
Uppsala University

Non-Interference on Symbolic
Transition System

Jeremy Dubreil

Superviser : Ivan Christoff

Master project hosted at INRIA Rennes in the team VerTeCs.

1

Contents

1 Security Policies 6
1.1 MLS, Multi Layer Secure models 6

1.1.1 The Bell and La Padula Model 7
1.1.2 The Biba integrity model 8
1.1.3 The HRU model . 9

1.2 Non-Interference model . 9

2 Modeling framework 11
2.1 The LTS model . 11
2.2 The STS model . 13
2.3 Semantics of an STS . 14

3 Notion of Non-Interference 16
3.1 Some introductory examples 16
3.2 Definition of Non-Interference 20

3.2.1 general definition . 20
3.2.2 Interference and diagnosis 20

4 Model transformations 22
4.1 Composition of two STS . 22
4.2 Product of two STS . 23
4.3 ε-closure of an STS . 24
4.4 Determination of an STS . 25

5 Checking Non-Interference 28
5.1 Case of finite automata . 28
5.2 Extention of non-interference to the STS model 31

2

List of Figures

2.1 An example of LTS . 12

3.1 An example of interference . 17
3.2 Unsafe coffee machine . 18
3.3 Non-interfering coffee machine 19

4.1 Calculating the ε-closure of a STS 25
4.2 Basic step for calculating det(M) 27

5.1 Example of calculation of χψ(M) 31

3

Introduction

The sake of security is now one of the most important challenges for the
information technologies. The need for security has been increasing with
the improvements of systems in sharing resources between users. For the
conception of the first multi-users system, engineers had to find solutions to
ensure confidentiality of data in a context several users are sharing mem-
ory. Nowadays, the situation is much more complex with the advent of the
Internet newtwork and the explosion of the interaction possibilities. But,
while the deployment of IPv6 is promising an unification of networks, and
increasing number of communicating systems, the security remains experi-
mental for most of the case. Indeed the degree of security for programs is
often defined according to the number and the potential gravity of the ex-
isting attacks. Meanwhile, the use of formal methods to ensure functional
properties, in the sense that the program really does what it is expected to
do, is successfully increasing for embedded system or telecommunication pro-
tocols for example. But fruitful attempts for security properties are mostly
confined to cryptographic protocols or very small system like credit cards.
In the actual reseach, objectives are to define efficient methods to ensure se-
curity properties for distributed applications, running on different platform
and communicating through the Internet.

For this project, we focus our studies on secrecy properties and especially
for the case of information flow. In some case, it is possible for an attacker to
infer some secret information about the system without any illegal actions.
We say then that the secret is interfering with users actions. Indeed, for the
cases we are going to study, we assume that the users have a complete knowl-
edge of the system but in the meantime that some actions are unobservable.
We say then that the attacker is inferring some secret information from one
observation because, in the general case, he or she has to deduce it form the
set of internal behaviours possibly leading to the same observation. In an

4

other domain, the diagnosis theory [1, 2, 3] gives some methods for monitor-
ing the occurrences of particular events, faults for example, from a partial
observation. As for secrecy, the monitor has to decide with certainty the
occurrence of a fault from all the possibilities implying the same observation.
We see that there are some similarities between the notions of diagnosis and
the notion of interference and we try to give a definition of non-interference
which allow us to extend the methods given by [3] for discrete event system
diagnosis.

In opposition to what we have with cryptographic protocols for example,
we wish to deal with security policies independent of the systems. For exam-
ple the security policy may concern the occurrence of system calls invisible
for users. Then we wish to have algorithm able to solve the interference prob-
lem for a class of security policies concerning these system calls and a set of
systems using them. This idea will lead us to introduce the notion of envi-
ronment which is basically a set of actions and a set of variable. Then only
security policies involving the actions and the variables of the environment
will be considered.

This report start with a short overview of security policies and the his-
toric of non-interference notion in chapter 1. We will introduce in chapter
2 the modelling framework used for this internship in order to give a formal
definitions of the notions of interference in chapter 3 and also, how the diag-
nosis problem can be understood as a special case of interference. Then we
arrive in chapter 4 to main contribution of this report with the presentation
of the algorithms used for non-interference checking or attacks generations.
We will expose the case of property given by regular languages over the set
of action for which the problem can be solved. For infinite system, the use
of over-approximation of the set of behaviours will permit us to conclude
with certainty for some case that a system is non-interfering but losing in
the meantime certitude for systems our algorithm declares to be interfering.
The conclusion of the document gives some limitations of our approach and
some proposition for further works.

5

Chapter 1

Security Policies

For the sake of security, researchers generally divide the problems into three
categories : secrecy, integrity and availability. The secrecy concerns the
ability of an information system to allow or deny in the expected way the
accessibility of some information. A good feature of multi-user operating
systems can be, for example, the possibility to hide some files from the other
users. In the same context most of the operating systems are designed to offer
different possibilities of user right system management. In such a case, the
integrity is satisfied if a user cannot illegally perform some critical settings.
And, on the other hand, satisfying the availability means that every user can
really do what the security policy allowed him, or her, to do. In general, these
three notions are not independent from each other. Indeed a user bypassing
the secrecy can access some crucial information and then corrupt the system.
Moreover, damaging the system can change some of its functional properties
and violate the availability. Therefore, a security policy can be described by
a set of deontic logic rules but this policy has to be easy to understand and
to deploy over an information system.

