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Prédiction de motifs de séquences pour des systèmes à événements

discrets

Résumé : Dans ce rapport, nous nous intéressons à la prédiction d’occurrences de motifs de pannes
dans des systèmes à événements discrets. Le système est modélisé par des systèmes de transitions
finis. Le motif de pannes est donné par un ensemble de séquences. Ce motif est prédictif si il et
possible d’inférer l’occurrence de ce motif avant son exécution réelle par le système. Nous présentons
un algorithme hors ligne de vérification de la prédictabilité, avec une complexité polynomiale en le
nombre d’états du système. Par ailleurs, nous montrons comment construire un “diagnostiqueur” en
charge de la surveillance de ce motif durant l’exécution du système.

Mots clés : systèmes de transitions finis, motifs de pannes, Prediction



Predictability of Sequence Patterns in Discrete Event Systems 3

1 Introduction

Monitoring and fault diagnosis of dynamic systems modeled as discrete event systems has received
considerable attention in the literature in the last decade. Several methodologies have been developed
for different types of diagnosis problems. The methodology upon which this paper is based is the
Diagnoser Approach; see, e.g., [17] for a tutorial overview of this approach. This paper is different
from prior works on the Diagnoser Approach because it considers the problem of predicting sequence
patterns in the behavior of a partially-observed discrete-event system (DES). Partially-observed DES
have observable events (e.g., sensor readings, changes in the sensor readings, etc.) and unobservable
events, i.e., events that are not directly recorded by the sensors attached to the system. The sequence
pattern, or simply pattern, to be predicted consists of ordered occurrences of one or more significant
observable or unobservable events. The consideration of sequence patterns is a more general form
of the prediction of single (fault) events, a problem that has received attention recently in the DES
literature. If it is possible to predict the occurrences of a pattern that describes event sequences that
lead or cause the system to fail or malfunction, then the system operator can be warned in time to
halt the system, take preventative measures, or otherwise to reconfigure the system.

In this paper, for the sake of generality, the system is modeled as a Labeled Transition System (LTS)
and the pattern as a regular language. The problem of prediction of patterns in DES as considered here
is principally based on two prior studies: (i) the problem of predictability of single event occurrences
in partially-observed DES studied in [10] and (ii) the problem of diagnosis of sequence patterns in
DES studied in [14] and [9]. The notion of predictability considered in this paper was first introduced
in [10] in the case of single events. This notion of predictablility is different from prior works on other
notions of predictability in [2, 1, 13, 7]. In [2], the prediction problem is based on the properties of a
special type of projection between two languages (sets of trajectories). This is is much more general
than our objective. The prediction problem studied in [7] considers the likelyhood of a fault happening
in the future evolution of the system and it is possible that false fault prediction warnings are issued.
In our work, if the occurrences of an event pattern is predictable in a language, then it is certain
that the event pattern will occur and no false positives are issued. In in [1], the state prediction of
coupled automata studied is formulated as computing the state vector of n identical automata after
T steps in the operation of the system. In our case, the interest is on a single automaton and event
prediction, not state, under partial observation. Other references on predictability in DES or discrete
event simulation systems are [5, 3, 6, 18, 11, 8]. The results presented in this paper are related to
the work of Jiang and Kumar [13] who considered the notion of inevitability. Indeed, in [13], the
authors are interested in diagnosing inevitability, thus in detecting that a pattern will be inevitably
satisfied within a bounded number of observations after this inevitability (meaning that the diagnosis
of the pattern may actually occur after its occurrence). In contrast, in the context of this paper,
predictability means detecting inevitability strictly before its occurrence.

In the following sections, we develop a theory for the predictability of pattern occurrences. In Sec-
tion 2, we define the mathematical terminology and notions used throughout the paper. In Section 3,
we specify the notions of pattern and diagnosability considered in this paper. We then define the
property of predictability of occurrences of a sequence pattern in Section 4. This notion subsumes and
extends the prior notion of predictability in [10]. In Section 5, we propose an off-line polynomial -time
algorithm for the verification of predictability. In Section 6, we present an algorithm for constructing
a special type of diagnoser for the purpose of on-line prediction of a sequence pattern ansd emphasize
some properties of this diagnoser.

PI n˚1834



4 Thierry Jéron, Hervé Marchand, Sahika Genc, Stéphane Lafortune

2 System Model and Notations

Let Σ be a finite alphabet of events. A string is a finite-length sequence of events in Σ. Given a string
s, the length of s (number of events including repetitions) is denoted by ‖ s ‖. The set of all strings
formed by events in Σ is denoted by Σ∗. Any subset of Σ∗ is called a language over Σ. Let L be a
language over Σ. Given a string s ∈ L, L/s is called the post-language of L after s and defined as
L/s = {t ∈ Σ∗ | s.t ∈ L}.

The system in which the sequence pattern is to be predicted is modeled as an LTS. The formal
definition of an LTS is as follows.

Definition 1 (LTS) An LTS over Σ is defined by a 4-tuple M = (QM,Σ,→M, q0

M
) where QM is a finite

set of states, Σ is the set of events of M , q0

M
∈ QM is the initial state, and →M⊆ QM × Σ × QM is the

partial transition relation. �

In the remainder of this section, we consider a given LTS M = (QM,Σ,→M, q0
M).

