An Unified Approach for Structures alignment

R. Andonov and Nicola Yanev
Ecole chercheurs Bioinformatique, Liffré, Novembre, 2005

Outline

6 Succinct introduction to Integer programming
6 Two applications

- Protein Folding Problem
- Proteins Structure Comparison problem
- Building graph theoretical formalism
© Using Integer Programming for problems resolving
- general purpose approaches
- dedicated approaches

ऽ Conclusions, perspectives, open problems

Continuous vs. Integer programming

A simple example: Build 2 equal rectangular enclosures of maximal area size from 120 m.bar

120 meters

X X

Continuous vs. Integer programming

some geometry in action

integer lengths case: the feasible set

the enclosures to be built from up to 121 pieces of unit length
$4 x+3 y \leq 121, x \geq 0, y \geq$
x, y - integer

THE CASE OF INTEGER ENCLOSURES

convex hull, linear objective

LENGTH $=121$ METERS

THE CASE OF INTEGER ENCLOSURES

the concept of bounds (relaxation)

$$
\begin{aligned}
& x=15.125, y=20.16, u b=30 \\
& \qquad x=15, y=20, l b=300 \\
& \text { ub -upper bound } \\
& \text { lb - lower bound } \\
& \text { gap (absolute) is } u b-l b
\end{aligned}
$$

integer polytope(assignment problem)

draw 4 independent numbers with a minimal sum

integer polytope (assignment problem)-bipartite graph

integer polytope (assignment problem)-mathematical model

about the distance between continuous and

integer solutions

$8 x_{1}+11 x_{2}+6 x_{3}+4 x_{4}$ maximize
$5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 14$
$x \in\{0,1\}$
$x_{1}=1, x_{2}=1, x_{3}=0.5, x_{4}=0 v_{l p}=22$ (continuous solution)
$x_{1}=0, x_{2}=1, x_{3}=1, x_{4}=1 v_{i p}=21$ (integer solution)

good vs. bad model

The tour(hamiltonian)
$1-4-2-5-6-7-3-1$ is of length $C_{14}+C_{42}+C_{25}+C_{56}+C_{67}+C_{73}+C_{31}$

good vs. bad model-assignment problem relaxation

$$
\begin{gathered}
x_{i j}=\left\{\begin{array}{l}
1 \text { from i directly to } \\
0 \text { otherwise }
\end{array}\right. \\
\sum_{j} x_{i j}=1 i=1, n \\
\sum_{i} x_{i j}=1 j=1, n \\
x_{i j} \in\{0,1\}
\end{gathered}
$$

good vs. bad model- break the loops

$$
\begin{aligned}
& \sum_{j} x_{i j}=1 i=1, n \\
& \sum_{i} x_{i j}=1 j=1, n
\end{aligned}
$$

$$
x_{i j} \in\{0,1\}
$$

$\sum_{i \in S, j \in V-S} x_{i j} \geq 1$ for each $\mathrm{S} \in V$

good vs. bad model- break the loops

For $n=300$ the number of loop destroyers is
1018517988167243043134222844204 689080525734196832968125318070 224677190649881668353091698688

good vs. bad model- linearization

how to linearize quadratic terms $x y$ for $0 / 1$ variables ? the trick is to
set $x y=z$ and force z to be equal to 1 iff $x=1, y=1$

$$
\begin{aligned}
& z \leq x, z \leq y \\
& x+y-z \leq 1
\end{aligned}
$$

thease are all feasible points for $Z=\min \{X, Y\}$ $\mathrm{X}, \mathrm{Y} 0 \backslash 1$ variables

Lagrangian Relaxation and Duality

maximize

$$
\begin{gathered}
13 x_{1}+9 x_{2}+18 x_{3}+5 x_{4}+12 x_{5} \\
4 x_{1}+3 x_{2}+7 x_{3}+2 x_{4}+5 x_{5} \leq 13 \\
x_{i}, i=1, \ldots 5 \text { integer }
\end{gathered}
$$

LP solution $x_{1}=3, x_{2}=\frac{1}{3}, V_{L P}=42$ (if the bounds $x_{1} \leq 3, x_{2} \leq 4, x_{3} \leq$ $1, x_{4} \leq 6, x_{5} \leq 2$ are added to the feasible set, otherwise $V_{L P}=42.5$)

