
5

Verifying Nondeterministic Probabilistic
Channel Systems against ω-Regular
Linear-Time Properties

CHRISTEL BAIER
Universität Bonn, Institut für Informatik I
and
NATHALIE BERTRAND and PHILIPPE SCHNOEBELEN
CNRS and ENS Cachan

Lossy channel systems (LCS’s) are systems of finite state processes that communicate via unreliable
unbounded fifo channels. We introduce NPLCS’s, a variant of LCS’s where message losses have a
probabilistic behavior while the component processes behave nondeterministically, and study the
decidability of qualitative verification problems for ω-regular linear-time properties.

We show that—in contrast to finite-state Markov decision processes—the satisfaction relation
for linear-time formulas depends on the type of schedulers that resolve the nondeterminism. While
the qualitative model checking problem for the full class of history-dependent schedulers is unde-
cidable, the same question for finite-memory schedulers can be solved algorithmically. Additionally,
some special kinds of reachability, or recurrent reachability, qualitative properties yield decidable
verification problems for the full class of schedulers, which—for this restricted class of problems—
are as powerful as finite-memory schedulers, or even a subclass of them.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; G.3 [Mathematics of Computing]: Probability and Statistics—Markov processes;
F.1.1 [Computation by Abstract Devices]: Models of Computation

General Terms: Verification, Theory

Additional Key Words and Phrases: Communication protocols, lossy channels, Markov decision
processes, probabilistic models

This research was supported by Persée, a project of the ACI Sécurité Informatique; by PROBPOR,
and by VOSS, a DFG-NWO-project.
Authors’ addresses: C. Baier, Universität für Informatik, Römerstr. 164, D-53117 Bonn, Germany;
N. Bertrand and P. Schnoebelen, Laboratoire Spécification et Vérification, ENS Cachan, 61 av. Pdt
Wilson, F-94230 Cachan, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1529-3785/2007/12-ART5 $5.00 DOI 10.1145/1297658.1297663 http://doi.acm.org/
10.1145/1297658.1297663

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:2 • C. Baier et al.

ACM Reference Format:
Baier, C., Bertrand, N., and Schnoebelen, P. 2007. Verifying nondeterministic probabilistic chan-
nel systems against ω-regular linear-time properties. ACM Trans. Comput. Logic, 9, 1, Article 5
(December 2007), 41 pages. DOI = 10.1145/1297658.1297663 http://doi.acm.org/10.1145/1297658.
1297663

1. INTRODUCTION

Channel systems [Brand and Zafiropulo 1983] are systems of finite-state com-
ponents that communicate via asynchronous unbounded fifo channels. See
Figure 1 for an example of a channel system with two components E1 and E2
that communicate through fifo channels c1 and c2. Lossy channel systems [Finkel
1994; Abdulla and Jonsson 1996b] are a special class of channel systems where
messages can be lost while they are in transit, without any notification. Con-
sidering lossy systems is natural when modeling fault-tolerant protocols where
the communication channels are not supposed to be reliable. Additionally, the
lossiness assumption makes termination and safety properties decidable [Pachl
1987; Finkel 1994; Cécé et al. 1996; Abdulla and Jonsson 1996b]. Several im-
portant verification problems are undecidable for these systems, including
recurrent reachability, liveness properties, boundedness, and all behavioral
equivalences [Abdulla and Jonsson 1996a; Schnoebelen 2001; Mayr 2003]. Fur-
thermore, the previously mentioned decidable problems cannot be solved in
primitive-recursive time [Schnoebelen 2002].

Verifying Liveness Properties. Lossy channel systems are a convenient
model for verifying safety properties of asynchronous protocols, and such verifi-
cations can sometimes be performed automatically [Abdulla et al. 2004]. How-
ever, they are not so adequate for verifying liveness properties. A first difficulty
here is the undecidability of liveness properties.

A second difficulty is that the model itself is too pessimistic when liveness is
considered. Protocols that have to deal with unreliable channels usually have
some coping mechanisms combining resends and acknowledgments. But, with-
out any assumption limiting message losses, no such mechanism can ensure
that some communication will eventually be initiated. The classical solution
to this problem is to add some fairness assumptions on the channel message
losses, for example, “If infinitely many messages are sent through the channels,
infinitely many of them will not be lost.” However, fairness assumptions in lossy
channel systems make decidability more elusive [Abdulla and Jonsson 1996a;
Masson and Schnoebelen 2002].

Probabilistic Losses. When modeling protocols, it is natural to see message
losses as some kind of faults having a probabilistic behavior. Following this
idea, Purushothaman Iyer and Narasimha [1997] introduced the first Markov
chain model for lossy channel systems, where message losses (and other choices)
are probabilistic. In this model, verification of qualitative properties is decid-
able when message losses have a high probability [Baier and Engelen 1999]
and undecidable otherwise [Abdulla et al. 2005a]. An improved model was

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:3

Fig. 1. A channel system: E1 and E2 communicate through channels c1 and c2.

later introduced by Abdulla et al. [2005b], where the probability of losses is
modeled more faithfully and where qualitative verification (and approximate
quantitative verification [Rabinovich 2003]) is decidable independently of the
likelihood of message losses. See the survey by Schnoebelen [2004] for more
details.

These models are rather successful in bringing back decidability. However,
they assume that the system is fully probabilistic; that is, the choice between
different actions is made probabilistically. But when modeling channel systems,
nondeterminism is an essential feature. It is used to model the interleaved be-
havior of distributed components, to model an unknown environment, to delay
implementation choices at early stages of the design, and to abstract away from
complex control structures at later stages.

Our Contribution. We introduce Nondeterministic Probabilistic Lossy
Channel Systems (NPLCS), a new model where channel systems behave non-
deterministically while messages are lost probabilistically, and for which the
operational semantics is given via infinite-state Markov decision processes.
For these NPLCS’s, we study the decidability of qualitative ω-regular linear-
time properties. We focus here on “control-based” properties, that is, tempo-
ral formulas where the control locations of the given NPLCS serve as atomic
propositions.

There are eight variants of the qualitative verification problem for a given
ω-regular property ϕ and a starting configuration s, that arise from

—the four types of whether ϕ should hold almost surely (that is, with probability
1), with positive probability, with zero probability or with probability less
than 1

—existential or universal quantification over all schedulers, that is, instances
that resolve the nondeterministic choices.

By duality of existential and universal quantification, it suffices to consider
the four types of probabilistic satisfaction and one variant of quantification
(existential or universal). We deal with the case of existential quantification
since it is technically more convenient.

Our main results can be summarized as follows. First, we present algorithms
for reachability properties stating that a certain set of locations will eventually
be visited. We then discuss repeated reachability properties. While repeated
reachability problems with the three probabilistic satisfaction relations “almost
surely,” “with zero probability,” and “with probability less than 1” can be solved
algorithmically, the question whether a certain set of locations can be visited

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:4 • C. Baier et al.

infinitely often “with positive probability” under some scheduler is undecidable.
It appears that this is because schedulers are very powerful (e.g., they need not
be recursive). In order to recover decidability without sacrificing too much of
the model, we advocate restricting oneself to finite-memory schedulers, and
show this restriction makes the qualitative model checking problem against
ω-regular properties decidable for NPLCS’s.

This article is partly based on, and extends, material presented in Bertrand
and Schnoebelen [2003, 2004]. However, an important difference with this ear-
lier work is that the NPLCS model we use does not require the presence of idling
steps (see Remark 2.3 below). This explains why some of the results presented
here differ from those in Bertrand and Schnoebelen [2003, 2004].

Outline of the Article. Section 2 introduces probabilistic lossy channel sys-
tems and their operational semantics. Section 3 establishes some fundamen-
tals properties, leading to algorithms for reachability and repeated reachability
problems (in Section 4). Section 5 shows that some repeated reachability prob-
lems are undecidable and contains other lower-bound results. Section 6 shows
decidability for problems where attention is restricted to finite-memory sched-
ulers, and Section 7 shows how positive results for Streett properties generalize
to arbitrary ω-regular properties. Finally, Section 8 concludes the article.

2. NONDETERMINISTIC PROBABILISTIC CHANNEL SYSTEMS

Lossy channel systems. A lossy channel system (a LCS) is a tuple L =
(Q , C, M, #) consisting of a finite set Q = {p, q, . . . }, of control locations (also
called control states), a finite set C = {c, . . . } of channels, a finite message alpha-
bet M = {m, . . . }, and a finite set # = {δ, . . . } of transition rules. Each transition
rule has the form q

op−→ p where op is an operation of the form

—c!m (sending message m along channel c),
—c?m (receiving message m from channel c),
—
√

(an internal action to some process, no I/O-operation).

The control graph of L is the directed graph having the locations of L as its
nodes and rules from # for its edges. It is denoted with Graph(Q), and more
generally Graph(A) for A ⊆ Q denotes the control graph restricted to locations
in A.

Our introductory example in Figure 1 is turned into a LCS by replacing
the two finite-state communicating agents E1 and E2 by the single control
automaton one obtains with the asynchronous product E1 × E2.

Operational Semantics. LetL = (Q , C, M, #) be a LCS. A configuration, also
called global state, is a pair (q, w), where q ∈ Q is a location and w : C → M∗ is
a channel valuation that associates with any channel its content (a sequence of
messages). We write M∗C for the set of all channel valuations, or just M∗ when
|C| = 1. The set Q ×M∗C of all configurations is denoted by Conf. With abuse of
notations, we shall use the symbol ε for both the empty word and the channel
valuation where all channels are empty. If s = (q, w) is a configuration then we
write |s| for the total number of messages in s, that is, |s| = |w| =

∑
c∈C |w(c)|.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:5

We say that a transition rule δ = q
op−→ p is enabled in configuration s = (r, w)

iff

(1) the current location is q; that is, r = q, and
(2) performing op is possible. This may depend on the channels contents: send-

ing and internal actions are always enabled, while a receiving c?m is only
possible if the current content of channel c starts with the message m, that
is, if the word w(c) belongs to mM∗.

For s a configuration, we write #(s) for the set of transition rules that are
enabled in s.

When δ = p
op−→ q is enabled in s = (q, w), firing δ yields a configuration

s′ = (p, op(w)), where op(w) denotes the new contents after executing op:

—if op = √, then op(w) = w,
—if op = c!m, then op(w)(c) = w(c)m, and op(w)(c′) = w(c′) for c *= c′,
—if op = c?m (and then w(c) is some mµ since δ was enabled), then op(w)(c) = µ,

and op(w)(c′) = w(c′) for c *= c′.

We write s δ−→perf s′ when s′ is obtained by firing δ in s. The “perf” subscript
stresses that the step is perfect: no messages are lost.

However, in lossy systems, arbitrary messages can be lost. This is formalized
with the help of the subword ordering: we write µ + µ′ when µ is a subword
of µ′, that is, µ can be obtained by removing any number of messages from µ′,
and we extend this to configurations, writing (q, w) + (q′, w′) when q = q′ and
w(c) + w′(c) for all c ∈ C. By Higman’s Lemma,+ is a well-quasi-order between
configurations of L [Abdulla et al. 2000; Finkel and Schnoebelen 2001].

Now, we define lossy steps by letting s δ−→ s′′ whenever there is a perfect
step s δ−→perf s′ such that s′′ + s′.1 This gives rise to a labeled transition sys-
tem LTSL

def= (Conf, #,→). Here the set # of transition rules serves as action
alphabet.

Remark 2.1. In the following we only consider LCS’s where, for any loca-
tion q ∈ Q , # contains at least one rule q

op−→ p where op is not a receive
operation. This ensures that LTSL has no terminal configuration, where no
rules are enabled.

Notation 2.2 (Arrow-notations). Let s, t ∈ Conf be configurations. We write
s → t if s δ−→ t for some δ. As usual, +−→ (resp. ∗−→) denotes the transitive (resp.
reflexive and transitive) closure of →. Let ! be →, ∗−→ or +−→. For T ⊆ Conf, we
write s !T when s !t for some t ∈ T . When X ⊆ Q is a set of locations s !X
means that s !(x, w) for some x ∈ X (and for some w).

1Note that, with this definition, message losses can only occur after perfect steps (thus, not in
the initial configuration). This is usual for probabilistic models of LCS’s, while nondeterministic
models of LCS’s usually allow losses both before and after perfect steps. In each setting, the chosen
convention is the one that is technically smoother, and there are no real semantic differences
between the two.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:6 • C. Baier et al.

We also use a special notation for constrained reachability: s ∗−→[X] t means
that there is a sequence of steps going from configuration s to t and visiting
only locations from X , including at the two extremities s and t. With s ∗−→[X) t
we mean that the constraint does not apply to the last configuration. Hence
s ∗−→[X) s is always true, even with empty X . The following equivalence links
the two notions:

s ∗−→[X) t iff [s = t or ∃s′(s ∗−→[X] s′ and s′ −→ t)].

We recall that in LCS’s the following constrained reachability questions: “given
s, t two configurations, X ⊆ Q and ! ∈ {→, ∗−→, +−→} does s ![X]t (or s ![X)t)?”
are decidable [Abdulla and Jonsson 1996b; Schnoebelen 2002].