• We write q
σ
→M q′ if (q, σ, q′) ∈→M. We extend →M to arbitrary sequences by setting : q

ε
→M q

for all states q, and q
sσ
→M q′ whenever q

s
→M q′′ and q′′

σ
→M q′, for some q′′ ∈ QM.

• We write q
s
→M if ∃q′ ∈ QM, q

s
→M q′. We denote by L(M) = {s ∈ Σ∗ | q0

M

s
→M} the language

generated by M , which corresponds to the set of trajectories that the LTS M can execute.

• The event set of a state q ∈ QM is Σ(q) , {σ ∈ Σ | q
σ
→M}. M is live if Σ(q) 6= ∅, for each

q ∈ QM.

• A state q is reachable if ∃s ∈ Σ∗, q0
M

s
→M q.

• We set ∆M(q, s) , {q′ ∈ QM | q
s
→M q′}. By a slight abuse of notation, for any language L ⊆ Σ∗,

∆M(q, L) ,
⋃

s∈L ∆M(q, s) and for any Q′ ⊆ QM, ∆M(Q′, L) =
⋃

q∈Q′ ∆M(q, L).

• A subset Q′ ⊆ QM is said stable whenever ∆M(Q′,Σ) ⊆ Q′. M is complete whenever ∀q ∈
QM,Σ(q) = Σ.

• We say that M is deterministic if, whenever q
σ
→M q′ and q

σ
→M q′′, then q′ = q′′, for all q ∈ QM

and all σ ∈ Σ.

We denote the set of final states by FM ⊆ QM. The notions above are extended in this setting by
letting the language recognized in FM be

LFM
(M) = {s ∈ Σ∗ | ∆M(q0

M, s) ⊆ FM}.

We now define the synchronous product of two LTS.

Definition 2 Let M i = (Qi,Σ,→M
i , q0

M
i), i = 1, 2, be two LTS. Their synchronous product is M 1 ×

M2 , (Q1 × Q2,Σ,→M
1
× M

2 , (q0

M
1 , q0

M
2)), where →M

1
× M

2⊆ (Q1 × Q2) × Σ × (Q1 × Q2) satisfies

(q1, q2)
σ
→M

1
× M

2 (q′1, q′2) whenever q1 σ
→M

1 q′1 and q2 σ
→M

2 q′2. �

Clearly L(M 1×M2) = L(M1)∩L(M2) and for Fi ⊆ Qi, i = 1, 2, we also have LF1×F2(M
1×M2) =

LF1(M
1) ∩ LF2(M

2). Also, if sets Fi are stable in M i, F1 × F2 is stable in M 1 × M2.
Given a set of states E ⊆ QM of M , we define the following sets

Pre∀M(E) = {q ∈ Q | ∀σ ∈ Σ,∆M(q, σ) ⊆ E}

Pre∃M(E) = {q ∈ Q | ∃σ ∈ Σ,∆M(q, σ) ∩ E 6= ∅}

Irisa



Predictability of Sequence Patterns in Discrete Event Systems 5

In words, states belonging to Pre∀M(E) are states such that all immediate successors belong to E,
while states belonging to Pre∃M(E) are states such that at least one immediate successor belongs to
E.

Given a live LTS M , let InevM (E) be the set of states that inevitably lead to a set E in a finite
number of steps. This set is given by:

InevM(E) = {q ∈ Q | ∃n ≥ 0, s.t.∀s ∈ Σ∗, q
s
→M ∧

‖s‖ ≥ n ⇒ ∆M(q, s) ⊆ E}

InevM (E) can also be characterized by a least fixpoint (lfp) as follows1:

InevM(E) = lfp(λX.E ∪ Pre∀M(X))

The set of events Σ is partitioned into Σo and Σuo

Σ = Σo ∪ Σuo, and Σo ∩ Σuo = ∅,

where, as usual, Σo is the set of observable events while Σuo is the set of unobservable events. In this
paper, the elements of Σ∗

o will be denoted by µ, µ′. We say that M is Σo-live if ∀q ∈ Q,∃s ∈ Σ∗.Σo, q
s
→,

meaning that there is no terminal loop of unobservable events.
P : Σ∗ → Σ∗

o denotes the natural projection of trajectories onto Σ∗
o. This is extended to any

language L ⊆ Σ∗ by letting P (L) = {P (s) | s ∈ L}. We adopt the terminology traces for observable
trajectories; note that while standard in computer science, this notation is not standard in the DES
literature. Given an LTS M , the set of traces of M is thus given by P (L(M)). The inverse projection
of a language L ⊆ Σ∗

o is defined by P−1(L) = {s ∈ Σ∗ | P (s) ∈ L}.
Given a trace µ of M , we define [[µ]] as the set of trajectories compatible with the trace µ:

[[µ]] , P−1(µ) ∩ L(M) ∩ Σ∗Σo if µ 6= ε
ε otherwise.

This means that (except for the empty trace), trajectories compatible with a trace µ are trajectories
of M ending with an observable event and having trace µ. This is consistent with an on-line diagnosis
where verdicts consider trajectories until the last observation, and not subsequent unobservable events.

Next, we introduce the Unobservable-Closure Uc(M) of an LTS M , in order to abstract out
unobservable events according to the semantic [[.]].

