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Claude Elwood Shannon (1916 -2001)

o A Mathematical Theory of Communication, Bell System Technical Journal,
1948, called “The Magna Charta of the Communication Age” in an appre-
ciation in the U.S. Congress on his death in 2001.



Entropy

X ~ (p1,02,---,0M)
H(X) = —pilogps —pologps — ... —ppslogpys
o Similarly:

H(Xq1,...,Xn)



Information sources

o For syntactic purposes each information source has an entropy rate

O

La musique souvent me prend comme une mer!
Vers ma pale étoile,
Sous un plafond de brume ou dans un vaste éther,
Je mets a la voile;

H( Baudelaire ) = ??



Multiple sources

o These reveal information about each other.
o
HY | X, Z,W)
or
H(X,)Y | AW) —H(X | A, W)
etc.
o The mutual information is symmetric

I(XAY)=H(X)-H(X|Y)=H()-H(Y | X)



Compression to the entropy rate

o Some popular techniques:

o Huffman coding

o Arithmetic coding

o Lempel-Ziv (LZ '77,LZ 78, ...)
o Lempel-Ziv-Welch (LZW)

o Context tree weighting

o Burrows-Wheeler transform

O

Several of these techniques are universal, i.e. they do not assume any
prior knowledge of the source statistics.

o Many of these are widely deployed in many products.



Sensor networks

o A tracking problem:

o A schematic view:
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Distributed compression

(RX]Y), HY))

(H(X), H(YX))

The Slepian-Wolf rate region

o Compression is possible at a total rate of H(X,Y) even though the
sources are distributed.



The “direct” part of Information Theory

lllustrating the Slepian-Wolf “"binning" strategy

o There are as many bins as there are typical Y-sequences.

o The typical X-sequences are “randomly” distributed among these bins.



Lossless versus lossy

o For lossless compression the syntactic point of view is appropriate
(Data, mission-critical information, Kolmogorov descriptions, ... )

o For lossy compression, more intangibles enter the story: human factors
engineering, empirical techniques, ...
(audio, video, imaging, multimedia, .. .)



Audio and Video compression standards

o Some of the many standards:

o JPEG

o JPEG 2000
o MPEG

o MPEG-2

o H.261

o MP3

O

o Many of these are widely deployed in many products.



MPEG-2
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o Redundancy is removed at many stages:
spatial redundancy (I-frames ); redundancy across time (P-frames and B-frames );

and the entropy coding.
o The standard has a “human factors” part and a “syntactical compression” part.



Lossy distributed source coding (1978)

R bits X
Y"—=| Encoder 1 a _ Y
y .- per time % =
L Rybits | & !
Yy— Encoder 2 a Q Yy
per time

E[ivr, (Y (#), V()] < Difori=0,1,2.

o Find the set of achievable (R1, R>) for given (Dg, D1, D>).

o The rate region of the quadratic Gaussian two-terminal source-coding problem

Aaron B. Wagner, Saurabha Tavildar, and Pramod Viswanath. Preprint, arxiv:cs.IT 2005



The channel coding problem

o The view at the level of symbols:

“..010011011..."

—_—

Encoder

o The analog view:

p(y|x) Decoder
Wi
}h% > P

“..010011011...”7




Coding as bin packing

lllustrating the problem of coding for the AWGN channel




The capacity of the AWGN channel

Power limited region

C(W) (Mbps)

Bandwidth limited region
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o C(W)=Wlog(l+ NOLW) plotted for N% = 10°.

o Even at infinite bandwidth one can only transmit at finite rate N% l0g5 e.
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The “direct” part of achieving capacity
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SMNE vs. BER for rate 1/2 codes

Year |Rate %2 Code SNR Required
: for BER < 103
Uncoded
1948 SHANMNON 0dB
1967 (255,123) BCH 5.4dB
Come 1977 Convolutional Code 4.5dB
onv. Code
ML decoding -
] 1993 Tterative Turbo Code 0.7dB
2001 [terative LDPC Code 0.0245dB

o The values in the table are relative to the Shannon limit at rate %




Turbo and LDPC

LDPC Encoder

,| Convolutional
Encoder 1

2Jnpund
X
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| Convolutional
Encoder 2
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Concatenated convolutional schemes Low Density Parity Check (LDPC) codes

(Turbo convolutional)

o Near Shannon limit error correcting codes: Turbo codes
C. Berrou, A. Glavieux, and P. Thitimajshima IEEE-ICC 1993.

o Low density parity check codes R. G. Gallager M.I.T. Press 1963



Message passing algorithms

e Define ‘messages’ |1, (x

MiTHF

) for each edge (r, u) of the
independency graph. Inifialize to 1.

e Update messages as:

]"‘lru'l:Tnf*r:] = Zﬂ' [\/j':j HU. [jj:rﬁr}

reN{r)Y u}

o Define ‘Beliefs’ b.(x )=a(x) HH;,,-(TMJ
reN(r)



Message passing algorithms for LDPC Codes

o What the message passing algorithm looks like:

Messages

Bit nodes Check Nodes




And now a word from our Sponsors ...

