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Outline

Succinct introduction to Integer programming

Two applications

Protein Folding Problem

Proteins Structure Comparison problem

Building graph theoretical formalism

Using Integer Programming for problems resolving

general purpose approaches

dedicated approaches

Conclusions, perspectives, open problems
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Continuous vs. Integer programming

A simple example: Build 2 equal rectangular en-

closures of maximal area size from 120 m.bar

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

x x

y y

120 meters
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Continuous vs. Integer programming

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

x x

y y

120 meters

xy → max ( objective function)

4x + 3y = 120, x ≥ 0, y ≥ 0 ( constraints)
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some geometry in action

feasible set

objective function

x

y

xy=300
20

15
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integer lengths case: the feasible set

X

Y

THE CASE OF INTEGER ENCLOSURES

LENGTH = 121 METERS

the enclosures to be
built from up to 121
pieces of unit length

4x+3y ≤ 121, x ≥ 0, y ≥ 0

x,y- integer
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convex hull, linear objective

y

x

2 X  + Y = 60.5

LENGTH = 121 METERS

THE CASE OF INTEGER ENCLOSURES

the yellow polytope has
only integer vertices
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the concept of bounds ( relaxation )

THE CASE OF INTEGER ENCLOSURES

LENGTH = 121 METERS

feasible

infeasible

x = 15.125, y = 20.16, ub = 304.92

x = 15, y = 20, lb = 300

ub -upper bound
lb - lower bound
gap (absolute) is ub − lb
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integer polytope( assignment problem)
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draw 4 independent numbers with a minimal sum
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integer polytope (assignment
problem)-bipartite graph
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integer polytope (assignment
problem)-mathematical model

1

2

3

4

1 2 3 4

5 4

7 4 5

5 8

13

5

12 22

5

11

47

12

1

2

3

4

1

2

3

4

∑

i

∑

j

cijxij → max

∑

j

xij = 1, i = 1, n

∑

i

xij = 1, j = 1, n

xij ∈ {0, 1}
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about the distance between continuous and
integer solutions

8x1 + 11x2 + 6x3 + 4x4 maximize
5x1 + 7x2 + 4x3 + 3x4 ≤ 14
x ∈ {0, 1}
x1 = 1, x2 = 1, x3 = 0.5, x4 = 0 vlp = 22 (continuous solution)

x1 = 0, x2 = 1, x3 = 1, x4 = 1 vip = 21 (integer solution)
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good vs. bad model

1

3

6

7

2

4

5

The tour(hamiltonian)

1 − 4 − 2 − 5 − 6 − 7 − 3 − 1 is of length
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good vs. bad model-assignment problem
relaxation

1

3
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7

2

4

5

xij =







1 from i directly to j

0 otherwise

∑

j

xij = 1 i = 1, n

∑

i

xij = 1 j = 1, n

xij ∈ {0, 1}
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good vs. bad model- break the loops

1
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S

V−S
X

j

xij = 1 i = 1, n

X

i

xij = 1 j = 1, n

xij ∈ {0, 1}

X

i∈S,j∈V −S

xij ≥ 1 for each S ∈ V
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good vs. bad model- break the loops

For n = 300 the number of loop destroyers is
1018517988167243043134222844204
689080525734196832968125318070
224677190649881668353091698688
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good vs. bad model- linearization

how to linearize quadratic terms xy for 0/1 variables ?
the trick is to
set xy = z and force z to be equal to 1 iff x = 1, y = 1

z ≤ x , z ≤ y

x + y − z ≤ 1

(1,1,1)

(1,0,0)

(0,1,0)

(0,0,0)

X, Y 0\1 variables

thease are all feasible points for Z = min { X, Y }Z

Y

X
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Lagrangian Relaxation and Duality

maximize 13x1 + 9x2 + 18x3 + 5x4 + 12x5

4x1 + 3x2 + 7x3 + 2x4 + 5x5 ≤ 13

xi, i = 1, . . . 5 integer

LP solution x1 = 3, x2 = 1
3 , VLP = 42 (if the bounds x1 ≤ 3, x2 ≤ 4, x3 ≤

1, x4 ≤ 6, x5 ≤ 2 are added to the feasible set, otherwise VLP = 42.5)
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Lagrangian Relaxation and Duality

Z(x, λ) = (13−4λ)x1+(9−3λ)x2+(18−7λ)x3+(5−2λ)x4+(12−5λ)x5+13λ

Lagrangian relaxation: LR(λ) = max
x

Z(x, λ)