Lagrangian Relaxation and Duality

$$
Z(x, \lambda)=(13-4 \lambda) x_{1}+(9-3 \lambda) x_{2}+(18-7 \lambda) x_{3}+(5-2 \lambda) x_{4}+(12-5 \lambda) x_{5}
$$

Lagrangian relaxation: $L R(\lambda)=\max _{x} Z(x, \lambda)$

3

BOUNDED CASE

UNBOUNDED CASE

Lagrangian Relaxation and Duality

$$
\begin{aligned}
& Z(x, \lambda)=(13-4 \lambda) x_{1}+(9-3 \lambda) x_{2}+(18-7 \lambda) x_{3}+(5-2 \lambda) x_{4}+(12-5 \lambda) x_{5}+13, \\
& \begin{array}{lllll}
L R(0)=3 \times 13+4 \times 9+1 \times 18+6 \times 5+2 \times 12 \quad=147
\end{array} \\
& \begin{array}{l}
L R(1)=3 \times 9+4 \times 6+1 \times 11+6 \times 3+2 \times 7+13=107
\end{array} \\
& L R(2)=3 \times 5+4 \times 3+1 \times 4+6 \times 3+2 \times 2+26=63 \\
& \begin{array}{llllll}
L R(3) & =3 \times 1 & +0 & +0 & +0 & +0
\end{array}+39=42 \\
& L R(4)=\quad 52=52
\end{aligned}
$$

$$
L R(3+\epsilon)=42+\epsilon>42 \text { and } L R(3-\epsilon)=42+11 \times \epsilon>42
$$

$$
\Longrightarrow Z_{L D}=\min _{\lambda \geq 0} L R(\lambda)=L R(3)=42=Z_{L P}
$$

Theory: $Z_{I P} \leq Z_{L D} \leq Z_{L P}$

Recapitulation- Part 1

6 Intro through examples of some integer programming topics :

- terms: objective function, feasible set,polytopes, optimal solution,relaxation, bounds, gap, lagrangian duality.
© Classical problems like :
- knapsack, assignment, travelling salesman.

6 Mentioning of graphs as a valuable tool for modelling many combinatorial problems.

Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

 A sequence in a protein data bank
Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Figure 1: in fact this is its real (3D) shape

Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Protein Folding Problem :
${ }^{6}$ Input: $a_{1}, a_{2}, \ldots, a_{N}$-a sequence over the 20 -letter amino acid alphabet
© Output: $\left(x_{i}, y_{j}, z_{j}\right), j=1, \ldots, N$-the coordinates of a_{j}

Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

Figure 2: Generalized contact map graph—describes the interactions between the blocks

3D structure determination methods

Experimental (in vitro): x-ray crystallography, NMR. Slow and expensive. Require knowledge of the proteins structural domains.
© Computational (in silico)
Direct approach: Seeks to minimize the free energy using classical mechanics models. Computationally very expensive-BLUE GENE supercomputer
Sequence alignment methods: BLAST, FASTA, PSI-BLAST. Cannot compare remote homologs.
Fold recognition methods
Protein Threading (this talk)

Protein Threading—basic assumptions

6 the sequence (1D structure) determines the 3D structure

- homologous proteins have similar structure (and function)
© homologous proteins have conserved structural cores and variable loop regions

Postulate: there between 1000 and 2000 different protein structural families (library of 3D structures/cores)

Protein Threading—main steps

6 constructing a library of core folds (structural templates) -see the 3D catalogue
choosing and objective function (score function) to evaluate any alignment of a sequence to a structural template
fi nding the best alignment of the query sequence to each core in the library-NP-hard problem. (need of good combinatorial optimization alg.)
choosing the most appropriate core based on normalized scores of the optimal alignments (requires good statistical model and the power of distributed computing)

Building graph theoretical formalism

Query-to-structure alignment

 $m=3$ segments of lengths $l_{1}=2, l_{2}=4, l_{3}=3 ;$

3D structure template (core)

1D query of lenght $\mathrm{N}=15$

Query-to-structure alignment

$$
m=3 \text { segments of lengths } l_{1}=2, l_{2}=4, l_{3}=3 ;
$$

3D structure template (core)

Figure 3: two possible alignments.
Alignment (threading): covering the elements of query by the template blocks/segments. A threading is completely determined by the starting positions of the blocks. To any threading is associated a score.