Information theory has played a big role in some of the key technological trends
of recent decades.

o Data compression and multimedia compression as already discussed
(compact disks; DVDs; Ipods; )

o The growth in rates of information access
(modem standards; DSL; Gigabit Ethernet over copper; ...)

o The super-Moore’s law improvements in magnetic recording.
o The exploration of deep space.

o The explosive growth of cellular wireless communication.



Areal density in magnetic recording
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o Run length limited codes.

o Partial response maximum likelihood signalling.

o Media noise.



Space: the final frontier

Mission Name Year | Compression Coding Information Rate
Mariner 4 1965 None None 8.33 bps
Viking 1976 None Biorthogonal code 3 Kbps
Mars Global Surveyor | 1997 | 2:1lossless | Conv. + RS Conc. code 128 Kbps
Mars Rover 2004 12:1 lossy Conv. + RS Conc. code 168 Kbps
Mars Reconn. Orbiter | 2006 2:1 lossy Turbo code 12 Mbps

o For more information see the Shannon lecture of Robert J. McEliece:
http://www.systems.caltech.edu/EE/Faculty/rim/papers/ShannonLecture.pdf
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The star cluster NGC 346

o Courtesy of NASA, STScl, and the Hubble Space Telescope.



Newton vs. Shannon

o McEliece attributes 21 % of the increase in data rate to Shannon
(source and channel coding ) and 79 % of the increase to Newton
(antenna aperture, transmission frequency, power )



Fading channels
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o Fading can be slow or fast relative to the delay requirement.

o In a fast fading channel a symbol to be transmitted can be interleaved
across multiple channel states.

o In a slow fading channel a symbol to be transmitted sees a different envi-
ronment in different fading states.



The wireless downlink
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Multiuser diversity

o By scheduling to the strong users one has multiuser diversity.

Sum capacity of twao channels, Rayleigh fading and AWGHM. Average SNR =0 dB
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o Assumes each user feeds back the SNR of its channel to the base station.



Opportunistic beamforming

x(£)

The same signal iz transtmitted over the two antennas with time-varying phase and powers.



Perfomance of opportunistic beamforming

Performance of opp. BF over slow Rayleigh fading at 0-dB SNR.
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o Opportunistic beamforming using dumb antennas Pramod Viswanath, David N. C. Tse,
and Rajiv Laroia IEEE-IT 2002.

o The system requirements should be contrasted with those needed for
space-time codes.



Allons vers I'avenir!

o Computational complexity is still an issue.

o Coding in the deep bit error regime.

o Unreliability in the deep submicron regime.

o Core problems in multiuser information theory.
o Incentive issues with multiple players.

o Spatial information theory

o Revisiting information-theoretic security.

o Real-time information theory.

o Quantum information theory.

o Information theory and cognition.



Computational complexity of decoders
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o Picture courtesy of Engling Yeo.
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Deep BER performance of error control codes

o For some important applications it pays to focus on very stringent bit error
rate requirements
(magnetic recording, transcontinental fiber optic communication )

o Even the best known codes have an error floor in the deep BER regime.



(2048,1723) RS-LDPC decoder on an FPGA platform.
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‘ Hard Decision

d(x) = —log (tanh(%)) , x> 0.



Statistics from deep BER emulation
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o Investigation of Error Floors of Structured LDPC Codes by Hardware Emulation

Zhengya Zhang, Lara Dolecek, Borivoje Nikolic, VA, and Martin Wainwright

Preprint 2006



Absorbing sets

L

o The emulation reveals specific non-codeword patterns of 8 bit nodes and

28 check nodes that absorb the decoding iteration.

o Eliminating these systematically should improve the deep BER perfor-

mance.