)LR( λ

λ

LR(λ)

BOUNDED CASE
UNBOUNDED CASE

3

42

42.5

λ 3.25
infinity
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Lagrangian Relaxation and Duality

Z(x, λ) = (13−4λ)x1+(9−3λ)x2+(18−7λ)x3+(5−2λ)x4+(12−5λ)x5+13λ

LR(0) = 3 × 13 +4 × 9 +1 × 18 +6 × 5 +2 × 12 = 147

LR(1) = 3 × 9 +4 × 6 +1 × 11 +6 × 3 +2 × 7 +13 = 107

LR(2) = 3 × 5 +4 × 3 +1 × 4 +6 × 3 +2 × 2 +26 = 63

LR(3) = 3 × 1 +0 +0 +0 +0 +39 = 42

LR(4) = 52 = 52

LR(3 + ε) = 42 + ε > 42 and LR(3 − ε) = 42 + 11 × ε > 42

=⇒ ZLD = min
λ≥0

LR(λ) = LR(3) = 42 = ZLP

Theory: ZIP ≤ ZLD ≤ ZLP
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Recapitulation- Part 1

Intro through examples of some integer programming topics :

terms: objective function, feasible set,polytopes, optimal
solution,relaxation, bounds, gap, lagrangian duality.

Classical problems like :

knapsack, assignment, travelling salesman.

Mentioning of graphs as a valuable tool for modelling many
combinatorial problems.
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Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR
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Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

A sequence in a protein data bank
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Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Figure 1: in fact this is its real (3D) shape
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Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Protein Folding Problem :

Input: a1, a2, . . . , aN—a sequence over the 20-letter amino
acid alphabet

Output: (xi, yj , zj), j = 1, . . . , N—the coordinates of aj
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Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

structure template (core)

Figure 2: Generalized contact map graph—describes the inter-

actions between the blocks
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3D structure determination methods

Experimental (in vitro): x-ray crystallography, NMR. Slow and
expensive. Require knowledge of the proteins structural
domains.

Computational (in silico)

Direct approach: Seeks to minimize the free energy
using classical mechanics models. Computationally very
expensive—BLUE GENE supercomputer
Sequence alignment methods: BLAST, FASTA,
PSI-BLAST. Cannot compare remote homologs.
Fold recognition methods

Protein Threading (this talk)
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Protein Threading—basic assumptions

the sequence (1D structure) determines the 3D structure

homologous proteins have similar structure (and function)

homologous proteins have conserved structural cores and
variable loop regions

Postulate: there between 1000 and 2000 different protein
structural families (library of 3D structures/cores)
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Protein Threading—main steps

constructing a library of core folds (structural templates)
—see the 3D catalogue

choosing and objective function (score function) to evaluate
any alignment of a sequence to a structural template

finding the best alignment of the query sequence to each
core in the library—NP-hard problem. (need of good
combinatorial optimization alg.)

choosing the most appropriate core based on normalized
scores of the optimal alignments (requires good statistical
model and the power of distributed computing)
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Building graph theoretical formalism
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Query-to-structure alignment

m = 3 segments of lengths l1 = 2, l2 = 4, l3 = 3 ;

1D query of lenght N=153D structure template (core) 
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Query-to-structure alignment

m = 3 segments of lengths l1 = 2, l2 = 4, l3 = 3 ;

1D query of lenght N=153D structure template (core) 

Figure 3: two possible alignments.

Alignment (threading): covering the elements of query by the

template blocks/segments. A threading is completely determined

by the starting positions of the blocks. To any threading is asso-

ciated a score. An Unified Approach for Structures alignment – p.27/84



Query-to-structure alignment:
“classical” threading rules

blocks preserve their order

block do not overlap

no gaps in the blocks

blocks are of fixed lenght
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Absolute and relative positions

m = 3 segments of lengths: l1 = 2, l2 = 4, l3 = 3 ;

1D query of lenght N=153D structure template (core) 

abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rel. pos. block 1 1 2 3 4 5 6 7

rel. pos. block 2 1 2 3 4 5 6 7

rel. pos. block 3 1 2 3 4 5 6 7
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Absolute and relative positions

m = 3 segments of lengths: l1 = 2, l2 = 4, l3 = 3 ;