1.1 MLS, Multi Layer Secure models

Research about security of information system has started within the U.S.
military domain after the second world war. The first attempts to formalise
what is a security policy was a transposition of the pen-and-paper world to
computer system. In this context, Lampson [4] introduce the Multi Layer
Secure model based on the notion of subjects (active agents), objects (pas-

6

sive agents) and action the subject can do on objects (ex : read, write).
Subjects and Objects are sorted following the idea of hierarchy in military
organisation. For example :

Top Secret
—

Confidential
—

Public

The principle of MLS models is, for a given action, the rights of the
subjects and the objects are set according to the security level they belong
to. The rights can be described using an access control matrix where the
columns concern the object’s level and the line the subject’s level :

Top Secret Confidential Public

Top Secret read, write read read

Confidential write read, write read, write

Public read

One of the main examples is the BLP model designed for the US Depart-
ment of Defence. MLS can be described

1.1.1 The Bell and La Padula Model

In 1973, in a book known as the Orange Book, David D.E. Bell and L.J. La
Padula[5] went ahead in the formalisation of MLS for access control. The
BLP model aims to ensure secrecy or confidentiality of the objects and to
avoid information flow from subjects with higher level to other subjects with
lower level. For this we assume that read and write are the only two ways
to access the object. The BLP model has been inspired of such a context
and can be summarised by ”no read up, no write down”. Let S and O be
the set of subjects and the set of objects. Let (L,≤) be a partially ordered
set representing the confidentiality layers and a mapping M : S ∪ O → L

7

satisfying the property :

∀s ∈ S, ∀o ∈ O, M(s) ≤ M(o) or M(o) ≤M(s)

The two following properties ensure that there cannot be any information
flow downward w.r.t L :

The Simple Security Property :

accessread(s, o) if M(o) ≤M(s)

The * Security Property :

accesswrite(s, o) if M(s) ≤M(o)

Indeed, for two subjects s, s′ such that M(s) < M(s′), s′ cannot write
in an object s can access. But we will see later that the BLP model is
not sufficient to avoid all information flows. For example this concept is
implemented in Unix systems to deal with password confidentiality. The file
containing the passwords has a higher level than the users. A regular user
can modify the parts corresponding to his or her password but cannot access
the informations, even to his or her own password. But this model only
deals with secrecy. A subject s with confidential level can write in some file
with top secret level. Intentionally or not, s may then corrupt top secret
informations.

1.1.2 The Biba integrity model

The Biba model is quite similar to BLP but The Simple Security Property
and The * Security Property are inverted :

accessread(s, o) if M(s) ≤M(o)

accesswrite(s, o) if M(o) ≤M(s)

This ensures that regular users cannot modify some critical system files for
example. To gain more flexibility, Biba and BLP can be enhanced with the
concept of Trusted Agents allowed to bypass the * property to change the
secrecy or the integrity requirement of some objects. Biba and BLP models
are referred as a MAC model (Mandatory Access Control). MAC models
don’t allow the subject to transfer access grant to other subjects even if their
confidentiality level are the same or lower.

8

1.1.3 The HRU model

In order to design a model more flexible than BLP or Biba, M. A. Harrison,
W. L. Ruzzo and J. D. Ullman propose[6] that every object belongs to one
subject which can grant or deny access of its objects to the other subjects.

This model becomes much more flexible but has to face undecidability
problems which weren’t in the previously described models. Indeed the au-
thors show in the same article that it is in general impossible to decide if an
access can be granted or not. In other words it is undecidable to know if the
can become insecure only by applying the legal changes subjects are allowed
to do on their objects.

1.2 Non-Interference model

The BLP model is designed to avoid confidential information to flow through
the files from up to down. But this cannot avoid all the information channels.
For example if a user with a low level try to create a file at a upper level.
There is two possibilities : if a file with the same name already exist, there
will be an error message, otherwise the user can create the file. This is
enough to create a communication channel between high level users and low
level one. Even is the bandwith might not be much, this violate the security
policy. In 1982, Goguen and Mesenger first introduced in [7] the notion of
non-interference to avoid cover channel problem. They gave the notion as
follow :

Definition 1 (Goguen & Meseguer, 1982) Given a system involving two
different groups of user, what one group of users does has no effect on what
other group of users can see.

But this definition appears to be too restrictive to deal with a wider
range of security concerns. For sake of generality, Focardi and Gorrieri gave
an other definition for system described in the model algebra model [8]. They
consider an partition of the actions into high level actions H and low level
ones L and into inputs I and outputs O. .

Definition 2 (Focardi & Gorrieri, 1993) A system M is non-interfering
if the occurrences of high level actions H have no influence on the occurrences
of the low level actions L.

9

This notion of non-interference is more general than the one given by
Goguen and Meseguer. Indeed, for a system M involving two groups of
users, U1 and U2, we define the high level actions H to be the actions of U1

and the low level actions L to be the actions of U1. Then, what U1 is doing
correspond to the input actions of H and if M is non-interfering according
to Focardi & Gorrieri, then U1 actions have no influence on L, i.e. what U2

is seeing, so M non-interfering according to Goguen & Meseguer. But we
wish for this project to handle a more general case that the occurrences of
high level input. For example we expect to be able to handle more dynamic
properties like particular sequences of actions.

Definition 3 (Focardi & Gorrieri, 1993) Let M = (Q,Λ, Q0,→) be a
LTS with Λ = H ∪ L and Λ = I ∪ O. ∀s ∈ L(M) if πI∩H(s) 6= ε then
∃s′ ∈ L(M) such that πL(s′) = πL(s) and πI∩H(s′) = ε.

10

Chapter 2

Modeling framework

The system we are studying is this paper are described within the commu-
nicating automata theory. We will use this automaton and also automaton
extended with typed variable to model both the systems and the security
properties these systems are expected to satisfy. We mainly present in this
chapter the notion of environment and the STS model. To study a case as
general as possible, we do not expect automata to be finite. The set of states
and the set of actions can have an arbitrary cardinal. We begin with pre-
senting the Labelled Transition System (LTS) which is basically a possibly
infinite automaton without accepting states.

2.1 The LTS model

Definition 4 A LTS M is a tuple (Q,Q0,Λ,→) with :

• Q is a set of states

• Q0 ⊆ Q is the subset of initial states

• Λ is a finite or infinite set of actions

• →⊆ Q× Λ ×Q is the transition relation

Example of LTS. Let M = {q0, q1, q2}, Q0 = {q0}, Λ = {a, b} :
Let M = (Q,Q0,Λ,→) be an LTS, we use the following notations :

• We write q
α
→ q′ for (q, α, q′) ∈→ and q

α
→ for ∃q′ : q

α
→ q′.

