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Structure des automates Presburger-définissables

Résumé : Les automates finis permettent de représenter symboliquement des ensembles infinis de
vecteurs d’entiers, décomposés comme des mots de vecteurs de chiffres. On montre que I’automate min-
imal représentant un ensemble Presburger-définissable, est structurellement Presburger-définissable:
c’est & dire, que les automates obtenus en changeant 1’état initial et les états finaux représentent des
ensembles Presburger-définissables.

Mots clés : Automate, Arithmétique de Presburger, Ensemble semilinéaire, Représentation symbol-
ique



Structural Presburger-definable Digit Vector Automata 3

Presburger arithmetic [21] is a decidable logic used in a large range of applications. Different
techniques [11] and tools have been developed for manipulating the Presburger-definable sets (the sets
of integer vectors satisfying a Presburger formula): by working directly on the Presburger-formulas
(implemented in OMEGA [20]), by using semi-linear sets [12] (implemented in BRAIN [22]), or by using
Digit Vector Automata (DVA) that represent regular sets of integer vectors encoded as strings of digit
vectors, least or most significant digit first [23, 7] (implemented in FAST [1], LASH [15] and CSL-ALV
[2]). Presburger-formulas and semi-linear sets lack canonicity: there does not exist a natural way to
canonically represent a set. As a direct consequence, a set that possesses a simple representation could
unfortunately be represented in an unduly complicated way. Moreover, deciding if a given vector of
integers is in a given set, is at least NP-hard [4, 12|. On the other hand, a minimization procedure
for automata provides a canonical representation for DVA-definable sets (a set represented by a DVA).
That means, the DVA that represents a given set only depends on the set and not on the way we have
computed it. For this reason, DVA are well adapted for applications that require a lot of Boolean
manipulations like model-checking.

Recently, the DVA obtained by modifying the set of final states, has provided some applications.
First, we have proved that modifying the set of final states of a DVA, provides some simple sets
that can be used for deciding in polynomial time if a DVA is Presburger-definable (that means, the
DVA represents a Presburger-definable set) [17]. Recall that the previous algorithm for deciding this
property, was given by Muchnik in 1991 [18, 19, 8], and works in quadruply-ezponential time. Second,
Bartzis and Bultan [3] provided a widening operator for DVA in order to enforce the convergence of
the incrementally computed DVA, during the reachability state space exploration of an infinite state
system. This operator is obtained by modifying the set of final states of Presburger-definable DVA,
but they do not prove that the obtained DVA remain Presburger-definable.

However, from practical and theoretical point of view, working only with Presburger-definable DVA
has some advantages. First the manipulation complexity (boolean operations and variable elimination)
is at most 3-exponential time for Presburger-definable DVA (see [13, 17]) and non-elementary for general
DVA (see [5]). Second, we can compute in polynomial time, a Presburger-formula that defines the set
represented by a Presburger-definable DVA. Then this formula can be used in other tools like OMEGA.

In this paper, we introduce a new automata-based representation for regular subsets of Z™, called
the digit Vector automata (DVA). Even if DVA are very similar to other automata-based representations
[6, 7, 8], it is the first automata-based representation for any regular subsets of Z™, that is both
canonical (there exists a unique minimal DVA that represents a given set X) and stable by modifying
the initial state (this stability provides a natural way for associating a subset of Z™ to any state of
the DVA). Moreover, we prove that the minimal DVA that represents a Presburger-definable set is
structurally Presburger-definable: that means, any DVA obtained by modifying the initial state and
the set of final states, is Presburger-definable.

1 Notations

We denote by Z and N\{0} respectively the set of integers and non-negative integers. The set X™
is called the set of vectors with m € N components in a set X. Given an integer i € {1,... ,m}
and a vector x € X", the i-th component of z is written z[i] € X. We denote by ey the vector
e = (0,...,0). Vectors z + y and t.z are defined by (z + y)[i] = (z[i]) + (y[i]) and (¢t.z)[i] = t.(x[d])
for any i € {1,... ,m}, z,y € Q™, t € Q. We denote by (z,y) = > ", x[i].y[i], the dot product of two
vectors z,y € Q™. Given a functions f : X - Y, AC X and B C Y, we define f(A) = {f(a); a € A}
and f~}(B) = {z € X; f(z) € B}.