1D query of lenght N=153D structure template (core) 

abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rel. pos. block 1 1 2 3 4 5 6 7

rel. pos. block 2 1 2 3 4 5 6 7

rel. pos. block 3 1 2 3 4 5 6 7

n = N + 1 −
m

∑

i=1

li is the degree of freedom for each block;

n = 7 for the considered example

Number of possible threadings |T | = (n−1+m
m ) = (n−1+m)!

m!(n−1)!
.
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PTP is a matching problem

(a)
abs. position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rel. position block 1 1 2 3 4 5 6 7 8 9

rel. position block 2 1 2 3 4 5 6 7 8 9

rel. position block 3 1 2 3 4 5 6 7 8 9

(b)

1 2 3

1 2 3 4 5 6 7 8 9
V

U

(c)
Figure 4: (a) Example of alignment of query sequence of length 20 and
template containing 3 segments of lengths 3, 5 and 4. (b) Correspondence
between absolute and relative block positions. (c) A matching corresponding
to the alignment of (a).
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Size of the solution space

Number of possible threadings |T | = (n−1+m
m ) = (n−1+m)!

m!(n−1)!
.

query core size space

name name segm. pos. size

2cyp_0 2cyp_0 15 98 1.5e+18

1coy_0 1gal_0 36 81 1.3e+30

3mina0 4kbpa0 23 189 3.2e+30

3minb0 1gpl_0 23 215 5.3e+31

1gal_0 1ad3a0 31 212 1.3e+39

1coy_0 1fcba0 34 190 1.7e+40

1kit_0 1reqa0 41 194 9.9e+45
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Score function: pairwise interactions

cijkl, 1 ≤ j ≤ l ≤ n—score of putting block i on position k and
block j on position l

block  j

position l

block  i 
c 

position k

c 1235
c 1224 c 2435

ikjl

The above alignment corresponds to threading (2,4,5) with cost
ϕ(2, 4, 5) = s12 + s24 + s35 + c1224 + c2435 + c1235.
The score function is supposed to be

additive

can be computed considering no more than two blocks at a
time
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Protein threading problem

min{ϕ(π)|π ∈ T}

where

ϕ(π) =

m
∑

i=1

siπi
+

∑

(i,k)∈E

ciπikπk

and T is the set of threadings

T = {(π1, . . . , πm) | 1 ≤ π1 ≤ . . . , πm ≤ n}

The problem is proven to be NP_hard (Lathrop,94) and
MAX-SNP-hard (Akutsu&Miyano,99).
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FROST : requires score normalization

1175 classes are know today. We need to classify the query in
one of these classes. Huge computations convenient to
gridification.

3D model 3D model 

3D model 

2

11751

1D query
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Network flow model

Which is the shortest path from S to T ?

S T

 7 3 1

3 
4 

4

2 

7 
8 

5 

1

4

3 
2

8 

1 

3

2

10

8

2 

1

2

1

1 1 

1

Figure 5: Five segments and their local interactions.

The degree of freedom is three.
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Network flow model

S T

 7 3 1

3 
4 

4

2 

7 
8 

5 

1

4

3 
2

2

10

8

2 

2

1 2 3 4 5

1

1 1 

1

( 1 1 )  (3 3)    7    (3 1)  (5 3)   2

( 1 2 )  (3 2)    3    (3 2)  (5 2)   7

( 1 2 )  (3 3)    8    (3 2)  (5 3)   5

( 1 3 )  (3 3)    5    (3 3)  (5 3)   2

  (1 3)                (3 5) 

NON−LOCAL COSTS

( 1 1 )  (3 1)    4    (3 1)  (5 1)   1

( 1 1 )  (3 2)    2 ( 3 1 )  (5 2)  43

1
8 

1

Figure 6: Here are all interactions. The non-local in-

teractions make the problem NP-complete.

An Unified Approach for Structures alignment – p.36/84



Network flow model

S T

 7 3 1

3 
4 

4

2 

7 
8 

5 

1

4

3 
2

2

8

2 

2

1 2 3 4 5

1

1 
1

( 1 1 )  (3 3)    7    (3 1)  (5 3)   2

( 1 2 )  (3 3)    8    (3 2)  (5 3)   5

( 1 3 )  (3 3)    5    (3 3)  (5 3)   2

  (1 3)                (3 5) 

NON−LOCAL COSTS

( 1 1 )  (3 1)    4    (3 1)  (5 1)   1

( 1 1 )  (3 2)    2 ( 3 1 )  (5 2)  43

1 ( 1 2 )  (3 2)    3 ( 3 2 )  (5 2)  7

1

2

10

7

8 

1

Figure 7: Impact of the non-local interactions. A

path from S to T activates complementary edes cor-

responding to the remote link. We call it augmented

path
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Network flow model

Protein threading problem: find the augmented path of minimal
lenght.