11

q0

q1

q2

q3

b

aa

a

b

Figure 2.1: An example of LTS

• This notation is extended to Λ∗ by q
s
→ q′ when there is a sequence

{q0, q1, ..., qn−1} ⊆ Q and {α0, α1, ..., αn} ⊆ Λ such that s = α0α1...αn

and ρ = q
α0→ q0

α1→ q1...
αn−1

→ qn−1
αn→ q′.

• M
s
→ means that ∃q0 ∈ Q0 such that q0

s
→. We define the set of

sequences of M by L(M) = {s ∈ Λ∗, M
s
→}. ρ = q0

s
→ q is called a

run in M , R(M) is the set of all runs. R(M) ⊂ Q0 · (Λ ·Q)∗.

• When there is a set of final states Qm ⊂ Q then L(M,Qm) = {s ∈
Λ∗ : ∃qm ∈ Qm, M

s
→ qm} is the language recognised by M . If Q is

finite and Λ is a finite set of actions then (Q,Λ, Q0, Qm,→) is a finite
automaton.

• M is deterministic if there is only one initial state, |Q0| = 1, and
∀(q, q′, q′′) ∈ Q3, ∀a ∈ Λ, q

a
→ q′ ∧ q

a
→ q′′ ⇒ q′ = q′′

For a set X with the concatenation operator · and a subset A ⊂ X we
define the projection :

πA : X∗ → A∗

ε 7→ ε

x · ω 7→ x · πA(ω) if x ∈ A

x · ω 7→ πA(ω) otherwise

For a set of stateQ and a set of action Λ, we extend π toQ·(Λ·Q)∗. If there
is a set of observable actions Λo ⊂ Λ then we write T (M) = πΛo

(R(M)) the
set of traces of M . In order to introduce some of the notations used further,

12

let V be a set of typed variables. For v ∈ V , Dom(v) is the domain (i.e. type)
of v. We note with Dom(V) = ×v∈VDom(v) the set of vectors of variables’
valuations. A vector of valuation is denoted by ~q ∈ Dom(V). For two set
of variables V and V ′ such that V ∩ V ′ = ∅ we write 〈~q, ~q′〉 ∈ Dom(V ∪ V ′)
the valuation vector in V ∪ V ′ created with ~q ∈ Dom(V) and ~q′ ∈ Dom(V ′).
In the other direction, for ~q ∈ Dom(V ∪ V ′) we note by ~q|V ∈ Dom(V) and
~q|V ′ ∈ Dom(V ′) the two vectors such that ~q = 〈 ~q|V , ~q|V ′ 〉.

Definition 5 An environment E = (V,Σ) is a set of typed variable variables
V and a finite set of actions Σ. We have a partition Σ = Σo ∪ Σuo into the
observable1 and the internal actions. An observable action a ∈ Σo can take
a communication parameter which type Pa only depends of a. The internal
actions take the empty tuple as parameter. Finally, we define Λ = Λo ∪ Σuo

the set of all possible events taking into account the parameters of observable
actions. We note RE = Dom(V) · (Λ ·Dom(V))∗.

2.2 The STS model

The Symbolic Transition System model is a way to describe finite automata
extended with variables. The result is a system (STS) with a possibly in-
finite set of states. The main advantage of the STS model is that it can
be used to describe a wide range of communicating systems thanks to the
use of typed variables and the possibility for actions to take communication
parameters. The STS model is suitable to model processes described in an
imperative manner using a finite set of primitives. We only consider here
systems built with actions form the environment E = (V,Σ).

Definition 6 A Symbolic Transition System M is a tuple (V,Θ,Σ, T) where:

• V is a finite set of typed variables. L ⊂ V is a set of locality labels2

such that Dom(L) is finite

• Θ is the initial condition, i.e. a predicate on the variables

1Usually, we consider a partition of the observable actions into inputs and outputs :
Σo = Σ? ∪ Σ!. But this distinction won’t be useful for our concern.

2l ∈ L is a label giving the name of the control points (i.e branching) during the
execution of the program. Dom(L) would be the set of state of an automaton without
variables

13

• T is a finite set of transition. We note [a, p, G,A] ∈ T written also
[a(p), G(~q, p), ~q := A(~q, p)] ∈ T , means that a ∈ Σ, p ∈ Pa, G is a
guard over the current valuation ~q and the parameter p and A is an
assignment of the variables also depending on ~q and p. We may write
[α, G(~q), ~q := A(~q)] ∈ T for α ∈ Σuo

We assume that the guards are written in a theory where satisfiability is
decidable.

Example :
This simple example shows how to formalise the function n 7→ n! with

the STS model

Fact = (V,Θ,Σ, T), L = {l} , Dom(l) = {init, test, loop, end } ,Vp =
{n, tmp, result} , Dom(n) = Dom(tmp) = Dom(result) = N, Θ : (l, n, tmp, result) =
(init, 1, 1, 1) , Σo = { get, send }, Σuo = { step, start }

init

end

Test

loop

n > 1

start()

get(p)
n := p

n 6 1, p = result

send(p)

k 6 n

step()
k := k + 1, result := result × kk > n, p = result

send(p)

2.3 Semantics of an STS

Definition 7 The semantics of an STS M = (V,Θ,Σ, T) is an LTS [M] =
(Q,Q0,Λ,→) where :

14

• Q = Dom(V) = ×v∈VDom(v)

• Q0 is the set of vectors of Q satisfying the initial condition Θ. Q0 =
{~q ∈ Q, ~q |= Θ}

• → is defined by the inference rule :

~q ∈ Q, [a, p, G,A] ∈ T,G(~q, p), ~q′ = A(~q, p)

(~q, (a, p), ~q′) ∈→

We note in the same way the corresponding notions of M and [M]. So

we have R(M)
∆
= R([M]), L(M)

∆
= L([M]), T (M)

∆
= T ([M]). For V ′ ⊂ V ,

we extend the notation ~q|V ′ to the set of runs : for ρ ∈ R(M), ρ = ~q0
α1→

~q1
α2→ · · ·

αn→ ~qn ∈ R(M), ~q0, ~q1, · · · ~qn ∈ Dom(V), α0, α1, · · ·αn ∈ Λ then
ρ|V ′ = ~q0|V ′

α1→ ~q1|V ′

α2→ · · ·
αn→ ~qn|V ′

15

Chapter 3

Notion of Non-Interference

Here comes the main contribution of the project. Provided a secret given
by the security policy, the purpose is to provide some methods to prove
that there cannot be any flow of secret information. Using different model,
automata, LTS and STS mostly, used to describe both the systems and
eventually secrecy properties, we will see how this problem can be understood
as a reachability problem. For this, we focus our work to the case the secrecy
properties defined within an environment E = (V,Σ) like properties over sets
of runs. This framework allows us to cope with a large number of secrecy
problems.