Definition 3 For an LTS M = (QM,Σ,→, q0

M
), the Unobservable-Closure of M is Uc(M) = (QM,Σo,→Uc

, q0

M
) where for any q, q′ ∈ QM, σ ∈ Σo, q

σ
→Uc q′ in Uc(M) whenever there exists s ∈ Σ∗

uo such that
q

sσ
→M q′ in M . �

We get L(Uc(M)) = P (L(M)) and LFM
(Uc(M)) = P (LFM

(M))
Determinization of an LTS M defined on the alphabet Σ = Σo ∪ Σuo produces an LTS Det(M)

with actions in Σo, and deterministic on Σo, with same traces as the M .

Definition 4 Let M = (QM,Σ,→M, q0

M
) be an LTS with Σ = Σuo ∪ Σo. The determinization of M is

the LTS Det(M) = (X ,Σo,→d, X
0) where X = 2QM (the set of subsets of QM called macro-states),

X0 = {q0

M
} and →d= {(X,σ,∆M(X,Σ∗

uo.σ)) | X ∈ X and σ ∈ Σo}. �

Notice that this definition differs from the classical determinization of automata, but is consistent
with the above semantic of observations [[.]]: the target macro-state X ′ of a transition X

σ
→d X ′ is

only composed of states q′ of M which are targets of sequences of transitions q
s.σ
→ q′ ending with an

1We assume the reader is familiar with fixpoint notation.

PI n˚1834



6 Thierry Jéron, Hervé Marchand, Sahika Genc, Stéphane Lafortune

observable event σ. As a consequence, Det(M) can be constructed in two steps by first construct-
ing Uc(M) and then applying the classical subset construction used in the usual determinization of
automata.

From the definition of →d in Det(M), we infer that ∆Det(M)(X
0, µ) = {∆M(q0

M, [[µ]])}, which means
that the macro-state reached from X 0 by µ in Det(M) is composed of the set of states that are reached
from q0

M by trajectories of [[µ]] in M .
Finally, determinization preserves observations, so we have L(Det(M)) = P (L(M)). Also for

FM ⊆ QM, we have L2FM (Det(M)) = {µ ∈ Σ∗
o | [[µ]] ⊆ LFM

(M)}.

3 Patterns and Diagnosability

In this section, we define patterns that describe stable properties, i.e., negation of safety properties;
see [14] for further details. We also recall the definition of the property of diagnosability. We assume
that the system is modeled by an LTS G = (QG,Σ,→G, q0

G) that is Σo-live and whose event set Σ
includes a set of unobservable events Σuo with associated projection operation P .

Definition 5 A sequence pattern, or simply pattern, is a deterministic and complete LTS, Ω =
(QΩ,Σ,→Ω, q0

Ω) equiped with a distinguished stable subset of states FΩ ⊆ QΩ. �

As Ω is complete we get L(Ω) = Σ∗. Also note that the assumption that FΩ is stable means that
its recognized language is “extension-closed”, i.e., it satisfies LFΩ

(Ω).Σ∗ = LFΩ
(Ω). In other words,

LFΩ
(Ω) is a language violating a safety property. In [14], examples of patterns often used in diagnosis

are presented, including the cases “occurrence of a single fault event”, “occurrence of one of multiple
fault events in the same partition”, “ordered occurrence of events”, “multiple occurrences of the same
fault”, etc. The same approach is used in this paper in the context of the predictability problem.

Given an LTS G and a pattern Ω, we say that a trajectory s ∈ L(G) is recognized by the pattern
if s ∈ LFΩ

(Ω). Diagnosability of an LTS G with respect to a pattern Ω equipped with FΩ, is defined
as the ability to detect that a trajectory is recognized by Ω on the basis of the observed projection of
the trajectory only, within a bounded number of observations. Formally, we have:

Definition 6 An LTS G is Ω-diagnosable if ∃n ∈ N,

∀s ∈ LFΩ
(Ω) ∩ L(G) ∩ Σ∗Σo,∀t ∈ L(G)/s ∩ Σ∗Σo,

if ‖P (t)‖ ≥ n then [[P (s.t)]] ⊆ LFΩ
(Ω).

�

Ω-diagnosability says that when a trajectory s ending with an observable event is recognized by the
pattern Ω, for any extension t with enough observable events, any trajectory s ′ compatible with the
observation P (s.t) is also recognized by Ω. Details can be found in [14].

4 Predictability

In this section, we introduce the notion of predictability of a pattern. G and Ω are as defined in the
preceding section. Roughly speaking, a pattern is predictable if it is always possible to detect the
future recognition of the pattern, strictly before this recognition, only based on the observations. We
explain the idea of predictability, and how it differs from diagnosability, in the following example.

Example 1 In [16], a method is developed to build a dependency graph from a log file which records
the commands issued in an operation system. Dependencies between processes and files are defined
based on the nature of the command issued. For example, let a “write” command be issued by the
process “Process A” to access to the file “file 0”. If both the process and file are represented by states,

Irisa



Predictability of Sequence Patterns in Discrete Event Systems 7

file_4

process_D

read

file_1

delete

process_G busy

process_F

file_0

delete process_E

read

file_2

read

create

busy

process_B

write

process_C

create

delete

process_A

write create

Figure 1: The LTS G1 of Example 1

then we draw a transition from the state ‘Process A” to the file “file 0” and label the transition with
the command “write”. Consider the LTS G1 shown in Fig. 1. Suppose that G1 is built using a
complete set of dependency relations among given sets of processes and files. The set of events is
Σ = {read, write, delete, busy, create}. Let Σuo = {create, delete} be the set of unobservable
events. A significant pattern is the occurrence of delete followed by either read or write, without any
create in between. This pattern is of importance because a process is trying to read or write a file
which is already deleted This pattern is given in Fig. 2 and denoted by Ω in this example.