S T

 7 3 1

3 
4 

4

2 

7 
8 

5 

1

4

3 
2

2

8

2 

2

1 2 3 4 5

1

1 
1

( 1 1 )  (3 3)    7    (3 1)  (5 3)   2

( 1 2 )  (3 3)    8    (3 2)  (5 3)   5

( 1 3 )  (3 3)    5    (3 3)  (5 3)   2

  (1 3)                (3 5) 

NON−LOCAL COSTS

( 1 1 )  (3 2)    2 ( 3 1 )  (5 2)  43

1 ( 1 2 )  (3 2)    3 ( 3 2 )  (5 2)  7

1

2

10

7

8 

1

( 1 1 )  (3 1)    4    (3 1)  (5 1)   1

OPT= F((1,1) (2,1) (3,2) (4,2) (5,2))=14.0

Figure 8: The red path corresponds to the threading

(1,1,2,2,2).
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Comparison of proteins 3D structures

How to compare these two structures???
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Contact Map Overlap I

Attention: in the contact map graph any node is an AA
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)

Contact map overlap problem is a kind of matching problem
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)

An Unified Approach for Structures alignment – p.47/84



Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)
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Contact Map Overlap (Cont.)

A

B

An alignment of A to B

Contact map overlap is again a matching ptoblem.
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Network flow for Contact Map Overlap

Network  flow  graph. Real vertices model possible alignments. 

B

A

A1

A2

A3

real vertices

dummy vertices

B1 B2 B3 B4

Dummy vertices model ommissions.
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Network flow for Contact Map Overlap (Cont.)

Possible output arcs from a dummy vertex. 

B

A

A1

A2

A3

real vertices

dummy vertices

B1 B2 B3 B4

Possible output arcs from a real vertex. 
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Contact Map Optimization Problem

A

B

a

b c

d

e

f

a_d

It corresponds to the above given alignment of A to B. 

Path activates arcs  a_f  and d_e.

a_f

d_e

a_e

Find the path in the network flow graph activating maximum number of arcs.
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VAST approach for proteins comparison

Again: how to compare these two 3D structures???
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Vector Alignment Search Tool (Cont.)

����� � �� ��� �� � ����� �����

		�

 � �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� �

protein A

protein B

Attention: in this approach any node is a secondary structure.
Advantage : reduction of the solutions space size!
Gibrat&Madej&Bryant, Surprising similarities in structure
comparison. Curr. Opin. Struct. Biol., 1996, 6(3):377-385

http:www.ncbi.nlm.hih.gov/Structure/VAST/vast.shtml
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VAST: from matching to maximum clique

����� � �� ��� �� � ����� �����

		�

 � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� �

� �� ���� �����

����� � �� �� �� �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

This is unacceptable                                                   

3−clique : feasible matching of cardinality 3 

Find a translation and rotation superimposing one couple of
vectors to another one. RMSD (Root mean square deviation) is
afterwards used to measure the similarity between these
couples of vectors. Similar couples are connected by arcs.
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Network flow for VAST approach

� �� ��� �� � � �� ��� �� � ����� �����

		�

 � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� �

� �� ����
� �� ����

� �� ���� � �� ���� � �� ���� � �� ����     �!!

" "" "�##
$$�%% &&�'' ((�)) * ** *�++ ,,�--

..�// 00�11 2 22 2�33 44�55 6 66 6�77

888999 ::�;; <<�== > >> >�?? @@�AA

B BB B�CC D DD DD DEE FFFGG HHHII JJJKK
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Real vertices and their output arcs

Dummy vertices and their output arcs 

Possible arcs in the network graph. Dummy vertices allow
modeling omissions.
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Network flow for VAST approach (cont.)

� �� ��� �� � � �� ��� �� � ����� �����

		�

 � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� � � �� �� �� �� �� �

� �� ����
� �� ����

� �� ���� � �� ���� � �� ���� � �� ����     �!!

" "" "�##
$$�%% &&�'' ((�)) * ** *�++ ,,�--

..�// 00�11 2 22 2�33 44�55 6 66 6�77

888999 ::�;; < << <�== >>�??