The MDP-semantics. Following Bertrand and Schnoebelen [2003, 2004], we
define the operational behavior of a LCS by an infinite-state Markov decision
process. A NPLCS2 N = (L, τ) consists of a LCS L and a fault rate τ ∈ (0, 1)
that specifies the probability that a given message stored in one of the message
queues is lost during a step. In the sequel, for w, w′ ∈ M∗C, we let Plost(w, w′)
denote the probability that channels containing w change to w′ within a single
step as a result of message losses. This requires losing |w|−|w′| message at the
right places. Formally, we let

Plost(w, w′) def= τ |w|−|w′| · (1− τ)|w
′| ·

(
w
w′

)
, (1)

where the combinatorial coefficient (w
w′), is the number of different embeddings

of w′ in w. For instance, in the case where w = aaba, one has
(

aaba
a

)
=

(
aaba

aa

)
= 3,

(
aaba
aba

)
=

(
aaba

ab

)
= 2,

(
aaba

w′

)
= 1 if w′ ∈ {ε, b, aaa, aab, ba, aaba}

and (aaba
w′) = 0 in all other cases. Note that, for example, w′ = aa can be obtained

from w = aaba in three different ways (by removing the b and either the first,
second or third a), while w′ = ba is obtained from w in a unique way (by
removing the first two a’s). See Abdulla et al. [2005b] for more details. Here, it
is enough to know that (w

w′) *= 0 iff w′ + w and that the probabilities add up to
one: for all w,

∑
w′ Plost(w, w′) = 1.

The Markov decision process associated with N is MDPN
def= (Conf, #, PN).

The stepwise probabilistic behavior is formalized by a three-dimensional transi-
tion probability matrix PN : Conf×#×Conf → [0, 1]. For a given configuration
s and a transition rule δ that is enabled in s, PN (s, δ, ·) is a distribution over
the states in MDPN , while PN (s, δ, ·) = 0 for any transition rule δ that is not
enabled in s. The intuitive meaning of PN (s, δ, t) = λ > 0 is that with proba-
bility λ, the system moves from configuration s to configuration t when δ is the

2The starting letter “N” in NPLCS serves to indicate that we deal with a semantic model where non-
determinism and probabilities coexist, and thus, to distinguish our approach from interpretations
of probabilistic lossy channel systems by Markov chains.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:7

Fig. 2. From a LCS L to MPDL.

chosen transition rule in s. Formally, if s = (q, w), t = (p, w′), and δ = q
op−→ p is

enabled in s, then

PN (s, δ, t) def= Plost(op(w), w′). (2)

See Figure 2 for an example where s = (q, ab) and δ = q !b−→ p.
A consequence of (1) and (2) is that the labeled transition system underlying

MDPL is exactly LTSL. Hence any path in MDPL is also a path in LTSL and the
fact that LTSL had no terminal configuration implies that there is no terminal
state in MDPL.

Remark 2.3 (The idling MDP semantics). The above definition of the MDP
semantics for an NPLCS differs from the approach of Bertrand and Schnoebelen
[2003, 2004] where each location q is assumed to be equipped with an implicit
idling transition rule q

√
−→q. This idling MDP semantics allows simplifications

in algorithms, but it does not respect enough the intended liveness of channel
systems (e.g., inevitability becomes trivial) and we do not adopt it here. Observe
that the new approach is more general since idling rules are allowed at any
location in L.

Schedulers (finite-memory, memoryless, blind and almost blind). Before one
may speak of the probabilities of certain events in an MDP, the nondeterminism
has to be resolved by means of a scheduler, also often called adversary, policy or
strategy. We will use the word “scheduler” for a history-dependent deterministic
scheduler in the classification of Puterman [1994]. Formally, a scheduler for
N is a mapping U that assigns to any finite path π in N a transition rule
δ ∈ # that is enabled in the last state of π .3 Intuitively, the given path π

specifies the history of the system, and U(π) is the rule that U chooses to fire
next.

A scheduler U only gives rise to certain paths in the MDP: we say π = s1 →
s2 → · · · is compatible with U or, shortly, is a U-path, if PN (sn, δn, sn+1) > 0 for

3As stated in Remark 2.1, we make the assumption that any configuration has at least one enabled
transition rule.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:8 • C. Baier et al.

all n ≥ 1, where δn = U(s1 → · · · → sn) is the transition rule chosen by U for
the n-th prefix of π . In practice, it is only relevant to define how U evaluates on
U-paths.

In general U can be any function and, for example, it needs not be recursive.
It is often useful to consider restricted types of schedulers. In this article, the
two main types of restricted schedulers we use are finite-memory schedulers,
which abstract the whole history into some finite-state information, and blind
schedulers, which ignore the contents of the channels.

Formally, a finite-memory scheduler for N is a tuple U = (U, D, η, u0) where
U is a finite set of modes, u0 ∈ U is the starting mode, D : U ×Conf → # is the
decision rule which assigns to any pair (u, s) consisting of a mode u ∈ U and a
configuration s a transition rule δ ∈ #(s), and η : U ×Conf → U is a next-mode
function which describes the mode-changes of the scheduler. The modes can be
used to store some relevant information about the history. In a natural way,
a finite-memory scheduler can be viewed as a scheduler in the general sense:
given a finite path π = s0 → s1 → · · · → sn in N , it chooses D(u, sn) where
u = η(u0, s0s1 . . . sn) = η(. . . η(η(u0, s0), s1), . . . , sn).

A scheduler U is called memoryless if U is finite-memory with a single mode.
Thus, memoryless schedulers make the same decision for all paths that end up
in the same configuration. In this sense, they are not history-dependent and
can be defined more simply via mappings U : Conf → #.

By a blind scheduler, we mean a scheduler where the decisions depend only
on the locations that have been passed, and not on the channel contents. Hence
a blind scheduler never selects a reading transition rule. Observe that, since
the probabilistic choices affect only channel contents (by message losses), all
U-paths generated by a blind U visit the same locations in the same order. More
formally, with any initial locations q0, a blind scheduler can be seen as associ-
ating an infinite sequence q0

op1−→ q1
op2−→ q2 · · · of chained transition rules and the

U-paths are exactly the paths of the form (q0, w0) → (q1, w1) → (q2, w2) → · · ·
with wi + opi(wi−1) for all i > 0.

A scheduler is called almost blind if it almost surely eventually behaves
blindly. Formally, U is almost blind iff there exists a scheduler W and a blind
scheduler V such that for all configurations s and for almost all (see the follow-
ing) infinite U-paths π = s1 → s2 → · · · with s = s1, there exists an index n ≥ 0
such that

—U(s1 → · · · → si) = W(s1 → · · · → si) for all indices i ≤ n and
—U(s1 → · · · → si) = V(s1 → · · · → si) for all indices i > n.

Here and in the sequel, the formulation “almost all paths have property x”
means that the paths where property x is violated are contained in some mea-
surable set of paths that has probability measure 0. The underlying probability
space is the standard one (briefly explained in the following).

Stochastic process. Given an NPLCSN and a schedulerU , the behavior ofN
under U can be formalized by an infinite-state Markov chain MCU . For arbitrary
schedulers, the states of MCU are finite paths inN . Intuitively, such a finite path

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:9

π = s1 → · · · → sn−1 → sn represents configuration sn, while s1 → · · · → sn−1
stand for the history how configuration sn was reached.4 If π is a finite path
ending in configuration s, and π ′ = π → t is π followed by step s → t, then
the probability PU (π, π ′) in MCU is defined with PU (π, π ′) def= PN (s, U(π), t),
according to the chosen rule U(π). In all other cases PU (π, π ′) = 0. We now may
apply the standard machinery for Markov chains and define (for fixed starting
configuration s) a sigma-field on the set of infinite paths starting in s and a
probability measure on it [Kemeny et al. 1966; Puterman 1994; Panangaden
2001]. We shall write PrU (s |= · · ·) to denote the standard probability measure
in MCU with starting state s.

For U a finite-memory scheduler, we can think of the states in MCU as
pairs (u, s) consisting of a mode u and a configuration s. In the sequel, we
will write su rather than (u, s) as the intuitive meaning of (u, s) is “configura-
tion s in mode u.” For finite-memory schedulers the successor-states of su and
their probabilities in MCU are given by the MDP for N in configuration s and
the chosen transition rule for su. That is, if U is some (U, D, η, u0), we have
PU (su, tη(u,s))

def= PN (s, D(u, s), t), and if u′ *= η(u, s) then PU (su, tu′) = 0. In a
similar way, we can think of the Markov chains for memoryless or blind sched-
ulers in a simpler way. For memoryless schedulers, the configurations of N can
be viewed as states in the Markov chain MCU , while for blind schedulers we
may deal with finite words over Q complemented with some current channel
contents.

LTL-notation. Throughout the article, we assume familiarity with linear
temporal logic (LTL) [Emerson 1990]. We use simple LTL formulas to denote
properties of paths in MDPL. Here configurations and locations serve as atomic
propositions: for example !"s (resp. !"x) means that s ∈ Conf (resp. x ∈ Q) is
visited infinitely many times along a path, and x Until s means that the control
state remains x until s is eventually reached. These notations extend to sets:
!"T and !"A for T ⊆ Conf and A ⊆ Q with obvious meanings. For A ⊆ Q , Aε

is the set {(q, ε) : q ∈ A} so that "Q ε means that eventually a configuration with
empty channels is reached. It is well known that for any scheduler U , the set
of paths starting in some configuration s and satisfying an LTL formula, or an
ω-regular property, ϕ is measurable [Vardi 1985; Courcoubetis and Yannakakis
1995]. We write PrU (s |= ϕ) for this measure.

Finite attractor. The crucial point for the algorithmic analysis of NPLCS
is the fact that almost surely, a configuration where all channels are empty
will be visited infinitely often. If U is a scheduler and T a set of configurations
then T is called an attractor for U iff PrU (s |= !"T) = 1 for any starting
configuration s.

PROPOSITION 2.4 (FINITE-ATTRACTOR PROPERTY FOR ARBITRARY SCHEDULERS). For
any scheduler U , the set Q ε = {(q, ε) : q ∈ Q} is a finite attractor for U .

4One often uses informal but convenient formulations such as “scheduler U is in configuration s”,
which means that a state π in the chain MCU , that is, a finite path in N , is reached where the last
configuration is s.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:10 • C. Baier et al.

That is, almost all paths in MCU visit Q ε infinitely often, independent on the
starting state. We refer to Bertrand and Schnoebelen [2003] and Baier et al.
[2006] for formal proofs. An intuitive explanation of the result is that when the
channels contain n messages, each step can only add at most one new message
(through a sending action) while on average n×τ are lost. Thus when n is large,
it tends to decrease and this suffices to ensure that almost surely all messages
will be lost.

3. SAFE SETS AND PROMISING SETS

At many places, our arguments use the notion of “safe sets” and “promising sets”
of locations. In this section we define these notions, relate them to behavioral
features, and explain how to compute them.

3.1 Safe Sets

Definition 3.1. Let L = (Q , C, M, #) be a lossy channel system and A ⊆ Q
be a set of locations. We say that X ⊆ Q is safe for A if X ⊆ A and (x, ε) → X
for all x ∈ X .

Assume A ⊆ Q . It is easy to see that if X and Y are both safe for A, then
X ∪ Y is safe for A too. The same holds for infinite unions. As a consequence,
the largest safe set for A exists (union of all safe sets); it is denoted by Safe(A),
or Safe when there is no ambiguity on A.

Observe that for any family (Ai)i∈I of sets of locations, one has the following
inclusions

Safe

(
⋃

i∈I
Ai

)

⊇
⋃

i∈I
Safe(Ai) Safe

(
⋂

i∈I
Ai

)

⊆
⋂

i∈I
Safe(Ai) (3)

while the reverse inclusions do not hold in general.
Safe(A) can be computed in linear time: consider Graph(A) the control graph

restricted to locations of A. Remove from Graph(A) the edges that carry re-
ceiving operations “c?m.” The nodes that have no outgoing edges cannot be in
Safe(A): remove them with their incoming edges. This may create new nodes
with no outgoing edges that have to be removed iteratively. After each iteration,
the remaining nodes are a superset of Safe(A). When the process eventually ter-
minates, what remains is exactly Safe(A). Indeed the remaining nodes form a
safe set X : from every x ∈ X there is an outgoing edge x

op−→ y where op is not
a receiving, hence (x, ε)

op−→ X .
The following lemma justifies the terminology “safe” and will be very useful

in the sequel.

LEMMA 3.2. There exists a blind and memoryless scheduler U s.t. for all
x ∈ Safe(A) and all w ∈ M∗C, PrU ((x, w) |= !A) = 1.

PROOF. Let us describe the scheduler U satisfying !A with probability 1. For
each x ∈ Safe(A) fix a rule δx : x

op−→ y enabled in (x, ε) and with y ∈ Safe(A).
One such rule must exist by definition of Safe(A). Because y is in Safe, U can go
on with δ y , etc... Note that the rules used by U do not depend on the channels

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:11

contents but only on the locations: this scheduler U is memoryless and blind.
The fact that U fulfills the requirement PrU

(
(x, ε) |= !A

)
= 1 comes for free

from the inclusion Safe(A) ⊆ A.

Conversely:

LEMMA 3.3. If PrU ((x, ε) |= !A) = 1 for some scheduler U , then x ∈ Safe(A).

PROOF. Assume PrU ((x, ε) |= !A) = 1. We define Y to be the set of locations
that can be visited along a U-path: Y = {q ∈ Q | ∃w, PrU

(
(x, ε) |= "(q, w)

)
> 0}

and show that Y is safe for A. We have Y ⊆ A otherwise PrU ((x, ε) |= !A) would
be less than 1.

Moreover, if PrU ((x, ε) |= "(q, w))>0 for some w then PrU ((x, ε) |= "(q, ε))>0.
This is trivial if q = x, and otherwise, losing all messages in the last step leads
to (q, ε) instead of (q, w). Hence there must be some rule enabled in (q, ε) that
U picks to satisfy !A with probability one. Let q

op−→ y this rule. Then y is in Y .
The set Y is safe for A and x ∈ Y , hence x ∈ Safe(A).

3.2 Promising Sets

Definition 3.4. Let L = (Q , C, M, #) be a lossy channel system and A ⊆ Q
be a set of locations. We say that X ⊆ Q is promising for A if (x, ε) ∗−→[X) A for
all x ∈ X .

