)

Prédiction d'oscillations en cours de vérification

Différents modèles dynamiques


Réseaux ?

- Formation des motifs dorso-ventraux chez la Drosophile
- Expressions de gènes différentes dans les zones de l'embryon qui donneront des motifs chez l'adulte
- Modèle: différents modules de régulation imbriqués
- Le gap module: modèle(s) multivalué
- simulations compatibles avec les XP sur mutants



Application booléen : drosophile

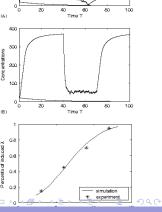
- Formation des motifs dorso-ventraux chez la Drosophile
- Expressions de gènes différentes dans les zones de l'embryon qui donneront des motifs chez l'adulte
- Modèle: différents modules de régulation imbriqués
- Le gap module: modèle(s) multivalué
- simulations compatibles avec les XP sur mutants

Gap Module - Simulation (gt, hb_{zyg}, Kr, kni)

Sources: Wolpert et al. (1998), D. Thieffry (IBDM)

Application: mucoviscidose.

- production de mucus chez la bactérie Pseudomonas Aeruginosa
- cause principale de mortalité chez les malades atteints de mucoviscidose
- explication admise: mutation sélectionnée dans les poumons malades (irréversible)
- logique booléenne: un comportement multistationnaire (et réversible) est cohérent avec les connaissances biologiques
- nouveaux traitements médicaux ?
- plan expérimentaux en cours


Sources: J. Guespin-Michel et al (2005)

Application stochastique: le phage lambda

- Système bistable: phases lytique et lisogénique
- Switch: les cellules passent de la lysogène à la lyse sous l'action d'UV
- Les modèles différentiels n'expliquent pas les switchs observés
- Il faut introduire du bruit intrinsèque, dû au faible nombre de molécules
- le taux de switch prédit par le modèle est très proche des courbes expérimentales

Sources: Tian and Burrage (2004)

200

Percents of induced \(\text{\chi} \)

: Réseaux biologiques

Comparaison de modèles

Les différentes modélisations ne produisent pas les mêmes simulations et prédictions.

Le choix d'un formalisme est la première étape de la modélisation.

- Différentiel: Grand nombre de variables. Bonnes simulations. Surtout métabolisme (besoin de coefficients)
- Piecewise linear: Surtout génétique. Etude de tous les comportements possibles. Dégradation obligatoire.
- Booléen: Plus de liberté pour définir les attracteurs. Moins de flou possible. Introduction du métabolisme possible.
- Stochastique: Petit nombre de molécules. Grande liberté de modélisation. Calculs horriblement longs.

Un point commun à tous les formalismes

Graphe d'interaction

- Sommets: noeuds du modèle
- Arêtes: A → B si une pertubation de la concentration de A a un effet sur la concentration de B. On garde le signe de l'effet.

$$\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

(-1 sur la diagonale: retrorégulations négatives;

dégradations)

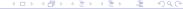
- Différentes définitions en fonction du type de modélisation
- Modèles différentiels: la matrice d'adjacence du graphe est donnée par le Jacobien de la dynamique

Multistabilité

- Système multistationnaire: existence d'au moins deux points fixes stables.
- Les switchs (changement d'état d'équilibres) sont cruciaux pour expliquer les phénomènes de différentiation.
- Règle de Thomas. Si un système de régulation génétique a deux états d'équilibre, alors son graphe d'interaction admet au moins un circuit positif.
 - Preuve par Snoussi (95) dans un cas différentiel
 - Preuve par Soulé (03) dans le cas différentiel général et linéaire par morceaux.
 - Preuve par De Jong (98), puis Rémy et al. (05) dans le cas booléen.
- Condition pas suffisante: la boucle positive ne doit pas être affectée par d'autres circuits.
- Validité dans le cas stochastique? pour les systèmes métaboliques?

Motifs

Synthesis of auto-regulated gene circuits


	Gardner <i>et al.</i> (2000) <i>Nature</i> 403 : 339-342	Elowitz & Leibler (2000) Nature 403: 335-338	Becskei & Serrano (2000) Nature 405: 590-593
Construction	Inductor 1 R1 P2 P1 R2 GFP Inductor 2	P2 R1 P3 R2 P1 R3 P1 GFP	P1 R1 GFP
Logical scheme	Positive circuit	R2 R3 GFP	Negative circuit
Main properties	- Stable and exclusive expression of one of the two repressors - Memorisation of induction - Stability and robustness against biochemical fluctuations	Cyclic expression of the repressors and reporter gene Transmission of this oscillating behaviour through bacterial divisions	Increased stability and decreased variability of the repressor expression Compensation of dosage effects due to the variation of the number of copies

Sources: D. Thieffry (IBDM, Marseille)

Sources

- A. Cornish-Bowden (Métabolisme)
- G. Bernot (Booléen)
- K. Burrage (Phage Lambda)
- H. De Jong (Piecewise Linear)
- J. Guespin-Michel (Mucoviscidose)
- E. Pécou (Différentiel)
- O. Radulescu (Stochastique)
- E. Sontag (Différentiel, Contrôle)
- C. Soulé (Règle de Thomas)
- D. Thieffry (Booléen multivalué)
- J. Tyson (Différentiel)
- Z. Xie (Lambda Phage, stochastique)(...)