Query-to-structure alignment: "classical" threading rules

6 blocks preserve their order
© block do not overlap
6 no gaps in the blocks
6 blocks are of fi xed lenght

Absolute and relative positions

$m=3$ segments of lengths: $l_{1}=2, l_{2}=4, l_{3}=3 ;$

3D structure template (core)
1D query of lenght $\mathrm{N}=15$

abs. position	1	2	3	4	5	6	7	8	9	10	11	12	13	1
rel. pos. block 1	1	2	3	4	5	6	7							
rel. pos. block 2			1	2	3	4	5	6	7					
rel. pos. block 3							1	2	3	4	5	6	7	

Absolute and relative positions

$m=3$ segments of lengths: $l_{1}=2, l_{2}=4, l_{3}=3 ;$

3D structure template (core)

$$
\text { 1D query of lenght } \mathbf{N}=15
$$

abs. position	1	2	3	4	5	6	7	8	9	10	11	12	13	1
rel. pos. block 1	1	2	3	4	5	6	7							
rel. pos. block 2			1	2	3	4	5	6	7					
rel. pos. block 3							1	2	3	4	5	6	7	

$n=N+1-\sum_{i=1}^{m} l_{i}$ is the degree of freedom for each block;
$n=7$ for the considered example
Number of possible threadings $|T|=\left(\begin{array}{c}n-1+m\end{array}\right)=\frac{(n-1+m)!}{m!(n-1)!}$.

PTP is a matching problem

$\bullet \bullet \bullet(a)$

abs. position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
rel. position block 1	1	2	3	4	5	6	7	8	9											
rel. position block 2			1	2	3	4	5	6	7	8	9									
rel. position block 3								1	2	3	4	5	6	7	8	9				

(b)

(c)

Figure 4: (a) Example of alignment of query sequence of length 20 and template containing 3 segments of lengths 3,5 and 4 . (b) Correspondence between absolute and relative block positions. (c) A matching corresponding to the alignment of (a).

Size of the solution space

Number of possible threadings $|T|=\binom{n-1+m}{m}=\frac{(n-1+m)!}{m!(n-1)!}$.

query name	core name	size		space
	segm.	pos.	size	
2cyp_0	2cyp_0	15	98	$1.5 \mathrm{e}+18$
1coy_0	1gal_0	36	81	$1.3 \mathrm{e}+30$
3mina0	4kbpa0	23	189	$3.2 \mathrm{e}+30$
3minb0	1gpl_0	23	215	$5.3 \mathrm{e}+31$
1gal_0	1ad3a0	31	212	$1.3 \mathrm{e}+39$
1coy_0	1fcba0	34	190	$1.7 \mathrm{e}+40$
1kit_0	1reqa0	41	194	$9.9 \mathrm{e}+45$

Score function: pairwise interactions

$c_{i j k l}, 1 \leq j \leq l \leq n$-score of putting block i on position k and block j on position l

The above alignment corresponds to threading $(2,4,5)$ with cost $\varphi(2,4,5)=s_{12}+s_{24}+s_{35}+c_{1224}+c_{2435}+c_{1235}$.
The score function is supposed to be
6 additive
© can be computed considering no more than two blocks at a time

Protein threading problem

$$
\min \{\varphi(\pi) \mid \pi \in T\}
$$

where

$$
\varphi(\pi)=\sum_{i=1}^{m} s_{i \pi_{i}}+\sum_{(i, k) \in E} c_{i \pi_{i} k \pi_{k}}
$$

and T is the set of threadings

$$
T=\left\{\left(\pi_{1}, \ldots, \pi_{m}\right) \mid 1 \leq \pi_{1} \leq \ldots, \pi_{m} \leq n\right\}
$$

The problem is proven to be NP_hard (Lathrop,94) and MAX-SNP-hard (Akutsu\&Miyano,99).