@ @@ @�AA B BB BB BCCC DDDEEE FFFGG HHHII

J JJ JJ JKK

LL�MM

N NN NN N
N NN NN N

N NN NN N
N NN NN N

N NN NN N
N NN NN N

N NN NN N
N NN NN N

N NN NN N
N NN NN N

N NN NN N
N NN NN N

N NN N
O OO OO O

O OO OO O
O OO OO O

O OO OO O
O OO OO O

O OO OO O
O OO OO O

O OO OO O
O OO OO O

O OO OO O
O OO OO O

O OO OO O
O OO O

P P P P P P P P P P P P P P P P P P P P PP P P P P P P P P P P P P P P P P P P P PQ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Path activates a clique of cardinality 3.

Optimal matching is equivalent to findingmaximum edge
weighted clique in an appropriate graph
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Toy example

_   A    T    C    G

C   A    T    −     G

 A    T    C    G

C   A    T      G

Draw the network flow graph allowing to obtain this alignment.
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Toy example : solution
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Integer programming models
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Network flow formulation: notations

Interactions : L ⊆ {(i, j) | 1 ≤ i < j ≤ m} : all

G(V,E)–digraph with V = {(i, k) | i = 1,m; k = 1, n} ;
where

E = {((i, k), (j, l)) | (i, j) ∈ L, 1 ≤ k ≤ l ≤ n}

Variables: ze, e ∈ E, and yv, v ∈ V .
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Properties of the set of feasible threadings Y

n
∑

k=1

yik = 1 i = 1,m (1)

j
∑

l=1

yil −

j
∑

l=1

yi+1,l ≥ 0 i = 1, . . . ,m − 1, j = 1, . . . , n − 1 (2)

yik ∈ {0, 1} i = 1,m, k = 1, n (3)

(3) yik = 1 ⇔ block i is on position k
(1) block i is on exactly one position
(2) if block i + 1 is on positions l, then block i is before position l

Proposition 1 The polytope Y is integral, i.e. it has only
integer-valued vertices.
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A quadratic model

m
∑

i=1

n
∑

k=1

sikyik +
∑

(i,j)∈E

cikjlyikyjl ⇒ min (4)

y ∈ Y (5)
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Linearizing the model

m
∑

i=1

n
∑

k=1

sikyik +
∑

(i,j)∈E

cikjlzikjl ⇒ min (6)

y ∈ Y (7)

zikjl ≤ yik (8)

zikjl ≤ yjl (9)

yik + yjl − zikjl ≤ 1 (10)
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Strengthening the model

1 2 3 4 5

33
y

32
y

31
y

yij are binary : the corresponding zikjl are relaxed.

y31 + y32 + y33 = 1 as defined inY

z1133 + z1233 + z1333 = y33 Γ−1(y33)

z1132 + z1232 = y32 Γ−1(y32)

z1131 = y31 Γ−1(y32)

y33 = z3353 Γ(y32)

y32 = z3253 + z3252 Γ(y32)

y31 = z3153 + z3152 + z3151 Γ(y31)
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Strengthening the model (cont.)

m
∑

i=1

n
∑

k=1

sikyik +
∑

e∈E

ceze ⇒ min (11)

yik =

n
∑

l=k

zikjl (i, j) ∈ L, k = 1, n (12)

yjl =
l

∑

k=1

zikjl (i, j) ∈ L, l = 1, n (13)

y ∈ Y (14)

ze ≥ 0 e ∈ E (15)
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Is the protein threading in P?

Observation : 1 200 000 alignements computed (all FROST
data bank);
only 5% of the instances the LP relaxation is not integer;
Statistics: 1×11 nodes, 2×10 nodes, 1×9 nodes,
5×8 nodes, 3×7 nodes, 3×6 nodes,
Majority: 2 nodes - in which cases the value of the solution is 0.5

The subset of real-life PTP is polynomially solvable!

Validated when using the FROST score function.

This is not true when using randomly generated score function.
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Can we do better?