*21 3read, writedelete

Σ \ {delete}

create

delete, busy

Figure 2: The Ω pattern of Example 1

By a simple inspection of G1 in Fig. 1, we see that there are two branches in which delete
is immediately followed by read and these two branches record different traces of observed events,
namely, write.read∗ and read.busy∗. The other branch, which does not satisfy the pattern, records
write.read.busy∗. Thus, after the observation of write.read.read or read.busy, we know for sure that
the pattern has been recognized. However, we cannot predict the recognition of the pattern ahead of
time. This is because after recording the trajectory write.read, the system may execute busy and evolve
into the state “file 1”; in this case, if we wait for read to occur afterwards, then this means that we are
in the cycle formed by the states “file 0”, “process E”, and “process F”, and the pattern has already
occurred. •

We now formally define the predictability of patterns. As previously said, this generalizes the
predictability definition introduced in [10] by considering sequence patterns instead of single events.

Definition 7 An LTS G is Ω-predictable, whenever

∃n ∈ N, ∀s ∈ L(G) ∩ LFΩ
(Ω) ∩ Σ∗.Σo,

∃t ∈ (L(G) ∩ Σ∗.Σo) ∪ {ε}, t < s ∧ t /∈ LFΩ
(Ω)

such that
∀u ∈ [[P (t)]],∀v ∈ L(G)/u, ‖P (v)‖ ≥ n ⇒ u.v ∈ LFΩ

(Ω)
PI n˚1834



8 Thierry Jéron, Hervé Marchand, Sahika Genc, Stéphane Lafortune

u ∈ [[P (t)]]

s ∈ L(Ω, FΩ)

v ∈ L(G)/u

‖P (v)‖ ≥ n
Observations

Compatible

trajectories

P (.)

t /∈ L(Ω, FΩ), t < s

Figure 3: Intuitive explanation of predictability

�

The definition means that for any trajectory s recognized by the pattern, there exists a strict
prefix t not recognized by the pattern, such that any trajectory u compatible with observation P (t)
will inevitably be extended into a trajectory u.v recognized by the pattern. That is, upon observation of
P (t), one can already predict that the pattern, while not yet recognized, will inevitably be recognized;
see Figure 3 for a conceptual representation.

Example 2 We consider a variation of Example 1. The new system is given by the LTS G2 repre-
sented in Fig. 4. The pattern Ω and the partition of the event set into observable and unobservable
events are the same as in Example 1 (see Fig. 2). The occurrence of the pattern Ω is predictable in
G2. In order to simplify the notation, we denote the events with their first letters in the following.
Note that L(G2) ∩ LFΩ

(Ω) ∩ Σ∗.Σo = w.r.c.d.r.(c.d.r)∗ ∪ c.w.r.d.r.(d.r)∗ .

file_4

process_D

read

file_1

delete

process_F

file_0

delete process_E

read

file_2 busy

create

read

process_B

write

process_C

create

delete

process_A

write create

Figure 4: The LTS G2 of Example 2

• Consider any s ∈ w.r.c.d.r.(c.d.r)∗ . Pick t = w.r. Then, t < s and t 6∈ LFΩ
(Ω). We have

[[P (t)]] = {w.r, c.w.r}. For u = w.r, and v ∈ L(G2)/u, ‖P (v)‖ ≥ 1, we have u.v ⊆ w.r.(c.d.r)∗ ⊆
LFΩ

(Ω). For u = c.w.r, and v ∈ L(G2)/u, ‖P (v)‖ ≥ 1, we obtain u.v ∈ c.w.(d.r)∗ ⊆ LFΩ
(Ω).

Thus, there exists t and n (=1) satisfying the definition of Ω-predictability for s.

• For any s ∈ c.w.r.d.r.(d.r)∗ , it is sufficient to consider t = c.w.r and n = 1 to satisfy the
predictability condition.

Thus, G2 and Ω satisfy the definition of predictability. •

Irisa



Predictability of Sequence Patterns in Discrete Event Systems 9

Let us now relate the notion of Ω-predictability to the notion of Ω-diagnosability of Section 3.

Proposition 1 Given a system G and a pattern Ω, if G is Ω-predictable, then G is also Ω-Diagnosable.

Proof The proof of the proposition immediately follows from the respective definitions of these
properties. (Further details on pattern diagnosability can be found in [14, 9].) �

The converse of this proposition is false. A counter-example is provided by Example 1.

5 Verification of Predictability

In this section, we present an off-line algorithm to verify the property of predictability. In [9], where
the problem of predictability of single event occurrences is considered, the algorithm for the verification
of predictability is based on the construction of a diagnoser automaton. In this work, we propose to
adapt the polynomial-time verification of diagnosability based on verifier automata [12, 20] to the
verification of predictability. In [14], the verifier was used to verify the diagnosability of a pattern in
polynomial time in the number of states of the system.