As for safe sets, the largest promising set for A (written Prom(A) or Prom)
exists: it is the union of all promising sets for A.

An important property is distributivity with respect to union:

LEMMA 3.5 (SEE APPENDIX A). For any family (Ai)i∈I of sets of locations,

Prom

(
⋃

i∈I
Ai

)

=
⋃

i∈I
Prom(Ai).

With regards to intersection, the following clearly holds:

Prom

(
⋂

i∈I
Ai

)

⊆
⋂

i∈I
Prom(Ai), (4)

but the reverse inclusion does not hold in general.
The set Prom(A) can be computed for a given A as a greatest fixed point.

Let X 0 = Q be the set of all locations and, for i = 0, 1, . . . , define X i+1 as
the set of locations x ∈ X i such that (x, ε) ∗−→[X i) A. The X i ’s can be built
effectively because constrained reachability is decidable for LCS’s (as recalled
in Section 2). The sequence eventually stabilizes since X 0 = Q is finite. When
it does X def= limi X i is promising for A. Since each X i is a superset of Prom(A),
we end up with X = Prom(A).

Promising sets are linked to eventuality properties:

LEMMA 3.6. There exists a memoryless scheduler U s.t. for all x ∈ Prom(A)
and all w ∈ M∗C, PrU ((x, w) |= "A) = 1.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:12 • C. Baier et al.

PROOF. We first describe a finite-memory scheduler U that achieves for any
x ∈ Prom(A) and w ∈ M∗C, PrU ((x, w) |= "A) = 1. Then we explain how a
memoryless scheduler can do the same thing.

U has two types of modes, a normal mode for each x ∈ Prom(A), and a
recovery mode. In normal mode and starting from (x, ε) for some x ∈ Prom(A),
U picks the rule δ1 given by a fixed path πx of the form (x, ε) δ1−→ (x1, w1) δ2−→··· δn−→
A witnessing x ∈ Prom(A). If after firing δ1 the next configuration is indeed
(x1, w1), U stays in normal mode and goes on with δ2, δ3, etc., trying to follow πx
until A is reached. Whenever the probabilistic losses put it out of πx ; that is, in
some (xi, w′

i) with w′
i *= wi (and xi /∈ A), U switches to recovery mode.

In recovery mode and in some configuration (xi, w), U performs a rule enabled
in (xi, ε) and leading to a location y ∈ Prom(A)—such a rule exists because
xi ∈ Prom(A), for example, the first rule used in πxi . U goes on in recovery
mode until all channels are empty. Note that in normal mode and in recovery
mode all the visited locations are in Prom(A). Because of the finite-attractor
property, with probability one some configuration (y , ε) is eventually visited
and U switches back to normal mode for y . Therefore, and as long as A is not
visited, some πx path is tried and almost surely one of them will be eventually
followed to the end. Hence PrU ((x, w) |= "A) = 1. Observe that U does not
depend on x (nor on w) and is finite memory.

We can even design a memoryless scheduler, the so-called stubborn sched-
uler. For this, it is enough to ensure that the set of paths (πx)x∈Prom(A) on which
U relies are such that every occurring configuration is followed by the same
next configuration. That is, the paths may join and fuse, but they may not cross
and diverge (nor loop back). This way, U can base its choices on the current
configuration only. Whether it is in “normal” or “recovery” mode is now based
on whether the current configuration occurs in the set of selected paths or
not.

LEMMA 3.7. If PrU ((x, ε) |= "A) = 1 for some scheduler U then x ∈ Prom(A).

PROOF. Let U be a scheduler such that PrU ((x, ε) |= "A) = 1. Define X =
{ y ∈ Q | PrU ((x, ε) |= ¬A Until y) > 0} and observe that x ∈ X .

We now show that X is promising for A. Let y ∈ X , then PrU ((x, ε) |=
¬A Until (y , ε)) > 0: this is obvious for y = x and, for y *= x, the channel can
be emptied in the last step of the path witnessing ¬A Until y . Thus, and since
PrU ((x, ε) |= "A) = 1, there must be some path (y , ε) ∗−→ (z, w) with z ∈ A. More-
over if z is the first occurrence of A along this path, we have (y , ε) ∗−→[X) (z, w).

Hence X is promising for A, and x ∈ X , so x ∈ Prom(A).

4. DECIDABILITY RESULTS

4.1 Reachability Properties

In this section we give decidability results for qualitative reachability problems.
The questions whether there exists a scheduler such that eventuality properties
of the form ∧i"Ai are satisfied with probability = 1 (resp. = 0, >0, <1) are all
decidable.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:13

In all cases the problem reduces to several reachability questions in ordinary
lossy channel systems.

THEOREM 4.1 (GENERALIZED EVENTUALITY PROPERTIES). It is decidable whether
for a given NPLCS N , location q, sets A1, . . . , An of locations and reachability
properties (a), (b), (c) or (d) there exists a scheduler U satisfying

(a) PrU ((q, ε) |= ∧n
i=1"Ai) > 0, or

(b) PrU ((q, ε) |= ∧n
i=1"Ai) = 0, or

(c) PrU ((q, ε) |= ∧n
i=1"Ai) < 1, or

(d) PrU ((q, ε) |= ∧n
i=1"Ai) = 1.

Furthermore, the existence of a scheduler U satisfying (b) entails the existence of
a blind and memoryless scheduler for (b). The existence of a scheduler satisfying
(c) entails the existence of an almost blind and memoryless scheduler for (c).
The existence of a scheduler satisfying (a) or (d) entails the existence of a finite-
memory scheduler for (a) or (d).

The rest of this section consists in the proof of Theorem 4.1. In this proof, we
will successively show the decidability of (a), (b), (c), and (d).
ad (a) of Theorem 4.1: PrU ((q, ε) |= ∧n

i=1"Ai) > 0.
We first consider the case of a single eventuality property "A. Obviously:

A is reachable from (q, ε)
iff there exists a scheduler U with PrU ((q, ε) |= "A)) > 0
iff there exists a memoryless scheduler U with PrU ((q, ε) |= "A)) > 0.

Hence the problem reduces to a control-state reachability problem in LTSL.
For several eventualities A1, . . . , An, one can reduce the problem to the sim-

pler case by building a product N ×A of N with a finite-state automaton A that
records which Ai ’s have been visited so far. N × A has 2n times the size of N .
The existence of a memoryless scheduler for N ×A directly translates into the
existence of a finite-memory scheduler for N .

Observe that for eventuality properties of the form ∃U PrU ((q, ε) |= "A ∧
"B) > 0, memoryless schedulers are not sufficient, as the only possibility to
satisfy both constraints "A and "B might be to visit a certain configuration s
twice and to choose different transition rules when visiting s the first and the
second time.

ad (b) of Theorem 4.1: PrU ((q, ε) |= ∧n
i=1"Ai) = 0.

We rewrite the question as the existence of U such that PrU ((q, ε) |= ∨n
i=1

!¬Ai) = 1, or equivalently, with Bi
def= ¬Ai, such that PrU ((q, ε) |= ∨n

i=1!Bi) = 1.
The next lemma reduces this question to a simple safety problem.

LEMMA 4.2. There exists a scheduler U with PrU ((q, ε) |= ∨n
i=1!Bi) = 1 if

and only if there exists a blind and memoryless scheduler U with PrU ((q, ε) |=
!Bi) = 1 for some i, 1 ≤ i ≤ n.

PROOF. (⇐): is obvious.
(⇒): We assume that PrU ((q, ε) |= ∨n

i=1!Bi) = 1.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:14 • C. Baier et al.

For all I ⊆ {1, . . . , n}, I *= ∅, let X I be the set of all locations x such that
there exists a finite U-path π of the form (q, ε) = (x0, w0) → (x1, w1) → · · · →
(xm, wm) = (x, wm) satisfying:

{x0, . . . , xm} ⊆ Bi iff i ∈ I.

Hence a path such as π above witnesses that xm belongs to X I for I the set of
all indices i such that π |= !Bi.

Let Ix
def= {i ∈ {1, . . . , n} | x ∈ Bi}. By assumption Iq is not empty and q ∈ X Iq .

We now show, for all I *= ∅, that

X I ⊆
{

x ∈
⋂

i∈I
Bi | (x, ε) → X J for some ∅ *= J ⊆ I

}
. (5)

This can be seen as follows. Let x ∈ X I . Then, there is a finite path as above.
But then also

(q, ε) = (x0, w0) → (x1, w1) → · · · → (xm−1, wm−1) → (xm, ε)︸ ︷︷ ︸
=(x,ε)

is a U-path. Let x
op−→ y be the transition rule taken by U for this path. Then,

(x, ε) → (y , ε). Hence, there is an infinite U-path π starting with the prefix

(q, ε) = (x0, w0) → (x1, w1) → · · · → (xm−1, wm−1) → (x, ε) → (y , ε).

Let J def= I ∩ Iy . J is not empty because π |= !Bi for some 1 ≤ i ≤ n. Moreover
(q, ε) = (x0, w0) → (x1, w1) → · · · → (xm−1, wm−1) → (x, ε) → (y , ε) is a witness
for y ∈ X J . Hence (x, ε) → X J .

We now construct simultaneously an infinite sequence x0, x1, . . . of locations
and an infinite sequence I0, I1, . . . of sets on indices with x0 = q and s.t. xk ∈ X Ik

for k = 0, 1, . . . We start with I0
def= Iq . At step k, xk ∈ X Ik and (5) entail the

existence of a step (xk , ε) −→ X J with J ⊆ Ik . We let xk+1 be the smallest
x ∈ X J that can be reached from xk (assuming Q is totally ordered in some
way) and Ik+1

def= J . Observe that I0 ⊇ I1 ⊇ · · · and that I∞ (def= ∩k=0,1,...Ik) is
not empty thanks to (5). Observe that a scheduler V that visits x0, x1, . . . , is
blind, satisfies ∧i∈I∞!Bi, and needs only finite-memory, for example, recording
the current Ik . A memoryless scheduler U can be obtained from V by always
picking, for a location x, the rule that V picks last if x is encountered several
times in the sequence x0, x1, U visits less locations than V, hence satisfies
more !Bi properties.

Now, combining Lemmas 4.2, 3.6, and 3.7, one sees that there exists a
scheduler U with PrU ((q, ε) |= ∨n

i=1!Bi) = 1 iff q ∈ ∪n
i=1Safe(Bi), which is

decidable since the Safe(Bi)’s can be computed effectively (Section 3.1). This
concludes the proof of Theorem 4.1(b).

ad (c) of Theorem 4.1: PrU ((q, ε) |= ∧n
i=1"Ai) < 1.

We first observe that

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:15

PrU
(

(q, ε) |=
n∧

i=1
"Ai

)
< 1

iff PrU
(

(q, ε) |=
n∨

i=1
!¬Ai

)
> 0

iff PrU ((q, ε) |= !¬Ai) > 0 for some i ∈ {1, . . . , n}.

Thus, it suffices to explain how to check whether there exists a scheduler U
with

PrU ((q, ε) |= !B) > 0

where B is a given set of locations.
The following lemma reduces our problem to a decidable reachability ques-

tion in LTSL (see (c.3)).

LEMMA 4.3. The following assertions are equivalent:

(c.1) There exists a scheduler U such that PrU ((q, ε) |= !B) > 0.
(c.2) There exists an almost blind, memoryless scheduler U with PrU ((q, ε) |=

!B) > 0.
(c.3) (q, ε) ∗−→[B] Safe(B).

PROOF. (c.2) ⇒ (c.1): is obvious.
(c.3) ⇒ (c.2):
Let π be a path witnessing (q, ε) ∗−→[B] Safe(B). A scheduler U that tries to

follow this path reaches Safe(B) with positive probability. If π is simple (i.e.,
loop-free) U is memoryless. Whenever Safe(B) is reached, it is sufficient that U
behave as the blind scheduler for safe sets (Lemma 3.2). The resulting scheduler
is almost blind, memoryless, and achieves PrU ((q, ε) |= !B) > 0.

(c.1) ⇒ (c.3): Let U be a scheduler such that PrU ((q, ε) |= !B) > 0. Let

X = {x ∈ Q | PrU ((q, ε) |= !"(x, ε) ∧ !B) > 0}.

The finite-attractor property yields that X *= ∅. Moreover, each configuration
(x, ε) with x ∈ X is reachable from (q, ε) via a U-path where !B holds. Hence,
we have

(q, ε) ∗−→[B] X .

We now show that X is safe for B, which yields X ⊆ Safe(B), and hence (c.3).
Obviously X ⊆ B. Now let x ∈ X . There exists a transition rule δx = x

op−→ y
such that

PrU ((q, ε) |= !"(x, ε) ∧ “δx is chosen infinitely often in (x, ε)” ∧ !B) > 0.

Since PN ((x, ε), δx , (y , ε)) > 0, we get

PrU ((q, ε) |= !"(x, ε) ∧ “δx is chosen infinitely often in (x, ε)” ∧ !"(y , ε)
∧!B) > 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:16 • C. Baier et al.

Hence, PrU ((q, ε) |= !"(y , ε) ∧ !B) > 0. This yields y ∈ X . We conclude that
there is a transition (x, ε) → X . As this is true for any x ∈ X , X is safe for
B.

ad (d) of Theorem 4.1: PrU ((q, ε) |= ∧n
i=1"Ai) = 1.

The case where n = 1 is equivalent, by Lemmas 3.6 and 3.7, to q ∈ Prom(A1),
a decidable question. Lemma 3.6 shows, moreover, that a memoryless U (the
stubborn scheduler) is sufficient.

We now consider the general case. With any I ⊆ {1, . . . , n} we associate a set
X I ⊆ Q of locations defined inductively by:

X ∅
def= Q X I

def=
⋃

i∈I
Prom

(
Ai ∩ X I\{i}

)
for I *= ∅

By Lemma 3.5 X I = Prom(∪i∈I Ai ∩ X I\{i}).