Given a non-empty finite alphabet ¥, we denote by X7 the set of non-empty words over Y and we
denote by € the empty word. Asusual ¥* denotes the set of words X" U {e}. A subset L C ¥* is called
a language. The concatenation of two words o7 and o9 (resp. two languages L1 and L) is denoted by
o1.09 (resp. L1.Lo = {01.09; (01,02) € L1 x L3}). Given a word o € ¥*, we denote by (0%);en the
PIn1718



4 Jérome Lerouzx

sequence of words defined by the induction ¢ = ¢ and o'*! = o’.0. We denote by ¢* the language

o* = {o%; i € N}. The length of a word o is denoted by |o| € N. For any non-empty word o € ¥+, we
denote by o[l], ..., o[|o|] the elements in 3 such that o = o[1]... o[|o]].

2 Digit Vector Automata

In this section, the Digit Vector Automata (DVA) representation, a state-based representation of set
of integer vectors, is presented. The sets obtained by mowing the initial state and modifying the set of
final states of a DVA are respectively characterized in sections 2.2 and 2.3.

2.1 Digit vector decomposition

Let us consider an integer r > 2 called the basis of decomposition and the set of digits ¥, = {0,... ,r—
1}. In this section, we study the least significant digit first decomposition of an integer vector in Z™
into a word of digit vectors in (X")*. This decomposition can be easily obtained by considering the
sequence (Vr.o)qe(sm)+ of functions ., : Z™ — Z™ uniquely defined by the following equalities [16]:

Yp(x) =rxz+b (b,x) e ¥ x Z™
Vro1.00 = Vr,o1 © Vrioo (01702) € (Ein)* X (27@)*

Assume that the dimension m is equal to 1 and consider a couple (0,s) € ¥ x S, where S, is
the set of sign digits S, = {0,7 — 1}. The following equality is called the least significant digit first
decomposition with 2-complement:

. ( s )_ ol pi-15[i] € N if s =0
1 —r ol pi-lgfi] = rlel € Z\N if s =7 —1
The previous decomposition shows intuitively that s = 0 correspond to the non-negative sign digit

whereas s = r — 1 corresponds to the negative one.
For a general dimension m > 1, let us consider the function p, : (X7")* x S — Z™ defined by the

following equality:
s
Pr(Ua 5) = Yr,o <1 — ’I“>

A couple (o,s) € (X")* x S such that x = p,(0,s) is called a r-decomposition of x € Z™. Remark
that any x € Z™ owns at least one r-decomposition.

Function p, naturally associate to any language L C (X7")* x S a subset X = p,(L) of Z™.
Remark however that there exists some languages L1, L9 and L such that £; N Ly = L and such that
pr(L1) N pr(L2) # pr(L). For instance, consider L1 = {(¢,0)}, Lo = {(0,0)} and £ = 0. Such a side
effect is due to the fact that an integer vector x € Z™ does not have a unique r-decomposition. The
following lemma characterizes r-decompositions associated to the same vector.

Lemma 1 Two r-decompositions (01,s1) and (02, s2) are associated to the same vector if and only if
s1 = So and 0'1.81< N O'Q.S; =+ 0.
Proof : Let us first remark that for any sign digit vector s € S, we have v,.,(:*) = . In
particular, we have p,(0.s%,s) = p.(0,s) for any word o € (¥7)* and for any k € N. This equality
is well known when s = 0 and it just means that adding extra zero digits to the least significant digit
first decomposition of a non-negative integer does not change its value.

Assume first that (01, s1) and (09, s2) are such that s; = s2 and 01.57 Noa.55 # 0, and let us prove
that p.(01,81) = pr(o2,s2). There exist ki, ko € N such that Ul.s’fl = 02.352. In particular, from the
previous paragraph we deduce p,(01,$1) = pr(al.slfl, s1) = pr(ag.sé”, s9) = pr(02, $2).

Irisa



Structural Presburger-definable Digit Vector Automata 5

Next, assume that p.(01,51) = pr(02,s2) and let us prove that sy = s9 and o7.57 N o9.55 # (.
As the manipulated structures are defined component wise, we can assume without loss of generality
that the dimension m is equal to 1. Remark that the sign digits s; and so must be equal. In fact,
otherwise, there exists i1,i2 € {1,2} such that s;, =0 and s;, = — 1 and in this case we have shown
that p,(04,,si,) € N and p,(0i,, si,) € Z\N which is in contradiction with p,(o1,s1) = pr(02,s2). Let
us consider k1, ko € N such that the words w; = o—l.slfl and wy = 02.512“2 have the same length denoted
by k € N. The first paragraph shows that p, (w1, s1) = pr(wa, s2). As s1 = sq, we deduce the following

equality:
k

> e (wi[i] — wali]) = 0

i=1
Assume by contradiction that w; # ws. In this case & € N\{0} and there exists a maximal (for <)
j €{1,...,k} such that w[j] # we[j]. We have:

=0 ifi>j
wi [i] — wald]| { > 1 if i =j
<r—1 ifi<j

We deduce the following bound::

k j—1
|3 r ] - i = [ ] — o) + 3 v i - wafi)|
i=1 i=1
j—1
> [rd (w1 [5] = wal4])] — Z |1 (w1 [i] — wald])]
i =1
>l — Zri_l (r—1)
i=1
=1

We obtain a contradiction. We deduce that wq; = ws and in particular the word w = w1 = ws is in
0'1.8’{(70’2.85. Q.E.D

A language L C (X7")* x S is said saturated [14] if for any (o,s) € (X]")" x S, we have
(0,s) € L if and only if (0.s,s) € L. Previous lemma 1 shows that a language L is saturated if and
only if there exists X C Z™ such that L = p;}(X). In particular, we deduce that the side effect
LiNLy =L and p(L1) N p2(Le) # pr(L) is no longer true for saturated language. In fact, for
any saturated languages L1,L9 and for any # € {U,N,\, A}, the language L;#XL2 is saturated and
pr(L1)#pr(L2) = pr(L1#L2).

We are interested in associating to a saturated language a state-based symbolic representation, called
Digit Vector Automata.

Definition 1 (Digit Vector Automata) A Digit Vector Automaton (DVA) A is a tuple A =
(Q, X7, 0,q0, Fo) where:

e () is a non-empty finite set of states.
o §:Q x X" — (@ is the transition function.
e o € @ is the initial state.

o Fy C Q x SI™ is the set of final states such that (q,s) € Fy if and only if (¢, s) € Fy for every
q =4(q,s).
PI nl1718
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b{1] +b[2] # b[3] + {0, 7} b1] + b[2] + 1 ¢ b[3] + {0, 7}

Figure 1: DVA Ax representing X = {x € Z?; z[1] + z[2] = z[3]}

Figure 2: DVA Ax representing X = {z € Z%; z[1] < z[2]}

Figure 3: On the left, DVA Azm. On the right, DVA A

Irisa



Structural Presburger-definable Digit Vector Automata 7

As usual, function ¢ is uniquely extended over @ x (X7")* by d(q, 01.02) = §(d(q,01),02). Moreover,
a tuple (¢, 0, ¢') such that ¢ = §(¢,0) is denoted by ¢ = ¢’ or just ¢ — ¢/, and called a path from ¢ to
¢’ labeled by o. Such a state ¢ is said reachable from ¢ (when ¢ = qo, we just say that ¢’ is reachable).

The language L(A) recognized by a DVA A is defined by L(A) = {(o,s) € ()" x
S (6(qo,0),8) € Fo}. Thanks to the condition (¢,s) € Fp if and only if (¢/,s) € Fy for every
q = ¢, the language L(A) is saturated. The set X = p,(L(A)) C Z™ is called the set represented by
the DVA A.

b[1] = 0 A B[2] = 0

Figure 4: DVA Ay representing X = {x € Z%; V,(z[1]) = z[2]}

Sets represented by DVA correspond to the r-definable sets. Recall ([8]) that a set X C Z™ is
said r-definable if it can be defined in the first order theory FO (Z,+,<,V,) where V,. : Z — Z is the
r-valuation function defined by V,.(0) = 0 and V,(x) is the greatest power of r that divides x € Z\{0}
(figure 4). Recall also that a Number Decision Diagram (NDD) [6, 24] that represents a set X C Z™, is
an automaton over Y™ that recognizes the language {0.s; (0,s) € p,-}(X)}. We do not consider NDD
in this paper because the automaton obtained from a NDD by replacing the initial state by an other
state is not a NDD in general (it does not recognizes a language of the form {o.s; (o,s) € p,; }(X)}
where X' C Z™). However, DVA and NDD have slightly the same structure and we can easily compute
a NDD from a DVA and conversely, that represents the same set X. In particular, we directly deduce
from [8] and this remark, the following corollary 1

Corollary 1 A set X C Z"™ can be represented by a DVA if and only if it is r-definable.

Remark 1 As in the NDD case, DVA can be efficiently manipulated by reprensenting the set {b €
X g LN ¢} and {s € SI"; (q,s) € Fyo} by some Binary Decision Diagrams (BDD) [9] over the

alphabet 3, (and not the exponential one X" ).