Information theory in the deep submicron regime

The challenge: using information theory to reliably move information around
the chip in a low power high interference environment

e A quick history of integrated circuits:

Decade Technology Line width
1940°s Invention of the Transistor
1950's Invention of the Integrated Circuit
T960s Small/Medium scale infegrafion (SSITMST)
1970's Large scale integration(LSlI) 10 microns
1980°s VLSI 2 microns
19490s -now CMOS 1 micron -100 nanometers

e The deep submicron regime starts at 0.35 micron line widths

e Fabrication at 0.13 micron line widths is already considered routine
e Supply voltages are dropping because of power constraints

(from roughly 3.3V in 1995 to roughly 1V today)

e Line widths are already pushing past 90 nanometers.

Design at the end of the Silicon Roadmap Jan M. Rabaey Coding for System-on-Chip Networks: A Unified Framework
Keynote address, Design Automation Conference 2005 S. R. Sridhara and N. R. Shanbhag IEEE-VLSI 2005



Open problems in multiuser information theory

o Most of the core problems of multiuser information theory are still npen
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Incentive issues in Information Theory

Q0

a

Q0

Ry )

The rules of communication over the shared medium should be rational

Non-cooperative (self-centered) agents: Nash equilibrium strategies

Cooperative (coalition-forming) agents: social choice issues

Example:

0

¢, &

Gaussian multiple-access

capacity region

Assume P; > P> > ... > Py
®; =1 [CGR+2M, P et -2 o)

The unique envy-free allocation of greedy users
in a slow fading wireless uplink

Here C'(P,0?) = 5log(1 + Hfg}

A Game-theoretic look at the Gaussian Multiple-access Channel
Richard J. La and VA DIMACS 2003



Spatial Information Theory: Multiple Spatial Phases

Communication from a node to another in an ad-hoc network requires
high enough signal-to-interference-and-noise ratio

Fix 3
As ~ increases past a threshold
many physically important quantities
(connectivity, etc.) undergo a
discontinuous transition

Related to phenomena of statistical physics

Impact of Interferences on Connectivity in Ad-hoc Networks
Olivier Dousse, Francois Baccelli, and Patrick Thiran
|IEEE/ACM-Networking 2005
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Spatial Information Theory: Spatial capacity notions

_________
-

Ad-hoc Network

Impartant problems:

------

A bit may not be a bit in a spatially extended network:

bits that are moved further may be worth more | ® Broader range of fading scenarios?

e Delay?
Transport capacity: a distance-weighted sum of rates |e Constants in the scaling?
e Other notions of spatial capacity?

For several fading models the transport capacity Incentive issues?
. H

of a network of n nodes is ©(n)

The study of such spatially extended capacity notions is in its infancy

The transport capacity of wireless networks over fading channels
- Xue, L-L. Xie, and P. E. Kumar IEEE-IT 2005



Communicating a secret

Assume X (VW

Five
Require X {71, W) has W
sendds o = F[.'.‘I.I,|'|I'::|
Alce
has U has V

wants to send X recovers X = G(T, V)



Shannon’s negative result

Shannon tells us :
There must exist a random variable K such that
o A =ayl7
o i =gp(V)
« KITW
o« HiIK) > HiX)

Apparently Alice and Bob must already have a big E-n-:-ugh



Is information theoretic security dead?

Eve

gets (L7, U, . }

pubhe discussion

Secret key agreement by public discussion from
common information U. M. Maurer IEEE-IT 1993

; = E.';'E'tb |.Hl, ”2 e s
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Real time information theory

Disturbance
l Ey and Egp for a Typical Channel

1

Unsiable = Dbserver

Sysiem j {
Controller Neisy
Channsl
The communication should be accurate enough

to avoid the growth of error under the dynamics

Related to the theory of error exponents

The necessity and sufficiency of anytime capacity
for control over a noisy communication link,
Anant Sahai IEEE CDC 2004



Quantum information theory

‘ represents a controlled NOT gate

%)
0) —&
0) <D

With this code we can recover
from a single qubit flip

Cuantum Computation and Quantum Information
Michael A. Nielsen and Isaac L. Chuang

H represents the Hadamard transform \% ! 1 _11
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The Shor code can recover
from arbitrary single qubit errors




Information Theory and the Brain

The information processing techniques of the brain
are almost completely unknown to us.

Several experiments have empirically computed the mutual information
between external stimuli and signals in the brain:

Spikes F Rieke, D. Warland, R.R.v. Steveninck, and W. Bialek M.L.T. Press 1997

Some believe the need

I 7 for an information theory

of chemical signalling
at neural synapses:
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Living Information Theory

. . L Shannon Lecture Toby Berger
Some believe that information is conveyed IEEE-ISIT. Lausanne 2002

by the timing of neural spikes




Tu n’as pas fini?




Tu n’as pas fini?