3.1 Some introductory examples

We give here some basic examples to explain the outlines of non-interference.

First example :

let M be a LTS with Λ = {h, p, l1, l2}, Λo = {l1, l2}. The security property
claims that the event p has to be hidden to users. p is not an observable
event. But with the knowledge of the system behaviour (i.e the complete
graph of possibilities), users can infer that p has occurred by observing the
event l2. Such a system is then not secure because the occurence of p is
interfering with what the users can see.

16

q0

q1 q2

q3 q4 q5

h p

l1 l1 l2

Figure 3.1: An example of interference

Second example :

The next example details a case of information flow in a coffee machine. We
consider some robbers interested in gathering some money. For this goal
they use to break the coffee machines but they only do it when they are sure
whether it is full of cash. Technically the machines cannot accept money
when it is already full and therefore give the money back. The Security Pol-
icy claims that users cannot access any information about the cash stack but
a coffee machine following this policy can still be unsafe.

We define a User interacting with the actions {coin, confirm, cancel,
coffee}. The Coffee Machine uses the alphabet :

• Λo = {coinIn, coinOut, confirm, cancel, coffeeOut}

• Λ\Λo = {isCashFull, cashFull, cashNotFull, isCoffeeEmpty, coffeeEmpty,
coffeeNotEmpty}

In the example of figure 3.2, we see that the observation of coinIn ·
coinOut is characteristic of the occurrence of full. Indeed there is no other
sequences without any occurrence of full such that the projection on the
observable actions gives coinIn ·coinOut. Using this fact, robbers can infer
that the machine is full of cash and this machine fail then to satisfy this
secrecy policy because users can indirectly get information about the state
of the cash stack.

17

coinIn

isCashFull

full notFull

coinOut

cancel

coinOut

confirm

isCoffeeEmpty

empty

coinOut

notEmpty

coffeeOut

Figure 3.2: Unsafe coffee machine

18

coinIn

cancel

confirm
coinOut

isCashFull

full notFull

coinOut

isCoffeeEmpty

empty

notEmpty

coinOut

coffeeOut

Figure 3.3: Non-interfering coffee machine

This model satisfy the secrecy policy because users cannot infer the oc-
currence of full from their observations . Indeed, for every sequence where
full occurs, there is an other sequence without any occurrence of full lead-
ing to the same observation. Users cannot infer with certainty that full has
occured. This points out the main idea for ensuring non-interference in a
system. To hide the occurrence of a private action to the users, for each
sequence containing secret actions, the system needs to provide an other
possible sequence with the same trace but without any occurrence of secret

19

actions. In other words the system is secure if users cannot make any diag-
nosis of secret information. We will formalise this now.

3.2 Definition of Non-Interference

3.2.1 general definition

We consider in this section an environment E = (V,Σ), Λ = Σuo ∪ Λo with
Λo = ∪{a(p), a ∈ Σo, p ∈ Pa}, RE = Dom(V) · (Λ ·Dom(V))∗ and a security
property ψ defined over P(RE). Let M = (V,Σ,Θ, T) be a STS such that
V ⊂ V . We say that a run ρ ∈ R(M) is compatible with a trace t ∈ T (M)
if πΛo

(ρ) = t (i.e. ρ ∈ π−1
Λo

(t) ∩R(M))1.

Definition 8 A property ψ is interfering with a trace t ∈ T (M) if the set
of all the runs is M compatibles with t is satisfying ψ. formally, we write :

Iψ(M, t) : (π−1
Λo

(t) ∩R(M))|V |= ψ

Definition 9 A system M is interfering for the property ψ if we have ∃t ∈
T (M), Iψ(M, t). We write then Iψ(M) and NIψ(M) if M is non-interfering.

Iψ(M) : ∃t ∈ T (M), (π−1
Λo

(t) ∩ R(M))|V |= ψ

NIψ(M) : ∀t ∈ T (M), (π−1
Λo

(t) ∩R(M))|V 6|= ψ

3.2.2 Interference and diagnosis

This definition allow us to make a link with the definition of diagnosis given
in [3] for failure diagnosis. The idea of diagnosis is to be able to infer with
certainty the occurrence of an non observable behaviours. For example the
occurrence of failure is typically not directly observable but we wish to be
able to infer that a failure has happend. In [3], it is required that only a
bounded number of observations is needed to be sure of the occurrence of
failures. Given a property Ω over RE we define ψΩ over P(RE) by ∀ρ̃ ∈

P(RE), ρ̃ |= ψΩ
∆
= ∀ρ ∈ ρ̃, ρ |= Ω.

1This imply that there is no internal loop in M otherwise, π−1

Λo

(t) ∩ R(M) may be
infinite. The definition of internal loop is given in chapter 4

20

Definition 10 A STS M is Ω-diagnosable, and we write DΩ(M) if ∃n ∈ N

such that :

∀ρ ∈ R(M), ρ |= Ω ⇒ ∀t ∈ Λ∗
o, |t| > n, πΛo

(ρ)·t ∈ T (M), Iψ(M, πΛo
(ρ)·t)

|t| denotes here the Length of the trace t. According to this definition, a
system is Ω-diagnosticable if the fact that an run is satisfying Ω is interfering
with the observation.