LEMMA 4.4. For all I ⊆ {1, . . . , n} there exists a finite-memory scheduler UI
such that ∀q ∈ X I ∀w PrUI ((q, w) |= ∧i∈I "Ai) = 1.

PROOF. The proof is by induction on (the size of) I .
For I = ∅, ∧i∈I "Ai always holds.
Let ∅ ! I ⊆ {1, . . . , n}. The definition of X I entails that there exists a mem-

oryless scheduler U (see Lemma 3.6) such that

∀q ∈ X I ∀w PrU
(

(q, w) |= "
⋃

i∈I

(
X I\{i} ∩ Ai

))
= 1

We now derive UI out of U : UI behaves as U until some configuration (y , v)
with y ∈ X I\{i} ∩ Ai (for some i ∈ I) is reached. From that point UI switches
mode and behaves as UI\{i}. By induction hypothesis ∧i∈I\{i}"Ai will be satisfied
almost surely from (y , v). Hence PrUI ((q, w) |= ∧i∈I Ai) = 1. UI is finite memory,
since it has at most one mode for each I ⊆ {1, . . . , n}.

LEMMA 4.5. For all I ⊆ {1, . . . , n}, if PrU ((q, ε) |= ∧i∈I "Ai) = 1 for some U ,
then q ∈ X I .

PROOF. Here again the proof is by induction on I .
The case I = ∅ is trivial since X ∅ = Q .
Let ∅ ! I ⊆ {1, . . . , n} and assume PrU ((q, ε) |= ∧i∈I "Ai) = 1. We define

Y def= {x ∈ Q | ∃ a U-path πx : (q, ε) ∗−→[B) (x, ε)}

where B def= Q\ ∪i∈I Ai and show that Y ⊆ X I . For a fixed x ∈ Y , since πx is a
U-path, from (x, ε) there must be a path visiting all the Ai ’s for i ∈ I . Consider
one such path and let y be the first location belonging to some Ai for i ∈ I .
Then π ′x

def= (q, ε) ∗−→ (x, ε) ∗−→[∩i∈I Ai) (y , ε) ∈ Ai is again a U-path. From (y , ε),
all the Ai ’s with i ∈ I \ {i} have to be visited with probability one. Let U y be a
“suffix” scheduler of U given by: U y ((y , ε) → · · ·) def= U(π ′x → · · ·). From the
assumption on U and the form of π ′x we deduce that PrU y ((y , ε) |= ∧i∈I "Ai) = 1.
By induction hypothesis, y ∈ X I\{i}. Hence (x, ε) ∗−→[Y) (y , ε) entails (x, ε) ∗−→[Y)
∪i∈I Ai ∩ X I\{i}. By definition of Prom (greatest fixed point), Y ⊆ Prom(∪i∈I Ai ∩
X I\{i}) = X I . As a consequence q ∈ Y implies q ∈ X I .

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:17

COROLLARY 4.6. The following assertions are equivalent:

(d.1) There exists a scheduler U with PrU ((q, ε) |= ∧n
i=1"Ai) = 1.

(d.2) There exists a finite-memory scheduler U with PrU ((q, ε) |= ∧n
i=1"Ai) = 1.

(d.3) q ∈ X {1,... ,n}.

Hence decidability of (d.3) (see Section 3.2) entails decidability of (d.1).

4.2 Repeated Reachability Properties

We now discuss the decidability of repeated reachability problems, formalized
by a Büchi condition !"A (“visit infinitely often locations in A”) or generalized
Büchi conditions that arise through the conjunction of several Büchi conditions.

In this subsection, we see that for generalized Büchi conditions and for the
three probabilistic satisfaction criteria “almost surely,” “with zero probability,”
or “with probability <1” the class of finite-memory schedulers is as powerful as
the full class of (history-dependent) schedulers. Furthermore the corresponding
problems can all be solved algorithmically. When the fourth criterion “with
probability >0” is considered, the problem is undecidable (see Section 5).

THEOREM 4.7 (GENERALIZED BÜCHI). It is decidable whether for a given
NPLCS N , location q, sets A1, . . . , An of locations and repeated reachability
properties (a), (b), or (c) there exists a scheduler U satisfying

(a) PrU ((q, ε) |= ∧n
i=1!"Ai) = 1, or

(b) PrU ((q, ε) |= ∧n
i=1!"Ai) = 0, or

(c) PrU ((q, ε) |= ∧n
i=1!"Ai) < 1.

Moreover, if such a scheduler exists then there is also a finite-memory scheduler
with the same property. In case (b), the existence of a scheduler entails the exis-
tence of an almost-blind and memoryless scheduler. In case (c), the existence of a
scheduler entails the existence of an almost-blind and finite-memory scheduler.

As for Theorem 4.1 we show the decidability of (a), (b), and (c) in turn.

ad (a) of Theorem 4.7: PrU ((q, ε) |= ∧n
i=1!"Ai) = 1.

We prove the equivalence of the following three statements:

(a.1) There exists a scheduler U such that PrU ((q, ε) |= ∧n
i=1!"Ai) = 1.

(a.2) There exists a finite-memory scheduler U such that PrU ((q, ε) |=
∧n

i=1!"Ai) = 1.
(a.3) q ∈ ∩n

i=1Safe(Prom(Ai)).

PROOF. (a.2) ⇒ (a.1): is obvious.
(a.1)⇒ (a.3): Let U be a scheduler as in (a.1). Let X be the set of all locations

x ∈ Q that are visited with positive probability under U starting from state
(q, ε). That is,

X def= {x ∈ Q | PrU ((q, ε) |= "x) > 0}.

Let us show that X ⊆ ∩n
i=1Safe(Prom(Ai)).

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:18 • C. Baier et al.

Any finite U-path (q, ε) ∗−→ s can be extended to an infinite U-path where
∧n

i=1!"Ai holds (otherwise, ∧n
i=1!"Ai could not hold almost surely). Hence, for

all x ∈ X , there must exist some U-path

π
def= (q, ε) ∗−→ (x, ε) +−→ A1

+−→ A2 · · · +−→ An
+−→ A1 · · ·

These paths only visit locations in X , hence witness X ⊆ Prom(Ai) for all
i. In turn, they also witness that X is safe for the Prom(Ai)’s, hence X ⊆
∩n

i=1Safe(Prom(Ai)). One concludes by noting that q ∈ X .
(a.3)⇒ (a.2): Let Y def= ∩n

i=1Safe(Prom(Ai)) and assume q ∈ Y . For each x ∈ Y
and i = 1, . . . , n we pick a simple (i.e., loop-free) path πx,i of the form

(x, ε) +−→[Y] Ai.

We design a finite-memory scheduler that works with the modes (x, i) where
x ∈ Y and 1 ≤ i ≤ n, and recovery modes i for 1 ≤ i ≤ n. Intuitively, in
the modes (·, i), U tries to reach Ai, using the stubborn scheduler for Ai (see
proof of Lemma 3.6). As soon as Ai is reached, U changes to the mode (·, i + 1)
and tries to reach Ai+1 (here and in the sequel, we identify mode (x, 1) with
(x, n + 1)). As before, in recovery mode i, U just waits until a configuration
with empty channel is reached, staying in Safe(Prom(Ai)) in the meantime.
When some (y , ε) is eventually reached (which happens almost surely due to
the finite-attractor property), U switches back to mode (y , i). Hence, U will
almost surely eventually reach Ai. But then, U switches to the modes for index
i + 1 and the same argument applies for the next goal states Ai+1. This yields
PrU ((q, ε) |= ∧i!"Ai) = 1, and U is a finite-memory scheduler.

Decidability of (a) follows from decidability of (a.3) which has been estab-
lished in Section 3.

ad (b) of Theorem 4.7: PrU ((q, ε) |= ∧n
i=1!"Ai) = 0.

Clearly,

PrU
(

(q, ε) |=
n∧

i=1

!"Ai

)
= 0 iff PrU

(
(q, ε) |=

n∨

i=1

"!¬Ai

)
= 1.

Letting Bi
def= ¬Ai, it suffices to show that it is decidable whether there exists a

scheduler U with

PrU
(

(q, ε) |=
n∨

i=1

"!Bi

)
= 1.

We show the equivalence of the following statements:

(b.1) There is a scheduler U with PrU ((q, ε) |= ∨n
i=1"!Bi) = 1.

(b.2) There is a finite-memory scheduler U with PrU ((q, ε) |= ∨n
i=1"!Bi) = 1.

(b.3) There is a scheduler V with PrV ((q, ε) |= " ∪n
i=1 Safe(Bi)) = 1.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:19

PROOF. (b.2) ⇒ (b.1): is obvious.
(b.1) ⇒ (b.3): We assume that we are given a scheduler U as in (b.1). Let X i

be the set of locations x with PrU ((q, ε) |= !"(x, ε) ∧ "!Bi) > 0. We then have
X i ⊆ Bi. We now show that

(i) (x, ε) → X i for any x ∈ X i, and
(ii) PrU ((q, ε) |= " ∪n

i=1 X i) = 1.

Note that (i) yields X i ⊆ Safe(Bi). But then (ii) yields (b.3).

PROOF OF (i): Let x ∈ X i. There exists a transition rule δ = x
op−→ y that is

enabled in (x, ε) and such that

PrU ((q, ε) |= !"((x, ε) ∧ “δ is chosen in (x, ε)”) ∧ "!Bi) > 0.

If the transition rule δ is chosen infinitely often in configuration (x, ε),
then almost surely the step (x, ε) −→ (y , ε) occurs infinitely often. Hence,
PrU ((q, ε) |= !"(x, ε) ∧ !"(y , ε) ∧ "!Bi) > 0 and thus y ∈ X i.

PROOF OF (ii): By definition of X i, PrU ((q, ε) |= "!Bi ∧ !"(z, ε)) = 0 for any
z /∈ X i. Hence, since PrU ((q, ε) |= ∨n

i=1"!Ai) = 1, for each z /∈ X def= ∪X i
necessarily PrU ((q, ε) |= !"(z, ε)) = 0. Hence,

PrU
(

(q, ε) |=
∨

z /∈X
!"(z, ε)

)
= 0.

Thus, the finite-attractor property yields PrU ((q, ε) |= ∨x∈X !"(x, ε)) = 1. In
particular,

PrU

(

(q, ε) |= "

n⋃

i=1

X i

)

= 1.

(b.3) ⇒ (b.2): Let V be a scheduler as in (b.3). By Lemma 3.6, we may as-
sume that V is memoryless. We then define U as the scheduler that behaves
as V until a location in ∪iSafe(Bi) is reached (this happens almost surely).
When a location x ∈ Safe(Bi) is reached (for some i), U mimics the so-called
safe scheduler (blind and memoryless) described in Section 3.1 for safe sets,
and fulfills !Safe(Bi) from location x onwards. Since Safe(Bi) ⊆ Bi we ob-
tain PrU ((q, ε) |= ∨n

i=1"!Bi) = 1. Moreover, U is an almost blind, memoryless
scheduler.

ad (c) of Theorem 4.7: PrU ((q, ε) |= ∧n
i=1!"Ai) < 1.

We first observe that for any scheduler U :

PrU ((q, ε) |= ∧n
i=1!"Ai) < 1

iff PrU ((q, ε) |= ∨n
i=1"!¬Ai) > 0

iff PrU ((q, ε) |= "!¬Ai) > 0 for some i ∈ {1, . . . , n}.

Hence, it suffices to discuss the decidability of the question whether for a given
set B ⊆ Q there is a scheduler U with PrU ((q, ε) |= "!B) > 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:20 • C. Baier et al.

Fig. 3. Cleaning gadget, assuming $ *∈ M.

The following statements are equivalent:

(c.1) PrU ((q, ε) |= "!B) > 0 for some U .
(c.2) PrU ((q, ε) |= "!B) > 0 for some almost blind and finite-memory U .
(c.3) (q, ε) ∗−→Safe(B).

PROOF. (c.2) ⇒ (c.1): is obvious.
(c.3) ⇒ (c.2): Assume Safe(B) is reachable from (q, ε). Then, there is a finite

simple (i.e., loop-free) path π from (q, ε) to (x, ε) for some x ∈ Safe(B). Let U
be an almost blind, memoryless scheduler which generates the above path π

with positive probability and when/if Safe(B) is reached, behaves as the safe
scheduler for B. Clearly, U has the desired property.

(c.1) ⇒ (c.3): Let U be a scheduler as in (c.1). We define X to be the set of
locations x ∈ Q such that PrU ((q, ε) |= !"(x, ε)∧"!B) > 0. The finite-attractor
property entails that X is not empty. Furthermore X is reachable from (q, ε).
A reasoning as in the proof of (b.1)⇒ (b.3) (see proof of (i)) shows that X is safe
for B.

The decidability of (c.3) entails that (c) is decidable.

5. HARDNESS AND UNDECIDABILITY RESULTS

In this section we investigate the computational complexity of the problems
shown decidable in Section 4, and we prove undecidability for the remaining
problems. Technically, most results are hardness proofs and the involved re-
ductions make repeated use of the following “cleaning” gadget.

5.1 Cleaning Gadget

The cleaning gadget is the NPLCS shown in Figure 3. It can be part of a larger
NPLCS where it serves to empty (“clean”) one channel without introducing
deadlocks. For a given message alphabet M = {a, . . . }, the system described in
Figure 3 uses one channel (left implicit) and a new message symbol $ /∈ M. Letter
a in Figure 3 is a symbol from the original message alphabet M. Operations “?m”
are used as a shorthand for all |M|+1 possible reading operations over the new
message alphabet M∪{$}. The purpose of $ is to force the channel to be emptied
when moving from in to out.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:21

Let T ⊆ Conf be the set of configurations described by the following regular
expression:

T = (in, M∗) + (1, M∗($ + ε)) + (2, M∗$∗) + (3, $∗a∗) + (out, ε)

LEMMA 5.1. The configurations reachable from (in, M∗) are exactly those in
T.