FROST : requires score normalization

1175 classes are know today. We need to classify the query in one of these classes. Huge computations convenient to gridifi cation.
\square

Related work

6 A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat, FROST: A Filter Based Recognition Method, Proteins: Struct. Funct. Genet. 2002

6 Lathrop\&Smith's branch\&bound,(J.Mol.Biol., 1996);
Akutsu\&Miyano, On the approximation of protein threading, TCS, (1999)
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu, Protein threading by linear programming, PSB, January, 2003, (JBCB, March 2003)

6 Yanev\&Andonov, Parallel Divide\&Conquer Approach for PTP, HiCOMB’03, April, 2003, Nice (CCPE, 16:1-14, 2004)

Andonov, Balev, Yanev, Protein Threading Problem: From Mathematical Models to Parallel Implementations,INFORMS J.on Computing, 2004

6 S. Balev, Solving the PTP by Lagrangian Relaxation, WABI 2004
6 Veber\&Yanev\&Andonov\&Poirriez, Optimal PTP by cost splitting, WABI 2005

Network flow model

Which is the shortest path from S to T ?

Figure 5: Five segments and their local interactions. The degree of freedom is three.

Network flow model

Figure 6: Here are all interactions. The non-local interactions make the problem NP-complete.

Network flow model

Figure 7: Impact of the non-local interactions. A path from S to T activates complementary edes corresponding to the remote link. We call it augmented path

Network flow model

Protein threading problem: fi nd the augmented path of minimal lenght.

Figure 8: The red path corresponds to the threading (1,1,2,2,2).

Comparison of proteins 3D structures

How to compare these two structures???

Contact Map Overlap I

(a)

(b)

Fig. 4. Native structure (a) for protein 1hlm taken from the PDB [2] and its contact map (b).
Attention: in the contact map graph any node is an AA

Contact Map Overlap (Cont.)

CONTACT MAPS

Unfolded protein

Contact Map Overlap (Cont.)

CONTACT MAPS

Unfolded protein

Folded protein $=$ contacts

Contact Map Overlap (Cont.)

CONTACT MAPS

Unfolded protein

Folded protein = contacts

Contact map = graph

Contact Map Overlap (Cont.)

CONTACT MAPS

OBJECTIVE: align 3d folds of proteins
= align contact maps

Contact Map Overlap (Cont.)

Contact map overlap problem is a kind of matching problem

Contact Map Overlap (Cont.)

The value of an alignment

Contact Map Overlap (Cont.)

The value of an alignment

Contact Map Overlap (Cont.)

The value of an alignment

Contact Map Overlap (Cont.)

The value of an alignment

Contact Map Overlap (Cont.)

The value of an alignment

Value $=3$
We want to maximize the value

Contact Map Overlap (Cont.)

The value of an alignment

NP-Hard (Goldman, Istrail,
Papadimitriou, 1999)

Contact Map Overlap (Cont.)

An alignment of A to B
Contact map overlap is again a matching ptoblem.

Network flow for Contact Map Overlap

Network flow graph. Real vertices model possible alignments.
Dummy vertices model ommissions.

Network flow for Contact Map Overlap (Cont.)

Contact Map Optimization Problem

Find the path in the network flow graph activating maximum number of arcs.

VAST approach for proteins comparison

Again: how to compare these two 3D structures???

Vector Alignment Search Tool (Cont.)

Attention: in this approach any node is a secondary structure.
Advantage : reduction of the solutions space size!
Gibrat\&Madej\&Bryant, Surprising similarities in structure comparison. Curr. Opin. Struct. Biol., 1996, 6(3):377-385
http:www.ncbi.nlm.hih.gov/Structure/VAST/vast.sh

VAST: from matching to maximum clique

Find a translation and rotation superimposing one couple of vectors to another one. RMSD (Root mean square deviation) is afterwards used to measure the similarity between these couples of vectors. Similar couples are connected by arcs.

Network flow for VAST approach

- Real vertices and their output arcs
- Dummy vertices and their output arcs

Possible arcs in the network graph. Dummy vertices allow modeling omissions.

Network flow for VAST approach (cont.)

Optimal matching is equivalent to fi ndingmaximum edge weighted clique in an appropriate graph

Toy example

Draw the network flow graph allowing to obtain this alignment.

Toy example : solution

Integer programming models

Network flow formulation: notations

Interactions : $L \subseteq\{(i, j) \mid 1 \leq i<j \leq m\}$: all
$G(V, E)$-digraph with $V=\{(i, k) \mid i=1, m ; k=1, n\} ;$ where

$$
E=\{((i, k),(j, l)) \mid(i, j) \in L, 1 \leq k \leq l \leq n\}
$$

Variables: $z_{e}, e \in E$, and $y_{v}, v \in V$.