In the case of diagnosability, the verifier identifies the existence, if any, of strings that violate
the definition of this property. We adopt this underlying principle in building the algorithm for
verification of predictability of patterns. By definition of predictability, the trajectories that violate
predictability are the ones that: (i) are accepted by the pattern, (ii) end with observable events,
and (iii) have the property that none of their prefixes are sufficient to predict the occurrence of the
pattern. That is, for all the prefixes of such trajectories, there exists a trajectory that produces the
very same observation as the prefix but whose continuation does not contain the pattern. Thus, if we
find one or more trajectories violating predictability as was just described, then we can conclude that
at least one occurrence of the pattern is not predictable in the system. It is possible to transform the
search for these trajectories into a search for states in an LTS that carries information on acceptance,
inevitability, and projections, for trajectories leading to them.

In the remainder of this section, we decompose the verification of predictability into five steps,
each corresponding to a particular operation required for the verification. We start with system
G = (QG,Σ,→G, q0

G) and pattern Ω = (QΩ,Σ,→Ω, q0
Ω) equipped with FΩ.

Algorithm for Verification of Predictability:

Step 1 Construct the synchronous product GΩ = G × Ω = (QGΩ
,Σ,→GΩ

, q0
GΩ

) and the final state
set F = QG × FΩ. By the properties of synchronous product, and using the fact that Ω is complete
(thus L(Ω) = Σ∗), we get L(GΩ) = L(G) ∩ L(Ω) = L(G) and LF (GΩ) = L(G) ∩ LFΩ

(Ω). Thus, the
accepted trajectories of GΩ in F are exactly the trajectories of G accepted by Ω in FΩ. Moreover,
note that F is stable in GΩ as both QG and FΩ are stable by assumption.

Step 2 Compute InevGΩ
(F ) and consider the following partition of the state space QGΩ

QGΩ
= N ∪ I ∪ F

where I = InevGΩ
(F ) \ F is the set of states not belonging to F but from which F is unavoidable,

and N = QGΩ
\ InevGΩ

(FGΩ
) is the set of states from which F is avoidable.

The diagram of Fig. 5 shows how GΩ evolves from one state to another according to the set of
states it belongs to. This diagram illustrates the fact that even though the system can remain forever
in N -states, if it reaches an I-state, then after a finite number of steps the system will eventually
evolve into an F -state.

The construction of G1Ω of Example 1 is illustrated in Fig. 6, with N -states unshaded, F -states
dark-shaded, and I-states light-shaded with dashed-line borders.

PI n˚1834



10 Thierry Jéron, Hervé Marchand, Sahika Genc, Stéphane Lafortune

N I F

Finite Number of Steps

Figure 5: Possible transitions in the partition of QGΩ

Process_A,1

Process_E,3

read

create

write create

create read

delete delete read

delete

busy

create

read

read

Process_F,3
delete

busy

file_0,3

write

Process_G,3

file_2,2

Process_B,1

Process_C,1

Process_F,1

file_1,2file_0,2

Process_E,1 file_4,1

file_0,1

Process_D,1

Figure 6: The LTS G1Ω

Step 3 Construct the Unobservable-Closure (see Def. 3) Uc(GΩ) = (QGΩ
,Σo,

,
→Uc q0

GΩ
) of GΩ with

final state set F and preservation of the partition QGΩ
= N ∪ I ∪F . Using this partition, label states

in (Pre∃
Uc(GΩ)

(F ) \F ), corresponding to the set of states having an immediate successor in F but not

belonging to F . This set characterizes the maximal prefixes t of trajectories of G not recognized by Ω
in FΩ, i.e., their observation is the last chance to predict acceptance of the pattern.

By the properties of Uc, we get L(Uc(GΩ)) = P (L(GΩ)), LF (Uc(GΩ)) = P (LF (GΩ)), and
LF (Uc(GΩ)) = P (LF (GΩ)), which also means that Uc preserves information on the inevitability
of the occurrence of the pattern, while abstracting out internal events.

Consider Example 1 again. The Unobservable-Closure of G1Ω is shown in Fig. 7 where states in
(Pre∃

Uc(GΩ)
(F ) \ F ) are those with thick borders.

Process_D,1

read

busy

Process_G,3

busy

write write read
Process_A,1

file_0,1

read

read
read

busy

file_1,2Process_E,3

Process_E,1

file_4,1

Figure 7: The LTS Uc(G1Ω)

Step 4 Construct the LTS Γ = Uc(GΩ) ×Uc(GΩ) = (QGΩ
× QGΩ

,Σo,→Γ, (q
0
GΩ

, q0
GΩ

)).
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The role of Γ is to synchronize trajectories of GΩ with same trace µ. By the definitions of Uc and
synchronous product, if µ ∈ L(GΩ) and (q0

GΩ
, q0

GΩ
)

µ
→Γ (q, q′), then there exists s, s′ ∈ [[µ]] s.t. q0

GΩ

s
→ q

and q0
GΩ

s′
→ q′ in GΩ.

Step 5 Check the predictability condition given by Theorem 1 below. This completes the statement
of the verification algorithm. �

Theorem 1 G is Ω-predictable iff (Pre∃
Uc(GΩ)

(F ) \ F ) × N is not reachable from (q0

GΩ
, q0

GΩ
) in Γ.