Yes, using divide and conquer startegy!
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Split and conquer strategy

S T
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4 
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2
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1 1 3

1
8 
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( 1 1 )  (3 3)    7    (3 1)  (5 3)   2

( 1 2 )  (3 2)    3    (3 2)  (5 2)   7

( 1 2 )  (3 3)    8    (3 2)  (5 3)   5

( 1 3 )  (3 3)    5    (3 3)  (5 3)   2

  (1 3)                (3 5) 

NON−LOCAL COSTS

( 1 1 )  (3 1)    4    (3 1)  (5 1)   1

( 1 1 )  (3 2)    2 ( 3 1 )  (5 2)  4

1 2 3 4 5

S T

 7 3 1
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1

1
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1
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1
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1

P

P

P
1

3

2

The main problem is decomposed into three subproblems.
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Lagrangian relaxation and duality

Idea: drop part of the constraints in order to make the relaxed problem easier
to solve; introduce penalties for violating them in the objective function.

IP problem:

ZIP = min cx

s.t. x ∈ X—“easy” constraints

Ax = b—“complicated” constraints

Lagrangian relaxation: ZLR(λ) = min {cx + λ(b − Ax)|x ∈ X}

LR is also an IP problem, but easier to solve than IP

LR is relaxation of IP for any λ (i.e. ZLR(λ) ≤ ZIP )

Lagrangian dual: ZLD = maxλZLR(λ)

LD is better than LP: ZLP ≤ ZLD ≤ ZIP
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Topology of PTP

Reminder: L is the inter-block interactions graph

S T

complexity of PTP strongly depends on the topology of L

L = ∅ or contains only local links −→ PTP is polynomially
solvable
L dense −→ PTP is NP-hard

What about intermediate cases ?
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SP#1: L contains no crossing edges

Crossing edges:

Non-Crossing edges:
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SP#1, L contains no crossing edges

l = number of links in L

n = number of vertices in a layer

SP#1 can be solved using a DP approach, with complexity
O(ln3).
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SP#2: L is a star

Star: common left/right end for all links

O(ln2) complexity using DP programming
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SP#3: sequence of independent subproblems

partition s.t. no link is cut

let r = number of independent subproblems

O(rn2) complexity after having solved each subproblem
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From graph decomposition . . .

↓
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. . . to cost-splitting technique

TS

↓

S T S T

solve independently and enforce identical solutions
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Optimization

equality constraint between sub-problems is the hard one

Practical resolution:
Lagrangian relaxation
Maximization of the dual using its sub-gradient
In theory, only gives a lower bound on the objective
Branch and Bound for exact resolution
In practice, the solution is obtained at the root
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Cost-splitting Lagrangian relaxation

L = L1
⋃

L2...
⋃

Lt where each Ls induces an easy solvable PTP (Ls),

vL
ip = min







t
∑

s=1

(
m

∑

i=1

ds
iy

s
i +

∑

(i,k)∈Ls

cikzik)







(16)

subject to: y1
i = ys

i , s = 2, t (17)

ys = (ys
1, ..y

s
m) ∈ Y, s = 1, . . . , t (18)

ys
i = Aizik, ys

k = Akzik s = 1, . . . , t (i, k) ∈ Ls (19)

zik ∈ B
n(n+1)

2 s = 1, . . . , t (i, k) ∈ Ls (20)

vcsd = max
λ

min
y

t
∑

s=1

(
m

∑

i=1

ds
i (λ)ys

i +
∑

(i,k)∈Ls

cikzik) = max
λ

t
∑

s=1

vLs

ip (λ) (21)

subject to (18), (19) and (20).
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Cost-Splitting LR (CS-LR) versus LP
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Computing 962 threading in-
stances associated to the
template 1ASYA0. The linear
curve in the plot is the line
y = x. We observe a sig-
nificant performance gap be-
tween the algorithms. CS-LR
is from 100 to 250 times faster
than LP relaxation.

Figure 9: Cost-Splitting Lagrangian Relaxation versus
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More experimental results
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Each point in this plot corre-
sponds to the total time re-
quired by CS-LR algorithm
to compute one distribution
determined by approximately
200 alignments of the same
size. About 60 distributions
have been computed which
needed solving about 12000
alignments totally. The size
of the biggest instance is
O(1077).

Figure 10: Evolution in time as a function of the solu-

tions space size.
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Conclusions

MIP formulations are very convenient for PTP;

complete integration in FROST and its application on the
GRID;

the commercial package CPLEX of ILOG is avoided using a
dedicated software for PTP (based on LR).

computational results and comparisons between exact and
approximated methods are provided. Huge real-life
instances have been solved.

Finding the exact global minimum in the optimal threading
permitted FROST sensibility and quality of prediction to be
improved (+7% and +5% respectively)
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Merci!
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