PROOF SKETCH. The left-to-right inclusion can be verified by showing that T
is an invariant. For instance, from configurations in (in, M∗) only the config-
urations in (1, M∗($ + ε)) are reachable within one step, while from (2, M∗$∗)
only configurations in (3, $∗) + (2, M∗$∗) can be reached. And so on. The other
inclusion is easy to see.

Constructions incorporating the gadget rely on the following property:

LEMMA 5.2. For any w ∈ M∗:

(a) If U is a scheduler for the cleaning gadget and v *= ε then PrU ((in, w) |=
"(out, v)) = 0.

(b) There is a (memoryless) scheduler U for the cleaning gadget with
PrU ((in, w) |= "(out, ε)) = 1.

PROOF. (a) is immediate from Lemma 5.1. To prove (b), we describe a sched-
uler U with the desired property. U starts from (in, w), selects the in

!$−→1 rule,
aiming for configuration (1, $) where (out, ε) can be reached. In case a config-
uration (1, v) with v *= $ is reached, U moves from 1 to 2, goes back to in and
retries. This will eventually succeed with probability 1.

Let us remark as an aside that, if one takes properties (a) and (b) above as
the specification of a cleaning gadget, then it can be proved that any gadget
necessarily uses “new” messages not from M, like $ in our construction.

5.2 Complexity of Decidable Cases

We consider the decidable cases given in Section 4. One problem (reachabil-
ity with zero probability) is in PTIME, and even NLOGSPACE-complete, but
all the others are nonprimitive recursive, as are most decidable problems for
LCS’s [Schnoebelen 2002].

THEOREM 5.3. The problem, given NPLCS N , location q and set A ⊆ Q of
locations, whether there exists a scheduler U such that PrU ((q, ε) |= !A) = 1, is
NLOGSPACE-complete.

PROOF SKETCH. Lemmas 3.2 and 3.3 show that this problem is equivalent to
a reachability question in some subgraph of the control graph of L.

THEOREM 5.4. The problem given a NPLCS N , a location q and a set of
locations A, whether there exists a scheduler U satisfying (a.1) (or (a.2) . . . or

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:22 • C. Baier et al.

Fig. 4. The LCS L′ associated with L in Lemma 5.5.

(b.3)), is not primitive recursive.

(a.1) PrU ((q, ε) |= "A) > 0, or (b.1) PrU ((q, ε) |= !"A) = 0, or
(a.2) PrU ((q, ε) |= "A) = 1, or (b.2) PrU ((q, ε) |= !"A) = 1, or
(a.3) PrU ((q, ε) |= "A) < 1, or (b.3) PrU ((q, ε) |= !"A) < 1.

In all six cases, the proof is by reducing from the control-state reachability
problem for (non-probabilistic) LCS’s, known to be nonprimitive recursive [Sch-
noebelen 2002].

The case (a.1) is the easiest since, by Theorem 4.1, it is equivalent to the
reachability of A from (q0, ε) in the underlying LCS of N .

For all the other cases, except (a.3), we use the reduction illustrated in
Figure 4. Let L be a LCS with only one channel and two distinguished loca-
tions q0 and accept. From L we build another LCS L′ and consider the NPLCS
N = (L′, τ) for any τ ∈ (0, 1). We now show that the control-state reachability
problem in L (i.e., is accept reachable from (q0, ε)?) is equivalent to particular
instances of our probabilistic problems for N .

L′ uses the cleaning gadget and has one further location: success. From every
original location r of L, except accept, L′ has a

√
-transition to in, the input

location of the cleaning gadget. There is also a transition from out to q0. From
accept there is a transition to success and one can loop on this latter location.

The idea of this reduction is that, if accept is reachable from q0 by some path
π in L, then it is possible for a scheduler to try and follow this path in L′ and,
in case probabilistic losses do not comply with π , to retry as many times as it
wants by returning to q0. The cleaning gadget ensures that returning to q0 is
with empty channel. Note that the only way to visit success is to visit accept
first. These general ideas are formalized in the next lemma.

LEMMA 5.5. In the LCS L′, the following statements are equivalent:

(i) (q0, ε) ∗−→Prom({success}),
(ii) q0 ∈ Prom({success}),

(iii) (q0, ε) ∗−→ success,
(iv) (q0, ε) ∗−→ accept,

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:23

(v) (q0, ε) ∗−→[L] accept,
(vi) q0 ∈ Safe(Prom({success})),

(vii) (q0, ε) ∗−→Safe(Prom({success})).

Here “(q0, ε) ∗−→[L] · · · ” means that the path only visits original locations from L.

PROOF. (i) ⇒ (ii): Assume (q0, ε) ∗−→ Prom({success}) and let (q0, ε) →
(q1, w1) → · · · → (qm, wm) with qm ∈ Prom({success}) be a witness (sim-
ple) path. From any qi *= success along this path one may reach (q0, ε) via
the cleaning gadget. Hence (qi, ε) ∗−→ Prom(success). All locations along the
path from (q0, ε) to Prom({success}) satisfies this property, hence we have
q0 ∈ Prom({success}).

(ii) ⇒ (iii): by definition of Prom(.).
(iii) ⇒ (iv): obvious.
(iv)⇒ (v): Assume π is a path from (q0, ε) to accept. If this path steps out of

L then it can only go to the cleaning gadget. From there the only exit back to L
is via (q0, ε) (Lemma 5.2.(a)), looping back to a previously visited configuration.
Thus if π is a simple path, it stays inside L.

(v) ⇒ (vi): suppose (q0, ε) ∗−→[L] accept. Then (q0, ε) ∗−→ success and s ∗−→
success for all configurations of L′, either because s is already some configu-
ration of the form (success, w), or because s can reach (q0, ε) via the cleaning
gadget. As a consequence, all locations of L′ are in Prom({success}), and then
in Safe(Prom({success})).

(vi) ⇒ (vii): trivial.
(vii) ⇒ (i): obvious because Safe(A) ⊆ A for any set A of locations.

Using Lemma 5.5 and characterizations given by Theorems 4.1 and 4.7 we
have:

∃U PrU ((q0, ε) |= "success) = 1 iff q0 ∈ Prom({success}) (a.2)

iff in L, q0
∗−→ accept.

∃U PrU ((q0, ε) |= !"success) = 1 iff q0 ∈ Safe(Prom({success})) (b.2)

iff in L, q0
∗−→ accept.

∃U PrU ((q0, ε) |= !"¬success) = 0 iff q0 ∈ Prom(Safe(Q\{success})) (b.1)

iff in L, q0
∗−→ accept.

∃U PrU ((q0, ε) |= !"¬success) < 1 iff q0
∗−→ Q\{success} (b.3)

iff in L, q0
∗−→ accept.

Thus, q0
∗−→ accept, a nonprimitive recursive problem, reduces to instances

of (a.1), (b.2), (b.1), and (b.3).
We now prove case (a.3) of Theorem 5.4, using the reduction described in

Figure 5.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:24 • C. Baier et al.

Fig. 5. Associating L′ with an arbitrary LCS L for case (a.3).

Here, with some LCS L as before, we associate an LCS L′ by adding two
special locations sink and success. As in the previous reduction, success is
directly reachable from accept by an internal action

√
, and one can loop on

success.
Now, each transition rule δ : q

op−→ r in L is translated in L′ under the form
q

op−→ lδ
!$−→ l ′δ

?$−→ r, using two intermediate locations lδ and l ′δ, and a new message
$ *∈ M. Thus, moving from q to r in L′ requires that one removes the extra $
that has just been inserted. This is obtained by a full rotation of the channel
contents, using extra rules l ′δ

?a−→ !a−→ l ′δ that exist for each a ∈ M. Finally, in
case of deadlocks induced by message losses, one can go to the sink location.

The purpose of this reduction is to ensure that accept and success are the
only locations from which one can surely, that is, with probability one, reach
success. For all other locations, the channel may become empty along the way
to accept, forcing the system to go to sink.

LEMMA 5.6. In N = (L′, τ) the following assertions are equivalent:

(1) ∃U PrU ((q0, ε) |= "sink) < 1,
(2) q0

∗−→[¬sink] Safe(Q\{sink}),
(3) q0

∗−→[¬sink] {accept, success},
(4) q0

∗−→[L] {accept}.

where here again “(q0, ε) ∗−→[L] · · · ” means that the path only visits original
locations from L.

PROOF. The equivalence between (1) and (2) is given by case (c) of
Theorem 4.1. Then we show that Safe(Q\{sink}) = {accept, success}. First
{accept, success} ⊆ Safe(Q\{sink}) because from accept and success one can
loop forever in success which is in Q\{sink}. On the other hand, if we consider
another location q different from sink (neither success nor accept) because of
the reading operation between l ′δ and r, there is a nonzero probability for the
system to lose the message $ and be forced to go to sink. Hence Safe(Q\{sink})
is exactly {accept, success}. Equivalences of (2) with (3) and (4) follow from
this equality.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:25

Fig. 6. The LCS L′ associated with L in proof of Theorem 5.7.

Thus the nonprimitive recursive problem “does (q0, ε) ∗−→ accept” reduces to
a special instance of problem (a.3) in Theorem 5.4.

5.3 Undecidability

5.3.1 An undecidability result for repeated eventually properties. We will
now combine the cleaning gadget with an arbitrary lossy channel system to get
a reduction from the boundedness problem for LCS’s to the question whether a
single Büchi constraint !"A holds with positive probability under some sched-
uler. Recall that an LCSL is bounded (also space-bounded) for a given a starting
configuration if the set of reachable configurations is finite.

THEOREM 5.7 (SINGLE BÜCHI PROPERTY, POSITIVE PROBABILITY). The problem,
given N a NPLCS, q a location, and A a set of locations, whether there exists a
scheduler U such that PrU ((q, ε) |= !"A) > 0, is undecidable.

The remainder of this section is concerned with the proof of Theorem 5.7. Let
L = (Q , {c}, M, #) be a LCS with a single channel c and a designated initial con-
figuration (q, ε). We modify L by adding the cleaning gadget and two locations:
success and sink. We also add rules allowing to jump from every “original”
location in Q to retry or success. When in success, one can move to retry
with a read or move to sink, which cannot be left. When in retry, one can go
back to (q, ε) through the cleaning gadget. The whole construction is depicted
in Figure 6.

Let L′ be the resulting LCS which we consider as an NPLCS with some
fault rate τ : N = (L′, τ). Since the cleaning gadget lets one go back to the
initial configuration of L, any behavior of L′ is a succession of behaviors of L
separated by visits to the additional locations. The idea of this construction is
the following: if L is bounded, then even the best scheduler cannot visit success
infinitely often without ending up in sink almost surely. However, if the system
L is unbounded, some infinite memory scheduler can achieve this. These ideas
are formalized in Propositions 5.8 and 5.9.

PROPOSITION 5.8. Assume that L starting from (q, ε) is bounded. Then, for
all schedulers U for N = (L′, τ), PrU ((q, ε) |= !"success) = 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:26 • C. Baier et al.

PROOF. Let U be any scheduler for N and consider the U-paths that visit
success infinitely often. Let π be one such path: either π jumps from L to
success infinitely many times, or it ends up in sink. In the last case, π does not
satisfy !"success. In the first case, and since L is bounded, π can only jump
to success from finitely many different configurations. Hence, for each such
jump, the probability that it ends in (success, ε) is at least τm, where m is the
size of the largest reachable configuration in L. Therefore, the configurations
(success, ε) will be visited almost surely. As only the transition rule

success
√
−→ sink

is enabled in (success, ε), with probability 1 the location sink is eventually
reached. Since success is not reachable from sink, the property !"success
holds with zero probability.

PROPOSITION 5.9. Assume that L starting from (q, ε) is unbounded. Then,
there exists a scheduler U for N = (L′, τ) with PrU ((q, ε) |= !"success) > 0.

PROOF. We describe the required scheduler U . Because L is unbounded, we
can pick a sequence ((rn, wn))n=1,2,... of reachable configurations such that |wn| ≥
n. The scheduler works in phases numbered 1, 2, . . . When phase n starts, U is
in the initial configuration (q, ε) and tries to reach (rn, wn). In principle, this can
be achieved (since (rn, wn) is reachable), but it requires that the right messages
are lost at the right times. These losses are probabilistic and U cannot control
them. Thus U aims for (rn, wn) and hopes for the best. It goes on according to
plan as long as losses occur as hoped. When a “wrong” loss occurs, U resigns
temporarily, jumps directly to retry, reaches the initial configuration (q, ε) via
the cleaning gadget, and then tries again to reach (rn, wn). When (rn, wn) is
eventually reached (which will happen almost surely given enough retries), U
jumps to success, from there to retry, and initiates phase n + 1. With these
successive phases, U tries to visit success (and retry) an infinite number of
times. We now show that it succeeds with nonzero probability.

When moving from configuration (rn, wn) to location success, there is a
nonzero probability Plost(wn, ε) that all messages in the channel are lost, leav-
ing us in (success, ε). When this happens, U is not able to initiate phase n + 1
(moving from success to retry requires a nonempty channel). Instead U will
move to sink and stay there forever. However, the probability for this excep-
tional behavior is strictly less than 1, as we have:

PrU ((q, ε) |= !"success) =
∞∏

n=1

(1− Plost(wn, ε)) ≥
∞∏

n=1

(1− τn) > 0.

Observe that the scheduler we constructed is recursive but not finite-memory
(since it records the index of the current phase).