A reachable state in (Pre∃
Uc(GΩ)

(F ) \ F ) × N characterizes two trajectories with same observation,

one where FΩ is avoidable, and the other one where it was the last chance to predict acceptance.
Observe that the symmetry in Γ allows us to simplify the condition, but in practice, reachable states
in N × (Pre∃

Uc(GΩ)
(F ) ∩ \F ) should also be detected.

Proof (⇒) Suppose that Γ has a reachable state (q, q ′) in (Pre∃
Uc(GΩ)

(F ) \ F ) × N . Note that we

may have q = q′. On the one hand, there exists a trace µ ∈ Σ∗
o, an observable event σo ∈ Σo, and

states q ∈ Pre∃
Uc(GΩ)

(F ) \ F , q1 ∈ F such that q0
GΩ

µ
→Uc q

σo→Uc q1. On the other hand, there exists

a state q′ ∈ N such that q0
GΩ

µ
→Uc q′. By construction of Uc(GΩ) from GΩ, there exists s′, u′ ∈ Σ∗

with P (s′) = P (u′) = µ (at this point s′ may be identical to u′) and such that q0
GΩ

s′
→Γ q

σo→Γ q1

and q0
GΩ

u′

→Γ q′. By taking s = s′.σo, for any t ∈ Σ∗.Σo such that t < s, we have that t ∈ L(G)
and t /∈ LFΩ

(Ω). But since P (s′) = P (u′), there exists u ≤ u′ such that P (t) = P (u). Finally,
u /∈ LI∪F (G×Ω), otherwise this would imply that q ′ ∈ I ∪F while q′ ∈ N . This proves that G is not
Ω-predictable.

(⇒) Note first that Ω-predictability is equivalent to ∀s ∈ LFΩ
(Ω) ∩ L(G) ∩ Σ∗.Σo, ∃t ∈ (L(G) ∩

Σ∗.Σo) ∪ {ε}, t < s ∧ t /∈ LFΩ
(Ω) s.t. [[P (t)]] ⊆ LInev(QG×FΩ)(G × Ω).

Suppose now that G is not Ω-predictable. By the previous statement, ∃s ∈ LFΩ
(Ω)∩L(G)∩Σ∗.Σo,

such that ∀t ∈ (L(G) ∩ Σ∗.Σo) ∪ {ε}, t < s ∧ t /∈ LFΩ
(Ω) and [[P (t)]] 6⊆ LInev(QG×FΩ)(G × Ω). Let

s = s′.suo.σo with s′ ∈ Σ∗.Σo, suo ∈ Σ∗
uo, Σo ∈ Σo. By construction of Uc(GΩ), there exist states

q ∈ Pre∃
Uc(GΩ)

(F ) \ F , q1 ∈ F and q′ ∈ N such that q0
GΩ

P (s′)
→Uc q

σo→Uc q1 and q0
GΩ

P (s′)
→Uc q′. Thus, in Γ,

(q0
GΩ

, q0
GΩ

)
P (s′)
→Γ (q, q′) with (q, q′) ∈ (Pre∃

Uc(GΩ)
(F ) \ F ) × N . �

Figures 8 and 9 depict Γ1 and Γ2 for G1 and G2, respectively, with the pattern Ω.

file_4,1
file_4,1

Process_D,1
Process_D,1

file_1,2
file_1,2

read

write write write write

read read read read

read busy

Process_E,3
Process_E,3

Process_E,1
Process_D,1

Process_E,1
Process_E,1

file_0,1
file_0,1
file_4,1

file_4,1
file_0,1

Process_D,1
Process_E,1

Process_G,3
Process_G,3

Process_A,1
Process_A,1

read
busy

busy

file_0,1

Figure 8: The LTS Γ1 derived from G1Ω
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file_4,1
file_4,1

Process_D,1
Process_D,1

write write write write

read read read read

read

Process_E,3

Process_E,1
Process_D,1

Process_E,1
Process_E,1

file_0,1
file_0,1

file_0,1
file_4,1

file_4,1
file_0,1

Process_D,1
Process_E,1

Process_A,1
Process_A,1

busy file_2,2
file_2,2

busy

Process_E,3 Process_E,3
Process_D,3

Process_D,3
Process_E,3

read read read

Process_D,3
Process_D,3

read

read read read

Figure 9: The LTS Γ2 derived from G2Ω

The three states with thick borders in Γ1 are states in (Pre∃
Uc(GΩ)

(F ) \ F ) × N and prove that

G1 is not Ω-predictable for two reasons: (i) String create.create.delete.read with observation read
already leads to acceptance, but acceptance is not initially predictable because of trajectories in
create.write.read.delete.busy∗; (ii) Even if create.create.delete.read was suppressed in G1, there still
exists the trajectory write.read.create.delete.read that is recognized by Ω. Its maximal prefix ending
in an observation and not recognized by Ω is write.read. The observation write.read also corresponds
to the trajectory create.write.read for which the acceptance is never achieved.

Regarding G2, as was already mentioned earlier, it is Ω-predictable. Indeed, there are no reachable
states in (Pre∃

Uc(GΩ)
(F ) \ F ) × N in Γ2 shown in Fig. 9.

Finally, note that both G1 and G2 are Ω-diagnosable, as in either Γ1 and Γ2, there are no cycles
of states of the form (I ∪ N) × F (see [14] for further details on this verification of diagnosability).