21

Chapter 4

Model transformations

Definition 11 A state ~q ∈ Dom(V) is reachable if there is a sequence s ∈ Λ∗

such that q0
s
→ q. We write Reach(M) the set of reachable states.

Property 1 It is not decidable in general to know if a given state ~q is reach-
able in a STS.

We will find more precisions of this problem on this article [9].

4.1 Composition of two STS

The synchronous parallel composition of two STS is a way to model processes
synchronisation on common actions. We assume the processes do not share
memory (variables) for composition.

Definition 12 The composition of two STS M1 = (V1,Θ1,Σ, T1) and M2 =
(V2,Θ2,Σ, T2), is the STS M1 ‖ M2 = (V,Θ,Σ, T) where :

• V = V1

⊎
V2 is the disjoint union1 of V1 and V2

• Θ is defined by :

~q = 〈~q1, ~q2〉 ∈ Dom(V),
~q1 |= Θ1, ~q2 |= Θ2

~q |= Θ

1meaning that V = V1 ∪ V2 and V1 ∩ V2 = ∅

22

• T is defined by the inference rules :

~q1 ∈ Dom(V1), ~q2 ∈ Dom(V2), ~q = 〈~q1, ~q2〉 ∈ Dom(V),

a ∈ Σo, [a(p), G1(~q1, p), ~q
′
1 := A1(~q1, p)] ∈ T1, [a(p), G2(~q2, p), ~q

′
2 := A2(~q2, p)] ∈ T2

[a(p), G1(~q1, p) ∧G2(~q2, p), 〈~q′1,
~q′2〉 := 〈A1(~q1, p), A2(~q2, p)〉] ∈ T

α ∈ Σuo, i, j ∈ {1, 2}, i 6= j,
[α, Gi(~qi), ~q′i := Ai(~qi)] ∈ Ti

[α, Gi(~qi), 〈~q′i,
~q′j〉 := 〈Ai(~qi), ~qj)〉] ∈ T

Property 2 T (M1 ‖ M2) = T (M1) ∩ T (M2)

4.2 Product of two STS

The synchronous product is an other way of creating a system based on the
interaction of two others. The definition of product is based on the possibility
to share the variables as well as all the actions, observable and internal.

Definition 13 An STS M = (VM,ΘM,Σ, TM) is compatible for product
with STS N = (VN ,ΘN ,Σ, TN) if :

• VM ⊂ VN

• The initial condition ΘN doesn’t depend of the valuation of the variables
VM

• The assignments of TN only modify the valuations of the values VN \VM

Definition 14 The synchronous product of two STS M = (VM,ΘM,Σ, TM)
and N = (VN ,ΘN ,Σ, TN) is a STS M o N = (V,Θ,Σ, T) such that :

• V = VN

• ∀~q ∈ Dom(N), ~q |= Θ if ~q |= ΘN and ~q|VM
|= ΘM

• if [a, p, GM, AM] ∈ TM and [a, p, GN , AN] ∈ TN then [a, p, G,A] ∈ T

with G and A defined by : ∀~q ∈ Dom(V), ∀p ∈ Pa

23

– G(~q, p)
∆
= GN (~q, p) ∧GM(~q|VM

, p)

– A(~q, p)
∆
= 〈AM(~q|VM

, p), (AN (~q, p))|VN\VM
〉

Definition 15 We say that N is nonintrusive for product if for all STS
M compatible for product with N , the behaviours of M are preserved after
product. In other words : ∀ρ = ~q

s
→ ~q′ ∈ R(M), ∃ ~qN , ~q′N ∈ Dom(VN \

VM), 〈q, qN 〉
s
→ 〈q′, q′N 〉 ∈ R(M).

4.3 ε-closure of an STS

With the idea that calculating the ε-closure of an automaton, we give here one
method to get rid of the internal actions in an STS. Starting from a system
M, the problem is to compute a new system ε(M) such that L(ε(M)) =
T (ε(M)) = T (M) and ε(M) doesn’t have any internal transition.

A loop in M is a run ρ = ~q
s
→ ~q′, s ∈ Λ∗ such that ~q|L and ~q′|L. An

internal loop is a loop ρ such that π(ρ) = ε. We assume in the following that
all the systems we consider do not have internal loop.

Definition 16 For an STS M without internal loop, the symbolic ε-closure
of M = (V,Θ,Σ, T) is an STS noted ε(M) = (V,Θ,Σo, Tε) with T defined
by :

~q0, ~q1, · · · ~qn ∈ Dom(V), α1α2 · · ·αn−1 ∈ Σ∗
uo, a ∈ Σo,

(∀i ∈ [[1, n− 1]], [αi, Gαi
(~qi−1), ~qi := Aαi

(~qi−1)] ∈ T), [a(p), G(~qn−1, p), ~qn := A(~qn−1, p)] ∈ T

[a(p), Gε(~q0, p), ~qn := Aε(~q0, p)] ∈ Tε

where Gε(~q0, p) = Gα0
(~q0)∧Gα1

◦Aα0
(~q0)∧· · ·∧Gαn−1

◦Aαn−2
◦· · ·◦Aα0

(~q0)∧
G(Aαn−1

◦ · · · ◦ Aα0
(~q0), p) and Aε(~q0, p) = A(Aαn−1

◦ · · · ◦ Aα0
(~q0), p).

This means that ~q0
α
→ ~q1

a(p)
→ ~q2 in M becomes ~q0

a(p)
→ ~q2 in ε(M).

Example :
The procedure for calculating the ε-closure does terminate since the tran-

sition set is finite according to the definition of STS.
For ~q ∈ Dom(V), t ∈ T (M), we note with ∆M(~q, t) the set of valuations

reachable with the observation t passing from the state ~q. ∆M(~q, t) = {~q′ ∈
Dom(V), ∃s ∈ L(M), s = s1s2, πΛo

(s) = t ∧ ~q0
s1→ ~q

s2→ ~q′}.