Remark 5.10. Proposition 5.9 can be strengthened: if L is unbounded, then
for all constant c < 1, there exists a scheduler U such that PrU ((q, ε) |=
!"success) > c.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:27

Fig. 7. The LCS L′ associated with L in proof of Lemma 5.12.

COROLLARY 5.11. Let L be a LCS. Then, L is unbounded if and only if there
exists a scheduler U for N = (L′, τ) such that PrU ((q, ε) |= !"success) > 0.

This proves Theorem 5.7 since it is undecidable whether a given LCS is
bounded [Mayr 2003].

By duality we obtain the undecidability of the problem to check whether
PrU ((q, ε) |= "!A) = 1 for all schedulers U for a given NPLCS N .

5.3.2 Other undecidability results. We now discuss the decidability of the
problem that asks for a scheduler U where PrU ((q, ε) |= ϕ) is 1, <1, = 0 or
>0 and where ϕ is an LTL-formula. We begin with the special case of a strong
fairness (Streett condition) ϕ = ∧1≤i≤n(!"Ai ⇒ !"Bi). We will see that all
variants of the qualitative model checking problem for such Streett conditions
are undecidable when ranging over the full class of schedulers. In particular,
this yields the undecidability of the LTL model checking problem when consid-
ering all schedulers. However, when we shrink our attention to finite-memory
schedulers qualitative model checking is decidable for properties specified by
Streett conditions or even ω-regular formulas.

We first establish the undecidability results when ranging over all sched-
ulers. In fact, already a special kind of Streett properties with the probabilistic
satisfaction criterion “almost surely” cannot be treated algorithmically:

LEMMA 5.12. The problem, given NPLCS N , sets of locations A, B ⊆ Q, and
location q ∈ Q, whether there exists a scheduler U with

PrU ((q, ε) |= !"B ∧ "!A)) = 1,

is undecidable.

PROOF. The proof is again by a reduction from the boundedness problem for
LCS as in Section 5.3.1. Let L be an LCS. We build a new LCS L′ by combining L
with the cleaning gadget as shown in Figure 7 (this is a variant of the previous
construction). Let N = (L′, τ).

There exists a scheduler U for N with PrU ((q0, ε) |= !"success∧"!¬fail) =
1 iff L is unbounded (starting from (q0, ε)).

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:28 • C. Baier et al.

For these two constructions, the “same” scheduler is used in the positive
cases. For the second construction, the proof for the positive case observes that

PrU ((q0, ε) |= !"success ∧ "!¬fail) = lim
n→∞

∞∏

k=n
(1− τ k) = 1.

where n stands for the phase number from which fail will not be visited
again.

THEOREM 5.13 (STREETT PROPERTIES). For the following qualitative proper-
ties (a), . . . , (d), the problem, given a NPLCS N , location q ∈ Q, and 2n sets of
locations A1, B1, . . . , An, Bn ⊆ Q, whether there exists a scheduler U such that

(a) PrU ((q, ε) |= ∧n
i=1(!"Ai ⇒ !"Bi)) > 0,

(b) PrU ((q, ε) |= ∧n
i=1(!"Ai ⇒ !"Bi)) < 1,

(c) PrU ((q, ε) |= ∧n
i=1(!"Ai ⇒ !"Bi)) = 1,

(d) PrU ((q, ε) |= ∧n
i=1(!"Ai ⇒ !"Bi)) = 0,

is undecidable.

PROOF.

(a) follows immediately from Theorem 5.7 as ∧n
i=1(!"Ai ⇒ !"Bi) agrees with

!"B if we take n = 1, A1 = Q and B1 = B.
(b) We show that already the question whether there is some scheduler U with

PrU ((q, ε) |= !"A ⇒ !"B) < 1 is undecidable where A and B are sets of
locations. This follows from Theorem 5.7 and the fact that for B = ∅

PrU ((q, ε) |= !"A⇒ !"B) < 1
iff PrU ((q, ε) |= ¬(!"A⇒ !"B)) > 0
iff PrU ((q, ε) |= !"A∧ "!(Q\B)︸ ︷︷ ︸

≡true since B = ∅

) > 0

iff PrU ((q, ε) |= !"A) > 0.

(c) follows by Lemma 5.12 with n = 2, A1 = Q , B1 = B, A2 = Q\A and B2 = ∅
which yields

∧

1≤i≤n

(!"Ai ⇒ !"Bi) ≡



!"Q︸ ︷︷ ︸
≡true

⇒ !"B



 ∧



!"(Q\A) ⇒ !"∅︸︷︷︸
≡false





≡ !"B ∧ "!A.

(d) We show the undecidability of the question whether PrU ((q, ε) |= !"A ⇒
!"B) = 0 for some U where A, B ⊆ Q are given sets of locations. This
follows from Lemma 5.12 and the fact that

PrU ((q, ε) |= !"A⇒ !"B) = 0
iff PrU ((q, ε) |= ¬(!"A⇒ !"B)) = 1
iff PrU ((q, ε) |= !"A∧ "!(Q\B)) = 1.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:29

Fig. 8. (Un)Decidability of qualitative verification.

Figure 8 summarizes the decidability and undecidability results obtained so
far.

6. RESTRICTION TO FINITE-MEMORY SCHEDULERS

In all decidable cases of Section 4, finite-memory schedulers are sufficient.
In this section we consider the problems of Section 5, considering only finite-
memory schedulers. With this restriction, all problems are decidable.

We first give an immediate property of finite-memory schedulers that will be
used in the whole section.

PROPOSITION 6.1. For any finite-memory scheduler U and any location q we
have:

(a) If p is a location and u a mode in U and if T denotes the set of all configu-
rations t that are reachable from (p, ε)u by U then

PrU ((q, ε) |= !"(p, ε)u) = PrU
(

(q, ε) |= ∧s∈T !"s
)

(b) PrU ((q, ε) |= !"A) = PrU ((q, ε) |= !"Aε).

PROOF. (a) If configuration su in the Markov chain MCU is visited infinitely
often, then almost surely all direct successors of su are visited infinitely often
too. We now may repeat this argument for the direct successors of the direct
successors of su, and so on. We obtain that almost surely all configurations that
are reachable from su are visited infinitely often, provided that su is visited
infinitely often.

(b) follows from (a) using the fact that the set of all (p, ε)u for p a location
and u a mode of U , is a finite attractor, and observing that if (a, w) is reachable
within one step from configuration s then so is (a, ε) as all messages can be
lost.

Observe that the existence of a scheduler U for which a Büchi property holds
with positive probability does not imply the existence of a finite-memory sched-
uler with the same property. This is a consequence of Theorem 5.7 and the next
theorem (6.2).

THEOREM 6.2 (GENERALIZED BÜCHI, POSITIVE PROBABILITY). The problem, given
NPLCS N , location q ∈ Q, and sets of locations A1, . . . , An ⊆ Q, whether there

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:30 • C. Baier et al.

exists a finite-memory scheduler U such that PrU ((q, ε) |= ∧1≤i≤n!"Ai) > 0, is
decidable.

PROOF. We show that the following statements (1) and (2) are equivalent:

(1) there exists a finite-memory scheduler U such that PrU ((q, ε) |= ∧1≤i≤n
!"Ai) > 0.

(2) there exists a location x ∈ Q such that
(2.1) (q, ε) ∗−→ (x, ε)
(2.2) there is a finite-memory scheduler V with PrV ((x, ε) |= ∧1≤i≤n!"Ai) = 1.

This will prove Theorem 6.2 since by Theorem 4.7 (a), there is an algorithmic
way to compute the set X of locations x such that PrV ((x, ε) |= ∧1≤i≤n!"Ai) = 1
for some (finite-memory) scheduler V. We then may check (2.1) by an ordinary
reachability analysis in the underlying LCS.

Let us show the equivalence of (1) and (2).
(1) ⇒ (2): Let U be a finite-memory scheduler as in (1). The finite-attractor

property and Proposition 6.1 yield that there is some location x and mode u of
U with

PrU
(

(q, ε) |=
∧

1≤i≤n

!"Ai ∧
∧

t∈T
!"t

)
> 0

where T is the set of configurations that are reachable from (x, ε)u under U .
Using definition of T , this yields T ∩ Ai *= ∅ for 1 ≤ i ≤ n. Thus, scheduler
U starting in (x, ε) in mode u visits almost surely any configuration in T in-
finitely often. Hence, it visits any set Ai for i = 1, . . . , n, infinitely often (with
probability one). That is:

PrU
(

(x, ε)u |=
∧

1≤i≤n

!"Ai

)
= 1,

and (2) holds.
(2)⇒ (1): Let q, x and V be as in (2). We define U as the finite-memory sched-

uler that generates with positive probability a path from (q, ε) to (x, ε) and be-
haves as V from (x, ε) on. Clearly, we then have PrU ((q, ε) |= ∧1≤i≤n!"Ai)>0.

We now present algorithms for the four variants of qualitative model
checking of Streett properties for NPLCS’s when ranging over finite-memory
schedulers.

THEOREM 6.3 (STREETT PROPERTIES). For qualitative properties (a), . . . , (d),
the problem, given NPLCS N , location q ∈ Q, and 2n sets of locations
A1, B1, . . . , An, Bn ⊆ Q, whether there exists a finite-memory scheduler U
satisfying

(a) PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) < 1,
(b) PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) > 0,
(c) PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) = 1,
(d) PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) = 0,

is decidable.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:31

We prove each assertion in the rest of this section.
ad (a) of Theorem 6.3: PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) < 1.
Let us consider the dual problem whether, for all finite-memory schedulers

U ,

PrU
(

(q, ε) |=
n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 1.

Clearly, the above holds iff

PrU ((q, ε) |= !"Ai ⇒ !"Bi) = 1

for all finite-memory schedulers U and all indices i = 1, . . . , n. Thus, it suffices
to present an algorithm that solves the problem whether PrU ((q, ε) |= !"A ⇒
!"B) = 1 for all finite-memory schedulers U where A and B are given sets
of locations. The latter is equivalent to the nonexistence of a finite-memory
scheduler U such that

PrU ((q, ε) |= !"A∧ "!(Q\B)) > 0.

We now explain how to check this condition algorithmically. Let N ′ be the
NPLCS that arises from N by removing all locations b ∈ B. To ensure that
any configuration has at least one outgoing transition, we add a new location
fail with

—a self-loop fail
√
−→ fail and

—transition rules p
op−→ fail if p

op−→b for some location b ∈ B.

Using Theorem 6.2, we can compute the set P of locations p ∈ Q\B such that
there is a finite-memory scheduler U ′ for N ′ with PrU ′ ((p, ε) |= !"A) > 0. That
is,

P =
{

p ∈ Q
∣∣∣∣

there is some finite-memory scheduler U for N
with PrU ((p, ε) |= !"A∧ !¬B) > 0

}
.

We show the equivalence of the following two statements:

(1) PrU ((q, ε) |= !"A∧ "!¬B) > 0 for some finite-memory scheduler U for N ,
(2) PrV ((q, ε) |= "P) > 0 for some finite-memory scheduler V for N .

(1) ⇒ (2): Let U be a finite-memory scheduler as in (1). By Proposition 6.1, we
may conclude that there exists a location a ∈ A and a mode u such that

PrU
(

(q, ε) |=
∧

s∈T
!"s ∧ "!¬B

)
> 0

where T is the set of states that are reachable in the Markov chain MCU from
(a, ε)u, that is, from configuration (a, ε) in mode u. We then have T ∩ B = ∅ and

PrU
(

(a, ε)u |=
∧

s∈T
!"s ∧ "!¬B

)
= PrU ((a, ε)u |= !"A∧ !¬B) = 1.

Hence, a ∈ P and PrU ((q, ε) |= "P) > 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:32 • C. Baier et al.

(2)⇒ (1): Let V be a finite-memory scheduler as in (2). For any location p ∈ P ,
there is a finite-memory scheduler Up such that

PrUp((p, ε) |= !"A∧ !¬B) > 0.

We now may compose V and the schedulers Up to obtain a finite-memory sched-
uler U which first mimics V until we reach a configuration (p, ε) for some
p ∈ P (which happens with positive probability) and which then behaves as Up.
Clearly, we then have PrU ((q, ε) |= !"A∧ "!¬B) > 0.

ad (b) of Theorem 6.3: PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) > 0.
Let I ⊆ {1, . . . , n} and NI be the NPLCS that arises from N by removing the

locations b ∈ Ai where i ∈ {1, . . . , n}\I , and adding a new location fail as in
the proof of ad (a) (of the present Theorem).

Let CI be the set of locations z ∈ Q such that PrU ((z, ε) |= ∧i∈I !"Bi) = 1 for
some (finite-memory) scheduler U for N I . Note that under such a scheduler U
the new location fail is not reachable from (c, ε). Then, we have z ∈ CI iff there
exists a finite-memory scheduler Uz for the original NPLCS N with

PrUz

(
(z, ε) |=

∧

i∈I
!"Bi ∧

∧

i∈{1,... ,n}
i /∈I

!¬Ai

)
= 1.

In particular, PrUz ((z, ε) |=∧n
i=1(!"Ai ⇒ !"Bi)) = 1 for all z ∈ Z .

The CI ’s can be computed with the technique explained in the proof of
Theorem 4.7 (part (a)). Let C be the union of all CI ’s. Then, the following state-
ments are equivalent:

(1) C is reachable from (q, ε)
(2) PrU ((q, ε) |= ∧n

i=1(!"Ai ⇒ !"Bi)) > 0 for some finite-memory scheduler U .

(1) ⇒ (2): Let us assume that C is reachable from (q, ε). Then, there is a mem-
oryless scheduler Uinit such that PrUinit ((q, ε) |= "C) > 0. Hence, there is some
z ∈ C such that

PrUinit ((q, ε) |= "(z, ε)) > 0.