We summarize the above algorithm to verify the predictability of the occurrences of a pattern Ω
in a system G and denote it by Verif Pred hereafter:

Verif Pred(G,Ω)
(i) Computation of GΩ = G × Ω
(ii) Computation of the state sets F , I and N in GΩ

(iii) Computation of Uc(GΩ) and of the state set
(Pre∃

Uc(GΩ)
(F ) \ F )

(iv) Computation of Γ = Uc(GΩ) × Uc(GΩ)
(v) Test of the emptiness of (Pre∃

Uc(GΩ)
(F ) \ F ) × N .

Proposition 2 The complexity of the verification of predictability using Verif Pred(G,Ω) is quadratic
in the product of the sizes of G and Ω.

The proof of this result is based on the following analysis of the steps within Verif Pred(G,Ω) . The
first step is the construction of GΩ = G×Ω, which is linear in ‖G‖× ‖Ω‖ where ‖G‖ and ‖Ω‖ are the
sizes of G and Ω in terms of states and transitions. The next step is the computation of InevGΩ

(F )
to partition QGΩ

into N ∪ I ∪ F . This is linear in ‖GΩ‖. The third step consists of constructing
Uc(GΩ) and labelling of states by (Pre∃

Uc(GΩ)
(F ) \ F ). It is linear in ‖GΩ‖. The construction of

Γ = Uc(GΩ) × Uc(GΩ) in the fourth step is quadratic in the size of Uc(GΩ). Checking that no
reachable state is in (Pre∃

Uc(GΩ)
(F ) \ F ) × N (Step 5) can be done during this construction. Thus,
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Predictability of Sequence Patterns in Discrete Event Systems 13

the complexity of the entire verification of predictability is quadratic in the product of the sizes of G
and Ω.

6 The P diagnoser

In this section, we explain how to construct from G and Ω a special kind of diagnoser, called
P diagnoser (for Prediction Diagnoser), that can be used on-line to predict the recognition of a pattern.
We emphasize some properties of this P diagnoser when the occurrence of the pattern Ω is predictable
in G.

Consider GΩ as defined in Section 5 (Step 1) and build Det(GΩ) = (X ,Σo,→d, X
0) as defined in

Definition 4. Remember that this can be done by reusing Uc(GΩ) and applying a subset construction.
Then, we have that L(Det(GΩ)) = P (L(GΩ)) = P (L(G)). Thus, for any observation µ ∈ P (L(G)),
∆Det(GΩ)(X

0, µ) = {∆GΩ
(q0

GΩ
, [[µ]])}.

The P diagnoser for predictability, denoted by P DiagΩ, is defined to be Det(GΩ) together with a
decision function on its state space that is defined as follows. For any observation µ in P (L(G)), let
the decision function of P DiagΩ(µ) be:











































































































Y es, if ∆Det(GΩ)(X
0, µ) ⊆ F

Pred, if ∆Det(GΩ)(X
0, µ) ⊆ I

Pred F, if ∆Det(GΩ)(X
0, µ) ⊆ (I ∪ F )

∧ ∆Det(GΩ)(X
0, µ) ∩ I 6= ∅

∧ ∆Det(GΩ)(X
0, µ) ∩ F 6= ∅

No, if ∆Det(GΩ)(X
0, µ) ⊆ N

Pred N if ∆Det(GΩ)(X
0, µ) ⊆ (I ∪ N)

∧ ∆Det(GΩ)(X
0, µ) ∩ I 6= ∅

∧ ∆Det(GΩ)(X
0, µ) ∩ N 6= ∅

?, otherwise.

(1)

In order to better understand the decisions of the P diagnoser, we consider a language point of
view. Using the partition of QGΩ

= N ∪ I ∪ F , we can partition L(G) = L(GΩ) into three different
languages

L(G) = LN (GΩ) ∪ LI(GΩ) ∪ LF (GΩ)

Based on this partition, we then have the following results that are derived directly from the
definition on the P diagnoser:

• P DiagΩ(µ) = Y es if [[µ]] ⊆ LF (GΩ)

• P DiagΩ(µ) = Pred if [[µ]] ⊆ LI(GΩ)

• P DiagΩ(µ) = Pred F if

– [[µ]] ⊆ LI(GΩ) ∪ LF (GΩ), and

– [[µ]] ∩ LI(GΩ) 6= ∅, and

– [[µ]] ∩ LF (GΩ) 6= ∅

• P DiagΩ(µ) = No if [[µ]] ⊆ LN (GΩ)
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14 Thierry Jéron, Hervé Marchand, Sahika Genc, Stéphane Lafortune

• P DiagΩ(µ) = Pred N if

– [[µ]] ⊆ LN (GΩ) ∪ LI(GΩ), and

– [[µ]] ∩ LN (GΩ) 6= ∅, and

– [[µ]] ∩ LI(GΩ) 6= ∅

Y es means that all the trajectories in [[µ]] lie in LFΩ
(Ω). That is, the observation µ only corre-

sponds to trajectories recognized by the pattern. Pred means trajectories compatible with µ are not
recognized by the pattern so far, but all their extensions will inevitably do so after a bounded number
of observations. No simply means that all trajectories compatible with µ can still be extended without
being recognized by the pattern. Pred F means that the recognition of the pattern is inevitable but
some trajectories compatible with the observation are already recognized by the pattern. Pred N
means that the observed trace corresponds to some trajectories where recognition of the pattern is
inevitable, but others where this is false.