24

x 6 0

α()
x := x + 2

x < 1

print(0)
x := x − 1

x > 0

print(1)
x := x + 1

x 6 0 ∧ x + 2 < 1

print(0)
x := (x + 2) − 1

x 6 0 ∧ x + 2 > 0

print(1)
x := (x + 2) + 1

Figure 4.1: Calculating the ε-closure of a STS

4.4 Determination of an STS

Definition 17 An STS M is said to be deterministic if the LTS [M] is
deterministic.

This is the natural definition expressing the idea that there is no ambigu-
ity while running the STS. But checking if [M] is deterministic is undecid-
able in general because the reachability of one particular set is undecidable
and it is then impossible to check if [M] is deterministic for every state ~q.
To avoid this we give a less restrictive notion called syntactical determinism.

For l ∈ Dom(L) we define Next(l, a) = {[a, p, G,A] ∈ T, ∃(~q, p) ∈
Dom(V) × Pa, ~q|L = l ∧G(~q, p) holds}

Definition 18 An STS M is syntactically deterministic for l ∈ Dom(L)
and a ∈ Σ if for each pair of transitions t1, t2 ∈ Next(l, a) with guards G1

and G2, we have t1 = t2 or the predicate G1 ∧G2 is unsatisfiable.

Property 3 If a STS M is syntactically deterministic, then M is deter-
ministic

proof : We assume that the STS M is syntactically deterministic. let

~q, ~q1, ~q2 ∈ Dom(V) such that ~q
a(p)
→ ~q1 and ~q

a(p)
→ ~q2 in [M]. Let t1, t2 ∈

25

Next(~q|L), t1 = [a, p, G1, A1], t2 = [a, p, G2, A2]. ~q1 := A1(~q, p) 6= ~q2 :=
A2(~q, p) implies that A1 6= A2 and then that t1 6= t2. According to the def-
inition of a syntactically deterministic STS we also have in that case that
G1∧G2 cannot be satisfied and this face an impossibility. So we have ~q1 = ~q2.
We conclude that [M] is a deterministic LTS and hence that M is deter-
ministic.

There is a terminating procedure to check the syntactical determinism of
a STS because Dom(L) and T are finite sets. In the following, we will only
deal with syntactical determinism calling it determinism for simplification.

Definition 19 An LTS M = (Q,Q0,Λ,→) is deterministic in q ∈ Q with
lookahead k if ∀a ∈ Σ, ∀s ∈ Λk, we have q

a
→ q1

s
→ ∧ q

a
→ q2

s
→ ⇒ q1 = q2.

An LTS is deterministic with lookahead k when for a local non-determinim
q

a
→ q1 ∧ q

a
→ q2 we can decide which state q1 or q2 the system is after the

observation of a by observing a sequence of length at most k after a.

Definition 20 An STS M has lookahead k in a location l ∈ Dom(L)
if ∀~q ∈ Dom(V), ~q|L = l, [M] is deterministic with lookahead k in ~q.
When it exists, look(l,M) denotes the smallest lookahead in l and we ex-
tend with look(l,M) := ∞ when such a lookahead doesn’t exist. We also
define look(M) := max{look(l,M), l ∈ L}. look(M) ∈ N ∪ {∞}

Theorem 1 An STS is deterministic in l iff look(l,M) = 0 and M is
deterministic iff look(M) = 0

Now we will study the class of STS for which we can compute a STS

det(M) of M such that L(det(M)) = L(M) and det(M) is deterministic.
More complete explanations of this can be found in [10]. This calculation
will be usefull for deciding if it is possible to gather some secret information
about a system through the observable actions. The main idea of calculating
det(M) is to postpone the guards and the assignments until we know the
branches the runs has been. This example describes the procedure :

The sign 〈l0, 〈l1, l2〉〉 means that we keep the information that after the
occurrence of a the run can have been in location l1 or l2. But the occurrence
of b or c allow us to distinguish between the two possibilities and then run
the appropriate guards and assignments. Also, to keep the informations
contained in the parameters, we add some variables to det(M) used to store
this parameters in order to modify correctly the transition coming after.

26

l0

l1 l2

l3 l4

x > 0 ∧ p = 3

a(p)
x := x − p

x 6 0 ∧ p = 3

a(p)
x := x + p

x > 0

b()
x := x + 1

x 6 0

c()
x := x − 1

l0

〈l0, 〈l1, l2〉

l3 l4

(x > 0 ∨ x 6 0) ∧ p = 3

a(p)
x := x, xa := p

x > 0 ∧ (x − xa) > 0

b()
x := (x − xa) + 1

x 6 0 ∧ (x + xa) 6 0

c()
x := (x + xa) − 1

Figure 4.2: Basic step for calculating det(M)

Theorem 2 For every STS M, there is a procedure to calculate det(M) if
look(M) 6= ∞.

A complete poof of this theorem using the ideas described above can be
found in [10].

27

Chapter 5

Checking Non-Interference

5.1 Case of finite automata

We will study now the case of finite systems and properties dealing with
the occurrences of actions. In this context the environment is E = (∅,Λ)
with Λ = Λo ∪ Λuo a finite set of actions and the projection πΛo

: Λ∗ → Λ∗
o.

Let M = (Q,Λ, Q0,→) be a finite LTS. Let ψ be a property over P(Λ∗).
We wish to create a function giving if we have Iψ(M, t) or ¬Iψ(M, t) for
t ∈ T (M). For this we consider the LTS χψ(M) = (Q,Λo,Q0,→χ) with
Qχ ⊂ P(Q) × Λ∗, Q0 = (Q0, ∅) and →χ defined by :

(q̃, s̃) ∈ Q, t ∈ T (M)

(q̃, s̃) →χ (∆M (q̃, t), π−1
Λo

(t) ∩ L(M))

We define in χψ(M) a set of final state QF = {(q̃, s̃) ∈ Q, s̃ |= ψ}. χψ(M)
is a deterministic LTS such that L(χψ(M),QF) is the set of traces t ∈
T (M), Iψ(M, t). In the general case χψ(M) is not finite and it is then not
decidable to know if QF is reachable or not. Hence, it is undecidable to know
if Iψ(M) or NIψ(M). We will study now some cases where we can give a

construction such than χψ(M) such that the question L(χψ(M),QF)
?
= ∅ is

decidable.