We then may combine Uinit and Uz to obtain a finite-memory scheduler U with
the desired property.

(2) ⇒ (1): Let us now assume that U is a finite-memory scheduler such that

PrU
(

(q, ε) |=
n∧

i=1

(!"Ai ⇒ !"Bi)
)

> 0.

Then, there is some I ⊆ {1, . . . , n} such that

PrU
(

(q, ε) |=
∧

i∈I
!"Bi ∧

∧

i /∈I
"!¬Ai

)
> 0.

The finite-attractor property yields the existence of some location z and a mode
u of U such that

PrU
(

(q, ε) |= !"(z, ε)u ∧
∧

i∈I
!"Bi ∧

∧

i /∈I
"!¬Ai

)
> 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:33

As visiting (z, ε)u infinitely often ensures that almost surely all configu-
rations that are reachable from (z, ε)u are visited infinitely often too (see
Proposition 6.1), we obtain

PrU
(

(z, ε)u |=
∧

i∈I
!"Bi ∧

∧

i /∈I
!¬Ai

)
= 1.

Hence, z ∈ CI ⊆ C. This yields that C is reachable from (q, ε).
ad (c) of Theorem 6.3: PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) = 1.
Let C be as in the proof of ad (b). We establish the equivalence of the following

statements:

(1) PrU ((q, ε) |= ∧n
i=1(!"Ai ⇒ !"Bi)) = 1 for some finite-memory scheduler U ,

(2) PrV ((q, ε) |= "C) = 1 for some finite-memory scheduler V.

(2)⇒ (1): Let V be a finite-memory scheduler such that PrV ((q, ε) |= "C) = 1.
For z ∈ C, let Uz be a finite-memory scheduler as in the proof of assertion (b).
That is such that

PrUz

(
(z, ε) |=

n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 1.

Then, we may compose V and the finite-memory schedulers Uz to obtain a finite-
memory scheduler U such that

PrU
(

(q, ε) |=
n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 1.

Starting in (q, ε), U mimics V until a configuration (z, w) with z ∈ C is reached
(this happens with probability 1). Then, for w *= ε, U chooses the transition rule

δz = z
op−→ y

that Uz chooses for (z, ε) in its initial mode. Note that δz is enabled in (z, w), and
all successors of (z, w) under δz have the form (y , w′) for some channel valuation
w′. Moreover, location y belongs to C as Uz induces a scheduler U ′z with

PrU ′z

(
(y , ε) |=

n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 1.

Hence, if w′ *= ε then U may choose the transition rule δ y that U y chooses for
its starting configuration (y , ε). U continues in that way until it reaches a con-
figuration (x, ε). (The finite-attractor property ensures that this happens with
probability 1.) The preceding construction ensures that x ∈ C. After reaching
(x, ε), U behaves as Ux , ensuring that ∧n

i=1(!"Ai ⇒ !"Bi) holds almost surely.
(1) ⇒ (2): Let U be a finite-memory scheduler such that

PrU
(

(q, ε) |=
n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 1.

We show that:

For any location p ∈ Q : if PrU ((q, ε) |= !"(p, ε)) > 0 then p ∈ C. (*)

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:34 • C. Baier et al.

Using the fact that PrU ((q, ε) |= ∨p∈Q!"(p, ε)) = 1, (*) yields PrU ((q, ε) |= "C) =
1.

PROOF (OF (*)). Assume that u is a mode in U such that PrU ((q, ε) |=
!"(p, ε)u) > 0. Let T be the set of states that are reachable from (p, ε)u in
the Markov chain for U . Then, by Proposition 6.1:

PrU
(

(q, ε) |=
∧

t∈T
!"t

)
> 0.

Hence,

PrU
(

(q, ε) |=
∧

t∈T
!"t ∧

n∧

i=1

(!"Ai ⇒ !"Bi)
)

> 0.

Let I be the set of indices i ∈ {1, . . . , n} such that T ∩ Ai *= ∅. Then, T ∩ Bi *= ∅
for all i ∈ I . Hence,

PrU
(

(p, ε)u |=
∧

i∈I
!"Bi ∧

∧

i /∈I
!¬Ai

)
= 1.

Thus, p ∈ CI ⊆ C.

ad (d) of Theorem 6.3: PrU ((q, ε) |= ∧1≤i≤n(!"Ai ⇒ !"Bi)) = 0.
We deal with the negation of the Streett formula:

PrU
(

(q, ε) |=
n∧

i=1

(!"Ai ⇒ !"Bi)
)

= 0 iff PrU
(

(q, ε) |=
n∨

i=1

(!"Ai ∧ "!¬Bi)
)

= 1.

Thus, it suffices to establish the decidability of the question whether there is a
finite-memory scheduler U with PrU ((q, ε) |= ∨n

i=1(!"Ai ∧ "!¬Bi)) = 1.
For i ∈ {1, . . . , n}, let N i be the NPLCS that arises from N by removing all

locations in Bi, possibly adding a new location fail (as in the proof of case (a)).
Let Ci be the set of locations z ∈ Q such that there exists a scheduler Ui for N i
with

PrUi ((z, ε) |= !"Ai) = 1.

The set Ci can be computed with the techniques sketched in Theorem 4.7 ad
(a). Then, z ∈ Ci iff there exists a scheduler Ui for the original NPLCS N with

PrUi ((z, ε) |= !"Ai ∧ !¬Bi) = 1.

Let C = C1 ∪ · · · ∪ Cn. Then, the following two statements are equivalent:

(1) There is a finite-memory scheduler U with PrU ((q, ε) |= ∨1≤i≤n(!"Ai ∧
"!¬Bi)) = 1.

(2) There is a scheduler V with PrV ((q, ε) |= "C) = 1.

(1) ⇒ (2): Let U be as in (1). Assume PrU ((q, ε) |= "C) < 1. Then,

PrU ((q, ε) |= !(Q\C)) > 0.

By the finite attractor property there exists a location x such that

PrU ((q, ε) |= !"(x, ε) ∧ !(Q\C)) > 0.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:35

As U is finite-memory there is a mode u of U such that the preceding condition
holds for (x, ε) in mode u, that is,

PrU ((q, ε) |= !"(x, ε)u ∧ !(Q\C)) > 0.

Let T be the set of configurations that are reachable from (x, ε)u in the Markov
chain induced by U , MCU . Then, almost surely U visits all configurations in T
infinitely often when starting in (x, ε) in mode u. We then have T ∩ {(z, w) ∈
Conf | z ∈ C} = ∅, and hence,

T ∩ {(z, w) ∈ Conf : z ∈ Ci} = ∅, i = 1, . . . , n,

which gives us T ∩ Ai = ∅ or T ∩ Bi *= ∅ for any i ∈ {1, . . . , n}. But then,

PrU
(

(x, ε)u |=
n∨

i=1

(!"Ai ∧ "!Bi)
)

= 0.

Since PrU ((q, ε) |= "(x, ε)u) > 0 this yields

PrU
(

(q, ε) |=
n∨

i=1

(!"Ai ∧ "!Bi)
)

< 1,

which contradicts assumption (1). We conclude PrU ((q, ε) |= "C) = 1.
(2)⇒ (1): Let V be as in (2). We may assume that V is memoryless (see Lem-

mas 3.7 and 3.6). For any location z ∈ C, we choose a finite-memory scheduler
Vz for N such that

PrVz ((z, ε) |= (!"Ai ∧ "!Bi)) = 1

for some i ∈ {1, . . . , n}. Let U be the finite-memory scheduler that first behaves
as V, reaching C almost surely, and which, after having visited a location z ∈
C, mimics the schedulers Vz as follows. When entering C the first time, say
in configuration (z, w) where w *= ε, then U goes into a waiting mode where
it waits until a configuration (z ′, ε) with z ′ ∈ C has been entered. From this
configuration (z ′, ε) on, U behaves as Vz ′ . In the waiting mode, U chooses the
same transition rule for (z, w) as Vz for the starting configuration (z, ε).

Note that the configurations obtained from (z, w) by taking this transition
rule have the form (z ′, w′) where z ′ ∈ C. This is because (z ′, ε) is a successor
of (z, ε) under this transition rule. Hence, Vz induces a scheduler under which
(z ′, ε) fulfills !"Ai∧"!Bi almost surely for some index i. This yields z ′ ∈ Ci ⊆ C.

The finite attractor property yields that U will eventually leave the waiting
mode. Thus, U has the desired property.

7. ω-REGULAR PROPERTIES

We now consider qualitative verification of ω-regular linear-time properties
where, as before, we use the control locations of the underlying NPLCS as
atomic propositions (with the obvious interpretation).

For algorithmic purposes, we assume that an ω-regular property is given by a
deterministic (word) Streett automaton with the alphabet Q (the set of control
locations in the given NPLCS). Other equivalent formalisms (nondeterministic
Streett automata, nondeterministic Büchi automata, µ-calculus formulas, etc.)

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:36 • C. Baier et al.

are of course possible. The translations between them is now well understood.
See, for example, the survey articles in Grädel et al. [2002].

A deterministic Streett automaton (DSA for short) over the alphabet Q is a
tuple A = (Z , σ, z0, Acc) where Z is a finite set of states, σ : Z × Q → Z the
transition function, z0 ∈ Z the initial state, and Acc = {(A1, B1), . . . , (An, Bn)} a
set of pairs (Ai, Bi) consisting of subsets Ai, Bi ⊆ Z . Acc is called the acceptance
condition of A. Intuitively, Acc stands for the strong fairness condition ψA =
∧n

i=1(!"Ai ⇒ !"Bi). The accepting language L(A) consists of all infinite words
q0, q1, q2, . . . ∈ Qω where the induced run z0

q0−→ z1
q1−→ z2

q2−→ · · · in A (which is
obtained by starting in the initial state z0 of A and putting z j+1 = σ (z j , qj),
j = 0, 1, 2, . . .) is accepting, that is, for all i ∈ {1, . . . , n}, z j ∈ Ai for at most
finitely many indices j or z j ∈ Bi for infinitely many indices j . For a path π of
some NPLCS with state space Q , we write π |= A when π (more precisely, its
projection over Qω) belongs to L(A).

Since Streett properties are ω-regular, Theorem 5.13 immediately entails:

COROLLARY 7.1 (ω-REGULAR PROPERTIES). The problem, given NPLCS N , lo-
cation q ∈ Q, and DSA A, whether there exists a scheduler U with PrU ((q, ε) |=
A)= 1 (or <1, or = 0, or >0), is undecidable.

More interesting is the fact that our positive results from Section 6 carry
over from Streett properties to all ω-regular properties:

THEOREM 7.2 (ω-REGULAR PROPERTIES, FINITE-MEMORY SCHEDULERS). The pro-
blem, given NPLCS N , location q ∈ Q, and DSA A, whether there exists a
finite-memory scheduler U such that PrU ((q, ε) |= A) = 1 (or <1, or = 0, or >0),
is decidable.

The extension from repeated-reachability properties to ω-regular properties
follows the standard automata-theoretic approach for the verification of qual-
itative properties: one reduces the question whether N is accepted by A to a
repeated-reachability property over the “product”N×A [Vardi 1999]. We briefly
sketch the main steps of the reduction that yields the proof for Theorem 7.2.

Let N be a NPLCS and A a DSA as before. The product N ′ def= N × A is a
NPLCS where:

—locations are pairs (p, z) where p ∈ Q is a location in N and z ∈ Z a state of
A,

—the channel set and the message alphabet are as in N ,

—(p, z)
op−→ (r, z ′) is a transition rule in N ×A if and only if p

op−→ r is a transition
rule in N and z ′ = σ (z, p).

Then, each infinite path π in N , of the general form

(q0, w0) → (q1, w1) → (q2, w2) → (q3, w3) · · · (π)

is lifted to a path π ′ in N ×A

(q0, z0, w0) → (q1, z1, w1) → (q2, z2, w2) → (q3, z3, w3) · · · (π ′)

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:37

where z j+1
def= σ (z j , qj) for all j ∈ N. Thus, z0

q0−→ z1
q1−→ z2

q2−→··· is the (unique)
run of A on (the projection of) π . Vice versa, any path π ′ in N ×A arises through
the combination of a path in N and its run in A.

Assume the acceptance condition of A is given by the following Streett condi-
tion: ψA = ∧n

i=1(!"Ai ⇒ !"Bi) with Ai, Bi ⊆ Z . Then, letting A′i
def= Q × Ai and

B′i
def= Q × Bi, we equip N × A with the acceptance condition Acc′ = {(A′i, B′i) :

1 ≤ i ≤ n} which corresponds to the following Streett condition ψN×A:
n∧

i=1

(!"A′i ⇒ !"B′i) (ψN×A)

LEMMA 7.3. Let π be a path in N and π ′ the corresponding path in N ′. Then,
π |= A if and only if π ′ |= ψN×A.

This correspondence between paths in N and paths in N ′ allows to transform
any scheduler U for N into a scheduler V for N ′ such that the probability agrees
and vice versa. More precisely:

LEMMA 7.4. Let p ∈ [0, 1], then there exists a finite-memory scheduler U for
N such that PrU ((q, ε) |= A) = p iff there exists a finite-memory scheduler V for
N ×A s.t.

PrV ((q, z0, ε) |= ψN×A) = p.

The proof is as in Courcoubetis and Yannakakis [1995, Section 4], the basic
ingredient being that A is deterministic.

Lemma 7.4 reduces the verification of qualitative ω-regular properties over
N to the verification of qualitative Streett properties over N ′. Decidability is
then obtained with Theorem 6.3.

8. CONCLUSION

We proposed NPLCS’s, a model for lossy channel systems where message losses
occur probabilistically while transition rules behave nondeterministically, and
we investigated qualitative verification problems for this model. Our main re-
sult is that qualitative verification of simple linear-time properties is decidable,
but this does not extend to all ω-regular properties. On the other hand, decid-
ability is recovered if we restrict our attention to finite-memory schedulers.