Once again, we use G1 and G2 of Examples 1 and 2 to illustrate these results. The P diagnosers
(as well as their verdicts) obtained by determinization of G1Ω and G2Ω for G1 and G2, respectively,
with the pattern Ω are given in Fig. 10.

write

Process_A,1
read

read

read

read

busybusy

write

read

read

read

Process_G,3

busy busy

Process_A,1

file_2,2
file_0,1
file_4,1

file_4,1
file_0,1

Process_E,1

Process_E,1
Process_D,1

Process_E,3
Process_E,3
Process_D,3

Process_D,1

file_1,2

Det(G1Ω
) Det(G2Ω

)

”F” Verdict
”Pred” Verdict ”No” Verdict

”Pred N” Verdict

Figure 10: The P diagnosers

We have the following results about P diagnosers.

Proposition 3 If G is Ω(n)-predictable, then:

(i) P DiagΩ(µ) = Pred ⇒ (∀µ′ ∈ P (L(G))/µ, ‖µ′‖ ≥ n ⇒ P DiagΩ(µµ′) = Y es)

(ii) P DiagΩ(µ) = Y es ⇒ ∃µ′ < µ such that P DiagΩ(µ′) = Pred and ‖µ‖ − ‖µ′‖ ≤ n

(iii) ∀µ ∈ P (L(G)), P DiagΩ(µ) 6= ? �

Part (i) of Proposition 3 simply says that when the P diagnoser issues the decision Pred, after at
most n observations, the P diagnoser will issue the decision Y es. Part (ii) emphasizes the fact that if
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the P diagnoser issues the decision Y es, then in the past the P diagnoser already issued the decision
Pred. Part (iii) shows that the decision “?” cannot be issued when the system is Ω-predictable.
Indeed, if this decision were to be issued, it would mean that there is a trajectory compatible with µ
that is recognized by the pattern without having being detected, which contradicts the fact that the
system is predictable.

Figure 11 explains the possible evolutions of the decisions issued by the P Diagnoser whenever the
system is predictable.

No pred

Pred N Pred F

Yes

Figure 11: Possible evolutions of the decisions of the P diagnoser

7 Comments on Predictability and P Diagnoser

More expressive models. In this paper, we have considered so far, system and pattern modeled
by finite LTS and thus by regular languages. This restriction can be easily raised. In the definition
of predictability (Def.7), it would be possible to consider non regular languages to model the system
and the pattern. One can indeed consider a language-based pattern K ⊆ Σ∗ as far as this language
is extension-closed, i.e. such that KΣ∗ = K and any prefix-closed language L to model the system.
With these notations, the K-predictability of L would be given by

∃n ∈ N,∀s ∈ L ∩ K ∩ Σ∗.Σo,
∃t ∈ (L ∩ Σ∗.Σo) ∪ {ε}, t < s ∧ t /∈ K, such that

∀u ∈ [[P (t)]],∀v ∈ L/u, ‖P (v)‖ ≥ n ⇒ u.v ∈ K

With this simple extension, more expressive pattern (as well as systems) can be considered. However,
even though interesting from a theoretical point of view, the verification of predictability requires
fix-point computations (for inevitability) which may not terminate, and the construction of the cor-
responding P diagnoser requires determinization which may not be feasible (See Sections 5 & 6).
For example if we consider extended automata with variables to model the system and the pattern,
then this may force to rely on over-approximations analysis [4] for inevitability and restrictions to
deterministic models [15].

Comparison with [13]. The results we presented in this paper are very close the work of Jiang and
Kumar [13] who introduced the notion of inevitability. Indeed, in [13], the authors are interested in
diagnosing inevitability, thus in detecting that a pattern will be inevitably satisfied, within a bounded
number of observations after after this inevitability2, while prediction means detecting inevitability
strictly before its occurrence. It should also be noted that, despite the fact that the diagnoser for
inevitability may give earlier verdicts than the diagnoser for satisfaction, the diagnosability of in-
evitability is strictly equivalent to diagnosability of satisfaction. In contrast, we have shown that
predictability implies diagnosability, but not the converse. Morevoer, one consequence of their defini-
tion of diagnosability is that the on-line diagnoser is not able to infer whether the pattern has been
actually recognized or not. Indeed, compared to the P diagnoser, the verdicts Pred, Pred F and F
are merged in a single verdict.

2This work considers properties specified in Linear Temporal Logic (LTL) which are more expressive as patterns.
However, their notion of pre-diagnosability required for diagnosability means that the property reduces to a stable
property on the system (can be checked on a finite trajectory).
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8 Conclusion

We presented new results on predictability in DES. We defined the notion of predictability of oc-
currences of patterns modeled as sequences of events in an LTS. We presented an off-line algorithm
to verify the predictability of a pattern and an on-line algorithm to analyze the occurrences of the
pattern during the operation of the system. We showed that the off-line algorithm is polynomial in
the number of states of the system. While this has not been done yet, our predictability verification
could be implemented within the software environment DESUMA [19].

In this study, we restricted attention to systems and patterns that can be expressed by regular
languages. The definition of predictability of patterns can easilly be extended to include systems and
patterns expressed by non-regular languages (See Section 7). However, the development of verification
and on-line prediction algorithms for systems or patterns that are not modeled by regular languages
remains an open problem.
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