28

Case of a property given by a regular language

We consider In this section the case where the secrecy can be described like
a property1 ϕ over the set of sequences Λ∗. This property ϕ is satisfied
when the secrecy is violated. To fit with the general definition, we define

ψ : ∀s̃ ∈ P(Λ∗), s̃ |= ψ
∆
= ∀s ∈ s̃, s |= ϕ . We will later examine the case of

secrecy properties given by regular languages. An observer can deduce the
secret throw its observation t ∈ T (M) when all the sequences in L(M) are
violating the secret.

Proposition 1 For a finite LTS M = (Q,Λ, Q0 →) with Λ0 ⊂ Λ the ob-
servable actions and ϕ a secrecy property over Λ∗ we have :

Iψ(M) ⇔ ∃t ∈ T (M), ∀s ∈ π−1(t) ∩ L(M), s |= ϕ

If the property ϕ is given by a regular language Lϕ then we can derive the
non-interference problems to some other more easily computable problems
within the automata theory. Then, we will see that Iψ can be converted to
a reachability problem.

Proposition 2 let ϕ be a property given by a regular language Lϕ, we can
then express the notion of interference by :

Iψ(M) ⇔ ∃t ∈ T (M), π−1(t) ∩ L(M) ⊆ Lϕ

Now, let Aϕ = (Qϕ,Λ, Qϕ
0 , Q

ϕ
f ,→) be a deterministic complete automaton

such that L(Aϕ, Q
ϕ
f) = Lϕ and L(Aϕ, Q

ϕ \ Qϕ
f) = Lϕ̄. M × Aϕ = (Q ×

Qϕ,Λ, Q0×Q
ϕ
0 , Q×Qϕ

f ,→) given with the classical product of two automata.

Proposition 3 With the previous definition of M and Aϕ we have :

NIψ(M) ⇔ πΛo
(L(M × Aϕ, (Q×Q

ϕ
f) \ (Q×Q

ϕ
f))) = T (M)

proof : Let K = L(M × Aϕ, (Q × Q
ϕ
f) \ (Q × Q

ϕ
f)). K is the set of se-

quences of M not violating the secrecy policy. Provided t ∈ T (M), we
assume that we have πΛo

(K) = T (M). In that case t ∈ πΛo
(K) and

there is s ∈ L(M × Aϕ), π(s) = t such that s ∈ Lϕ̄. Hence we have
s ∈ π−1(t) ∩ L(M), s 6|= ϕ. This prove NIψ(M). In the other sense,

1We assume this property to be decidable.

29

we assume NIψ(M) and let t ∈ T (M). According to the definition of
NI and proposition 2 , we have ∃s ∈ π−1(t) ∩ L(M) ∩ L̄ϕ. But we have
K = L(M) ∩ L(Aϕ, Q

ϕ \ Qϕ
f) = L(M) ∩ L̄ϕ and then π(s) = t ∈ πΛo

(K).
Since πΛo

(K) ⊆ πΛo
(L(M)) = T (M), we have the equivalence.

For example, for the coffee machine given by the figure 3.2, the secrecy
property is given by s |= ϕ : s ∈ (Λ∗ full Λ∗). We have2 πΛo

(K) =
(prefix({coinIn · (confirm · coffeeOut + cancel · coinOut))}))∗ but with
t = coinIn · coinOut, t ∈ T (M) and t 6∈ πΛo

(K), hence, according to the
proposition 3, this model is interfering. Using the same argument, one can
prove that the model given in figure 3.3 is non-interfering.

This proposition gives a way to prove the non-interference by checking
a languages inclusion. Generally, checking a language inclusion leads to a
state reachability problem. We will see how the non-interference problem

can be solved by checking reachability in a finite automata. Let χM
∆
=

det(ε(M × Aϕ)) with the set of final states QF
∆
= {q̃ ∈ P(Q × Qϕ, ∀q =

(qM , qAϕ
) ∈ Q × Qϕ, qAϕ

∈ Q
ϕ
f }. The operators det and ε are the classical

determinisation and ε-closure operator for finite automata.

Theorem 3 Using the previous notation, we have :

NIψ(M) ⇔ L(χψ(M),QF) = ∅

Proof : The proof is directly comming form the definition of χψ(M) : a
trace t of M leading to QF) in χψ(M) is a trace such that all the sequences
in M compatibles with t are satisfying the property ϕ.

Example of calculation of χψ(M)

For a property P over a set X, we identify the property and subset of X
where the property is satisfied. We write then P for {x ∈ X | x |= P} and
P̄ = X \ P .

2The operator prefix : Λ∗ → P(Λ∗) gives the set of prefixes of a word ω ∈ Λ∗.

30

q0, S

q1, S q2, U

q3, S q4, U q5, U

h p

l1 l1 l2

Figure 5.1: Example of calculation of χψ(M)

5.2 Extention of non-interference to the STS

model

We consider now the case of a security properties described with STS. Ob-
viously, this approach cannot deal with everything we can expect. For ex-
ample, it is difficult with this approach to deal with security properties like
”Users cannot infer any information about the variable X”. But on the other
hand the STS model will be suitable a to deal with properties consering
particular system behaviours. For Instance ”The server protocol must dis-
connect a client sending a sequence of action characteristic of an attack”.
Let E = (V,Σ) be an environment. The secrecy property ϕ is given by
the nonintrusive STS Pϕ = (Vϕ,Θϕ,Σ, Tϕ) with V ⊂ Vϕ and such that the
set of locations Dom(lϕ) = S ∪ U, S ∩ U = ∅. S, for ”safe”, is the set
of locations where the secrecy is not violated, i.e. ϕ is not satisfied. And
U , for ”unsafe” , is the set of locations where the secrecy is violated. We
write here R(Pϕ, U) = {ρ = ~q0

s
→ ~q ∈ R(Pϕ), ~q0 |= Θϕ, ~q|lϕ ∈ U} the set

of runs violating the secrecy. R(Pϕ, S) is defined in the same way and we
have R(Pϕ) = R(Pϕ, U)∪R(Pϕ, S). Also, the property ϕ gives the property
ψ : ρ̃ ∈ RE · (Σ · Dom(Vϕ))