The NPLCS model improves on earlier models for lossy channel systems:
the original, purely nondeterministic, LCS model is too pessimistic w.r.t. mes-
sage losses and nondeterministic losses make liveness properties undecidable.
It seems this undecidability is an artifact of the standard rigid view asking
whether no incorrect behavior exists, when we could be content with the weaker
statement that incorrect behaviors are extremely unlikely. The fully probabilis-
tic PLCS model recovers decidability but cannot account for nondeterminism.

Regarding NPLCS’s, decidability is obtained by reducing qualitative prop-
erties to reachability questions in the underlying nonprobabilistic transition
system. Since in our model qualitative properties do not depend on the exact
value of the fault rate τ , the issue of what is a realistic value for τ is avoided,
and one can establish correctness results that apply uniformly to all fault rates.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:38 • C. Baier et al.

Fig. 9. Running example for the proof of Lemma 3.5.

An important open question is the decidability of quantitative properties.
Regarding this research direction, we note that Rabinovich [2003] investi-
gated it for the fully probabilistic PLCS model, where it already raises serious
difficulties.

APPENDIX

A. PROOF OF LEMMA 3.5

The goal is to prove that given A and B sets of locations, Prom(A ∪ B) =
Prom(A)∪Prom(B). One inclusion is trivial: Prom(A)∪Prom(B) ⊆ Prom(A∪B).
We prove here the reverse inclusion. In fact we build a scheduler that, starting
from any (x, ε) for x ∈ Prom(A∪B), will ensure visiting eventually A or visiting
eventually B, and the choice between A and B is fixed (given x). Lemma 3.7
then yields Prom(A∪ B) ⊆ Prom(A) ∪ Prom(B).

For each x ∈ Prom(A ∪ B) we pick a simple path to A ∪ B, that only visits
locations of Prom(A∪ B). Such a path exists by definition of Prom, we denote it

πx : (x, ε) =
(
x0, w0

x
) δ0

x−→
(
x1, w1

x
) δ1

x−→
(
x2, w2

x
)
· · ·

δm−1
x−→

(
xm, wm

x
)

with xm ∈ A∪ B and xi ∈ Prom(A∪ B) for i <m. By convention, we let xi = x |πx |

when i > |πx |. For example, given the system depicted in Figure 9, with A = {3}
and B = {6}, one has Prom(A ∪ B) = {1, 2, 3, 4, 5, 6} and a possible choice for
the paths πx is given in Figure 10.

We now define a sequence P0, P1, . . . of partitions of Prom(A∪ B). In general
Pk is some {Bk

1 , Bk
2 , . . . } and each class Bk

j ∈ Pk comes with a fixed element bk
j

called its representative (which is underlined in the examples). The first parti-
tion is composed of all singletons: P0 = {{x} | x ∈ Prom(A ∪ B)}. Partition Pk+1
is coarser than Pk : each class in Pk+1 is the fusion of (possibly only one) classes
of Pk . Assume Pk is given: Pk = {Bk

1 , . . . } with {bk
1 , . . . } as representatives. We

define a mapping fk+1 between the classes of Pk . For any class Bk
j , we consider

its representative bk
j , shortly written x, and associate with Bk

j the class to which
xk+1 (the k + 1-th location on πx) belongs. In our running example f1 is given
on Figure 10.

The mapping fk+1 induces a directed graph (of out-degree 1). The classes of
Pk+1 are obtained by fusing the classes of Pk which belong to the same con-
nected component in this graph. For example, in Figure 11, the classes Bk

1 ,

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:39

Fig. 10. Running example (continued): paths πx with mappings f1 and f4.

Fig. 11. Constructing Pk+1 by fusing equivalence classes from Pk .

Bk
2 , Bk

3 , Bk
4 and Bk

5 are fused. The representative for Bk+1
j is arbitrarily cho-

sen among the representatives of the Bk
i ’s that compose the strongly connected

component (bk
3 or bk

4 in Figure 11). Back to the running example, we derive
P1 = {{1, 2}, {3}, {4, 5}, {6}} with 2, 3, 4, 6 as representatives (no choice here).
Partition P1 is stable by f2 and f3.

f2, f3 : {1, 2} →{ 1, 2} {3} →{ 3} {4, 5} →{ 4, 5} {6} →{ 6}

Hence P3 = P2 = P1. Mapping f4 is given in Figure 10. We deduce P4 =
{{1, 2, 3}, {4, 5, 6}} with 3 and 6 as representatives (no choice either).

It is clear that Pk+1 is coarser than Pk and that a representative at level
k + 1 was already a representative at level k. Hence the sequence eventually
stabilizes (the state space is finite). We denote P∞ = {B∞1 , . . . } the partition in
the limit. In the running example P∞ = P4.

This whole construction is geared towards the following:

LEMMA A.1. For all k ≥ 1, there exists a scheduler Uk such that, for every
class Bk

j , and writing y for bk
j ,

∀x ∈ Bk
j ∀w ∈ M∗C PrUk

(
(x, w) |= "

(
yk , wk

y
))

= 1 (*)

In other words, at step k of the construction there exists a scheduler that,
starting from a location x with arbitrary channel content, ensures that (with
probability one) we will visit the k-th configuration on π y where y is the rep-
resentative for x in Pk . When k is large enough, more precisely larger than

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

5:40 • C. Baier et al.

all |πx |’s, (*) states that Uk guarantees reaching A (or B, depending on x) with
probability one, which concludes the proof of Lemma 3.5.

PROOF (OF LEMMA A.1). The proof is by induction on k.
We first prove the case k = 1. Let x be a location in some class B1

i having (y =)
b1

i as representative. The behavior of U1 is simple: in any configuration (z, v),
U1 fires δ0

z . Going on this way, U1 eventually ends up in the strongly connected
component (w.r.t f1). Because of the finite-attractor property, the configuration
(y , ε) is visited infinitely often almost surely. Hence, U1 will succeed in reaching
(y1, w1

y) from (y , ε) by δ1
y .

Assume now that for some k ≥ 1 there exists Uk ensuring (*). We consider
Pk+1 and build Uk+1, using Uk . Let x ∈ Bk+1

j (it may help to look at Figure 11).
Starting from (x, w), Uk+1 behaves as Uk until (yk , wk

y) is reached. Then it fires
δk

y and ends up in (yk+1, w′) for some channel content w′. yk+1 is a location of
Bk

i′ = fk+1(Bk
i); let z = bk

i′ be its representative. From configuration (yk+1, w′),
Uk+1 behaves again as Uk and eventually reaches (zk , wk

z) with probability one.
Iterating this process (alternation of Uk ’s behavior and one step transition),
Uk+1 will eventually end in the strongly connected component of Bk+1

j . If t is
the representative for this class in Pk+1, because of the finite-attractor property
(t, ε) is visited infinitely often, almost surely. Hence, Uk+1 will in the end succeed
and reach (tk+1, wk+1

t) using Uk until (tk , wk
t) and then performing δk

t .

REFERENCES

ABDULLA, P. A., BAIER, C., PURUSHOTHAMAN IYER, S., AND JONSSON, B. 2005a. Simulating perfect
channels with probabilistic lossy channels. Inform. Comput. 197, 1–2, 22–40.

ABDULLA, P. A., BERTRAND, N., RABINOVICH, A., AND SCHNOEBELEN, PH. 2005b. Verification of proba-
bilistic systems with faulty communication. Inform. Comput. 202, 2, 141–165.

ABDULLA, P. A., ČERĀNS, K., JONSSON, B., AND TSAY, Y.-K. 2000. Algorithmic analysis of programs
with well quasi-ordered domains. Inform. Comput. 160, 1/2, 109–127.

ABDULLA, P. A., COLLOMB-ANNICHINI, A., BOUAJJANI, A., AND JONSSON, B. 2004. Using forward reach-
ability analysis for verification of lossy channel systems. Form. Methods Syst. Design 25, 1, 39–
65.

ABDULLA, P. A. AND JONSSON, B. 1996a. Undecidable verification problems for programs with un-
reliable channels. Inform. Comput. 130, 1, 71–90.

ABDULLA, P. A. AND JONSSON, B. 1996b. Verifying programs with unreliable channels. Inform.
Comput. 127, 2, 91–101.

BAIER, C., BERTRAND, N., AND SCHNOEBELEN, PH. 2006. A note on the attractor-property of infinite-
state Markov chains. Inform. Proces. Lett. 97, 2, 58–63.

BAIER, C. AND ENGELEN, B. 1999. Establishing qualitative properties for probabilistic lossy channel
systems: An algorithmic approach. In Proceedings of the 5th International AMAST Workshop
Formal Methods for Real-Time and Probabilistic Systems (ARTS), Bamberg, Germany. Lecture
Notes in Computer Science, vol. 1601. Springer, 34–52.

BERTRAND, N. AND SCHNOEBELEN, PH. 2003. Model checking lossy channels systems is probably
decidable. In Proceedings of the 6th International Conference on Foundations of Software Science
and Computation Structures (FOSSACS), Warsaw, Poland. Lecture Notes in Computer Science,
vol. 2620. Springer, 120–135.

BERTRAND, N. AND SCHNOEBELEN, PH. 2004. Verifying nondeterministic channel systems with prob-
abilistic message losses. In Proceedings of the 3rd International Workshop on Automated Verifi-
cation of Infinite-State Systems (AVIS), 2004. Barcelona, Spain. R. Bharadwaj, Ed.

BRAND, D. AND ZAFIROPULO, P. 1983. On communicating finite-state machines. J. ACM 30, 2, 323–
342.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

Verifying Nondeterministic Probabilistic Channel Systems • 5:41

CÉCÉ, G., FINKEL, A., AND PURUSHOTHAMAN IYER, S. 1996. Unreliable channels are easier to verify
than perfect channels. Inform. Comput. 124, 1, 20–31.

COURCOUBETIS, C. AND YANNAKAKIS, M. 1995. The complexity of probabilistic verification. J.
ACM 42, 4, 857–907.

EMERSON, E. A. 1990. Temporal and modal logic. In Handbook of Theoretical Computer Science,
J. v. Leeuwen, Ed. Vol. B. Elsevier Science, Chap. 16, 995–1072.

FINKEL, A. 1994. Decidability of the termination problem for completely specificied protocols.
Distrib. Comput. 7, 3, 129–135.

FINKEL, A. AND SCHNOEBELEN, PH. 2001. Well-structured transition systems everywhere! Theoret.
Comput. Sci. 256, 1–2, 63–92.

GRÄDEL, E., THOMAS, W., AND WILKE, T., Eds. 2002. Automata, Logics, and Infinite Games: A Guide
to Current Research. Lecture Notes in Computer Science, vol. 2500. Springer.

KEMENY, J. G., SNELL, J. L., AND KNAPP, A. W. 1966. Denumerable Markov Chains. D. Van Nostrand
Co., Princeton, NJ.

MASSON, B. AND SCHNOEBELEN, PH. 2002. On verifying fair lossy channel systems. In Proceedings of
the 27th International Symposium on Mathematical Foundations of Computer Science (MFCS).
Warsaw, Poland. Lecture Notes in Computer Science, vol. 2420. Springer, 543–555.

MAYR, R. 2003. Undecidable problems in unreliable computations. Theoret. Comput. Sci. 297, 1–
3, 337–354.

PACHL, J. K. 1987. Protocol description and analysis based on a state transition model with
channel expressions. In Proceedings of the 7th IFIP WG6.1 International Workshop on Protocol
Specification, Testing, and Verification (PSTV). Zurich, Switzerland. North-Holland, 207–219.

PANANGADEN, P. 2001. Measure and probability for concurrency theorists. Theoret. Comput.
Sci. 253, 2, 287–309.

PURUSHOTHAMAN IYER, S. AND NARASIMHA, M. 1997. Probabilistic lossy channel systems. In Proceed-
ings of the 7th International Joint Conference on Theory and Practice of Software Development
(TAPSOFT). Lille, France. Lecture Notes in Computer Science, vol. 1214. Springer, 667–681.

PUTERMAN, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

RABINOVICH, A. 2003. Quantitative analysis of probabilistic lossy channel systems. In Proceedings
of the 30th International Coll. Automata, Languages, and Programming (ICALP). Eindhoven, NL.
Lecture Notes in Computer Science, vol. 2719. Springer, 1008–1021.

SCHNOEBELEN, PH. 2001. Bisimulation and other undecidable equivalences for lossy channel sys-
tems. In Proceedings of the 4th International Symposium on Theoretical Aspects of Computer
Software (TACS). Sendai, Japan. Lecture Notes in Computer Science, vol. 2215. Springer, 385–
399.

SCHNOEBELEN, PH. 2002. Verifying lossy channel systems has nonprimitive recursive complexity.
Inform. Proces. Lett. 83, 5, 251–261.

SCHNOEBELEN, PH. 2004. The verification of probabilistic lossy channel systems. In Validation of
Stochastic Systems—A Guide to Current Research, C. Baier et al. Eds. Lecture Notes in Computer
Science, vol. 2925. Springer, 445–465.

VARDI, M. Y. 1985. Automatic verification of probabilistic concurrent finite-state programs. In
Proceedings of the 26th Symposium on Foundations of Computer Science (FOCS). Portland, OR.
IEEE Computer Society Press, 327–338.

VARDI, M. Y. 1999. Probabilistic linear-time model checking: An overview of the automata-
theoretic approach. In Proceedings of the 5th International AMAST Workshop Formal Methods
for Real-Time and Probabilistic Systems (ARTS). Bamberg, Germany. Lecture Notes in Computer
Science, vol. 1601. Springer, 265–276.

Received November 2005; accepted March 2006

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 5, Publication date: December 2007.