Properties of the set of feasible threadings Y

$$
\begin{array}{ll}
\sum_{k=1}^{n} y_{i k}=1 & i=1, m \\
\sum_{l=1}^{j} y_{i l}-\sum_{l=1}^{j} y_{i+1, l} \geq 0 & i=1, \ldots, m-1, j=1, \ldots, n-1 \\
y_{i k} \in\{0,1\} & i=1, m, k=1, n
\end{array}
$$

(3) $y_{i k}=1 \Leftrightarrow$ block i is on position k
(1) block i is on exactly one position
(2) if block $i+1$ is on positions l, then block i is before position l

Proposition 1 The polytope Y is integral, i.e. it has only integer-valued vertices.

A quadratic model

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{k=1}^{n} s_{i k} y_{i k}+\sum_{(i, j) \in E} c_{i k j l} y_{i k} y_{j l} \Rightarrow \min \tag{4}\\
& y \in Y \tag{5}
\end{align*}
$$

Linearizing the model

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{k=1}^{n} s_{i k} y_{i k}+\sum_{(i, j) \in E} c_{i k j l} z_{i k j l} \Rightarrow \min \tag{6}\\
& y \in Y \tag{7}\\
& z_{i k j l} \leq y_{i k} \tag{8}\\
& z_{i k j l} \leq y_{j l} \tag{9}\\
& y_{i k}+y_{j l}-z_{i k j l} \leq 1 \tag{10}
\end{align*}
$$

Strengthening the model

$y_{i j}$ are binary: the corresponding $z_{i k j l}$ are relaxed.

$$
\begin{array}{rrrrr}
y_{31}+y_{32}+y_{33} & =1 & \text { as defi ned inY } \\
z_{1133}+z_{1233}+z_{1333} & =y_{33} & \Gamma^{-1}\left(y_{33}\right) \\
z_{1132}+z_{1232} & =y_{32} & \Gamma^{-1}\left(y_{32}\right) \\
z_{1131} & =y_{31} & \Gamma^{-1}\left(y_{32}\right) \\
y_{33} & =z_{3353} & \Gamma\left(y_{32}\right) \\
y_{32} & =z_{3253}+z_{3252} & \Gamma\left(y_{32}\right) \\
& y_{31} & =z_{3153}+z_{3152}+z_{3151}^{\text {An Unified Approach for Structures alignment- p.6668 }}
\end{array}
$$

Strengthening the model (cont.)

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{k=1}^{n} s_{i k} y_{i k}+\sum_{e \in E} c_{e} z_{e} \Rightarrow \min \tag{11}\\
& y_{i k}=\sum_{l=k}^{n} z_{i k j l} \quad(i, j) \in L, k=1, n \tag{12}\\
& y_{j l}=\sum_{k=1}^{l} z_{i k j l} \quad(i, j) \in L, l=1, n \tag{13}\\
& y \in Y \tag{14}\\
& z_{e} \geq 0 \quad e \in E \tag{15}
\end{align*}
$$

Is the protein threading in P?

Observation : 1200000 alignements computed (all FROST data bank); only 5% of the instances the LP relaxation is not integer; Statistics: 1×11 nodes, 2×10 nodes, 1×9 nodes, 5×8 nodes, 3×7 nodes, 3×6 nodes, Majority: 2 nodes - in which cases the value of the solution is 0.5

The subset of real-life PTP is polynomially solvable!
Validated when using the FROST score function.
This is not true when using randomly generated score function.

Can we do better?

Yes, using divide and conquer startegy!

Split and conquer strategy

The main problem is decomposed into three subproblems.

Lagrangian relaxation and duality

Idea: drop part of the constraints in order to make the relaxed problem easier to solve; introduce penalties for violating them in the objective function.

$$
\begin{aligned}
& Z_{I P}= \\
\text { IP problem: } & \text { min } c x \\
& \\
& x \in X \text { "easy" constraints } \\
& A x=b \text {-complicated" constraints }
\end{aligned}
$$

Lagrangian relaxation: $Z_{L R}(\lambda)=\min \{c x+\lambda(b-A x) \mid x \in X\}$
6 LR is also an IP problem, but easier to solve than IP
6 LR is relaxation of IP for any λ (i.e. $Z_{L R}(\lambda) \leq Z_{I P}$)
Lagrangian dual: $Z_{L D}=\max _{\lambda} Z_{L R}(\lambda)$
6 LD is better than LP: $Z_{L P} \leq Z_{L D} \leq Z_{I P}$

Topology of PTP

- Reminder: L is the inter-block interactions graph

6 complexity of PTP strongly depends on the topology of L - $L=\emptyset$ or contains only local links \longrightarrow PTP is polynomially solvable

- L dense \longrightarrow PTP is NP-hard
© What about intermediate cases ?