∗, ρ̃ |= ψ iff ∀ρ ∈ ρ̃, ρ |= ϕ. In other words,
using the STS Pϕ, ρ̃ |= ψ if and only if all the runs ρ ∈ ρ̃ are ending in a

location labeled as unsafe, i.e. ρ̃ |= ψ ⇔ ∀ρ = ~q0
s
→ ~q ∈ ρ̃, ~q|lϕ ∈ U . Let

now M = (V,Σ,Θ, T) be a STS compatible for product with Pϕ and such
that V ⊂ V ⊂ Vϕ. We assume that there is no internal loop in the product
MoPϕ and that look(MoPϕ) 6= ∞. With this assuptions, we can calculate

χψ(M) = det(ε(M o Pϕ)). Let Θϕ
F

∆
= {q̃ ∈ P(Dom(Vϕ)), ∀~q ∈ ρ̃, ~q|lϕ ∈ U}.

31

Θϕ
F is the the set of macro-states constituted of states reached by violating

the secrecy property. This construction of χψ(M) gives the important result:

Theorem 4 With the hypothesis given above, for every system M compatible
for product with Pϕ such that we can compute χψ(M) = det(ε(MoPϕ)), we
have :

NIψ(M) ⇔ L(χϕ(M),Θϕ
F) = ∅

and, generally, L(χϕ(M),Θϕ
F) is the set of traces an attacker can use to infer

secret information.

As we have seen in the first chapter, the Symbolic Transition System
has to face with different problems since reachability may be undecidable.
Thanks to the definition of syntactical determinism, we have a strict subclass
of STS for which determinism is decidable. However, it is still undecidable
to know if L(χϕ(M),Θϕ

F) is empty or not, because it also deals with checking
the reachability of the macro-state Θϕ

F in χϕ(M). Using the same idea that
presented in [9], we will solve this problem by approximate analysis using
an overapproximation χϕ(M)α where the reachability of Θϕ

F is decidable.
Because of the overapproximation, we loose the completness of the algorithms
but, for some cases, we can still give an answer with certainty to the NI
problem:

Theorem 5 Using the same notation than the theorem 4, we have :

L(χϕ(M)α,Θϕ
F) = ∅ ⇒ NI(M, ϕ)

and if t ∈ T (M) is a real attack in M, then t ∈ L(χϕ(M)α,Θϕ
F)

Proof : By definition of overapproximation, we have R(χϕ(M)) ⊆ R(χϕ(M)α)
and then L(χϕ(M),Θϕ

F) ⊆ L(χϕ(M)α,Θϕ
F). So, according to the theorem

4, L(χϕ(M)α,Θϕ
F) = ∅ ⇒ L(χϕ(M),Θϕ

F) ⇒ NIψ(M). Also, if there is a
attack t ∈ T (M), Iψ(M, t) then t ∈ L(χϕ(M),Θϕ

F) ⊂ L(χϕ(M)α,Θϕ
F). Fi-

nally, L(χϕ(M)α,Θϕ
F) gives a set of potential attacks but we have to check

if they correspond to real real traces of M.

32

Conclusion

This project has been the occasion to propose a definition of interference
general enough to model most of the security properties we can find in the
literature. Nevertheless, with this definition, the interference problem is
often becoming intractable because of the explosion of possibilities and, in
this report, we had to make more restrictive assumption about the security
properties derive an easier problem. Indeed, we gave computable solutions
for properties given by automata or extended automata but, even if there are
interesting security policies which can be modelled in that way, we do not
know if this approach is relevant for practical case. Furthermore, it can be
interesting to extend the class of properties ψ over the set of runs for which
the calculation of χψ terminates. Further work can be done in the way to
make an abstraction a the set of runs ρ̃ keeping only the relevant informations
and merging similar states. This is basically what is done when the property
is given by an automata because the important informations about the past
or the future of one sequence are given by the automata. To follow this
idea, it can be attractive to study security properties given by Horn logic for
example. Also, an other possible future work can be to see how this notion of
non-interference and the related algorithms can be implemented in the case
of real communicating process framework like CORBA for example.

33

Bibliography

[1] S. Lafortune K. Sinaamohideen M. Sampath, R. Sengupta and
D. Teneketzis. Diagnosability of discrete event systems. IEEE Transac-
tions on Automatic Control, 1995.

[2] S. Lafortune K. Sinaamohideen M. Sampath, R. Sengupta and
D. Teneketzis. Failure diagnosis using discrete event models. IEEE
Transactions on Control System Technology, 1996.

[3] T. Jéron, H. Marchand, S. Pinchinat, and M-O. Cordier. Supervision
patterns in discrete event systems diagnosis. Technical Report 1784,
IRISA, February 2006.

[4] Butler W. Lampson. A user machine in a time-sharing system. Proc.
IEEE 54, 1966.

[5] David D.E. Bell and L.J. La Padula. Secure computer system: Unified
exposition and multics interpretation.

[6] JD Ullman MA Harrison, WL Ruzzo. Protection in operating systems.
Communications of the ACM, 1976.

[7] J. A. Goguen and J. Meseguer. Security policies and security models.
pages 11–20, April 1982.

[8] Riccardo Focardi and Roberto Gorrieri. An information flow security
property for ccs. In Proceedings of Second North American Process Al-
gebra Workshop, 1993.

[9] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test se-
lection based on approximate analysis. In 11th Int. Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’05)Volume 3440 of LNCS, Edinburgh (Scottland), April 2005.

34

[10] T. Jéron, H. Marchand, and V. Rusu. Symbolic determinisation of ex-
tended automata. Technical Report 1176, IRISA, February 2006.

35