SP\#1: L contains no crossing edges

Crossing edges:

Non-Crossing edges:

SP\#1, L contains no crossing edges

- $l=$ number of links in L

6 $n=$ number of vertices in a layer
SP\#1 can be solved using a DP approach, with complexity $O\left(l^{3}\right)$.

SP\#2: L is a star

Star: common left/right end for all links

$O\left(l n^{2}\right)$ complexity using DP programming

SP\#3: sequence of independent subproblems

© partition s.t. no link is cut

- let $r=$ number of independent subproblems

6 $O\left(r n^{2}\right)$ complexity after having solved each subproblem

From graph decomposition ...

. . . to cost-splitting technique

solve independently and enforce identical solutions

Optimization

equality constraint between sub-problems is the hard one

- Practical resolution:

Lagrangian relaxation
Maximization of the dual using its sub-gradient In theory, only gives a lower bound on the objective
Branch and Bound for exact resolution
In practice, the solution is obtained at the root

Cost-splitting Lagrangian relaxation

$L=L^{1} \bigcup L^{2} \ldots \bigcup L^{t}$ where each L^{s} induces an easy solvable $P T P\left(L^{s}\right)$,

$$
\begin{equation*}
v_{i p}^{L}=\min \left\{\sum_{s=1}^{t}\left(\sum_{i=1}^{m} d_{i}^{s} y_{i}^{s}+\sum_{(i, k) \in L^{s}} c_{i k} z_{i k}\right)\right\} \tag{16}
\end{equation*}
$$

subject to: $y_{i}^{1}=y_{i}^{s}$,

$$
s=2, t
$$

$$
\begin{equation*}
y^{s}=\left(y_{1}^{s}, . . y_{m}^{s}\right) \in Y, \quad s=1, \ldots, t \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
y_{i}^{s}=A_{i} z_{i k}, y_{k}^{s}=A_{k} z_{i k} \quad s=1, \ldots, t \quad(i, k) \in L^{s} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
z_{i k} \in B^{\frac{n(n+1)}{2}} \quad s=1, \ldots, t \quad(i, k) \in L^{s} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
v_{c s d}=\max _{\lambda} \min _{y} \sum_{s=1}^{t}\left(\sum_{i=1}^{m} d_{i}^{s}(\lambda) y_{i}^{s}+\sum_{(i, k) \in L^{s}} c_{i k} z_{i k}\right)=\max _{\lambda} \sum_{s=1}^{t} v_{i p}^{L^{s}}(\lambda) \tag{20}
\end{equation*}
$$

subject to (18), (19) and (20).

Cost-Splitting LR (CS-LR) versus LP

CPU time in $\log 10$ (seconds) for the CS-LR algorithm

Computing 962 threading instances associated to the template 1ASYA0. The linear curve in the plot is the line $y=x$. We observe a signifi cant performance gap between the algorithms. CS-LR is from 100 to 250 times faster than LP relaxation.

Figure 9: Cost-Splitting Lagrangian Relaxation versus Linear Programming Relaxation

More experimental results

Each point in this plot corresponds to the total time required by CS-LR algorithm to compute one distribution determined by approximately 200 alignments of the same size. About 60 distributions have been computed which needed solving about 12000 alignments totally. The size of the biggest instance is $O\left(10^{77}\right)$.

Conclusions

- MIP formulations are very convenient for PTP; complete integration in FROST and its application on the GRID;
the commercial package CPLEX of ILOG is avoided using a dedicated software for PTP (based on LR).
computational results and comparisons between exact and approximated methods are provided. Huge real-life instances have been solved.

Finding the exact global minimum in the optimal threading permitted FROST sensibility and quality of prediction to be improved ($+7 \%$ and $+5 \%$ respectively)

Merci!