2.2 Moving the initial state

The DVA obtained from a DVA A by replacing the initial state g9 by a state ¢ € @ is denoted by
Agq. To simplify notations, when a set X C Z™ is implicitly represented by a DVA A, we denote by
X, € Z™ the set represented by the DVA A,. We are going to characterize the set X, in function of

X. As an application, we show that any r-definable set X C Z"™ is represented by a unique minimal
DVA.

Proposition 1 For any path ¢ = ¢' in a DVA A that represents a set X, we have Xy = %_7;(Xq).

PInl718



8 Jéréme Lerouzx

Proof : Without loss of generality, we can restrict our proof to a path gy — ¢ in a DVA A that
represents a set X. Let us consider an integer vector x € X,. There exists a path ¢ 2 ¢ and s € S
such that z = p,(w,s) and (¢’,s) € Fy. We deduce that we have a path gy ~— ¢’ with (¢/,s) € Fp.
Therefore p,(c.w,s) € X. From pr(o.w,s) = Yo0(pr(w,s)) = yro(x), we deduce that = € v, 3(X)
and we have proved the inclusion X, C v, Z(X). For the converse inclusion, consider an integer vector
T € 7;.4(X). As y0(x) € X, there exists a path qo Y, ¢ and s € ST such that 7, ,(x) = p.(w, s) and
(q,s) € Fy. Moreover, as x € Z™, there exists (w',s") € (X7")* x S such that z = p,(v’, s’). From
the equality v, »(z) = pr(w,s), we deduce that p,(c.w’,s") = py(w,s). Lemma 1 shows that s’ = s
and there exists k1, ky € N such that o.w’.s¥1 = w.s">. As we have a path ¢y — ¢ with (¢/,s) € Fy
and A is a DVA, we deduce that ¢’ = 6(¢/, s*2) is such that (¢",s) € Fy. From o.w'.s" = w.s*2, we

1k 1 ok
get that qq owsl, ¢”. In particular we have a path ¢ w7, q" with (¢",s) € Fy. We deduce that
z = pr(w'.s*,s) € X, and we have proved Yra(X) C X, Q.ED

The previous proposition 1 proves in particular that the set Qx = {7, 4(X); o € (¥]")*} is finite
when X is r-definable. The minimal (for the number of states) DVA that represents a r-definable set
X C Z™ can be easily characterized by introducing the DVA Ax defined by the set of states Qx, the
transition function dx defined by a dx (X', b) = ygbl (X') for any X’ € Qx, the initial state g0 x = X,
the set of final states Fy x = {(X',s) € Qx x S"; 1= € X'}.

A DVA A is said minimal if for any DVA A’ that represents the same set than A, the num-
ber of states |Q| of A is less than or equal to the number of states |Q’| of A’. Two DVA
A = (Q1,2]", 61,901, Fo1) and Az = (Q2, %", 62, qo2, Fo2) are said isomorph if there exists a one-
to-one relation ~C Q1 X Q2 such that 61(q1,0) ~ d2(q2,b) and {s € S; (q1,s) € Fo1} = {s €
S (g2, 8) € Fp2} for any g1 ~ g2, and such that g1 ~ go 2.

Theorem 1 For any r-definable set X C 7™, the DVA Ax is the unique (up to isomorphism) minimal
DVA that represents X.

Proof : First remark that Ax is a DVA that represents X. Next, let us consider a minimal DVA
A =(Q,X",6,q0, Fy) that represents X. Proposition 1 proves that there exists a function f: Qx — Q
such that Xyxy = X’ for any X’ € Qx. In particular |Qx| < |Q| and as A is minimal, we have
|Qx| = |Q| and in particular Ax is also minimal. Moreover, we deduce that f is a one-to-one function.
Just remark that A and Ax are isomorph for the one-to-one relation ~= {(X', f(X')); X' € Qx}-
Q.ED

From the previous theorem 1 and corollary 1, we deduce that a set X C Z™ is r-definable if and
only if Qx = {7, 4(X); o € (£]")*} is finite.

2.3 Replacing the set of final states

Given a DVA A, the class of subsets F' C @ x S such that (q,s) € F if and only if (¢, s) € F for any
transition ¢ = ¢/, is denoted by F4. The DVA obtained from a DVA A be replacing the set of final
states Fy by a set ' € F4 is denoted by Af. To simplify notions, when a set X C Z™ is implicitly
represented by a DVA A, we denote by X the set represented by the DVA A%, In this section, the
set F 4 is geometrically characterized by introducing the notion of eyes, semi-eyes and kernel.

Let us consider the equivalence relation ~ 4 over @ x S,m defined by (q1,$1) ~A4 (g2, s2) if and only
if s1 = s9 and §(q1, sT) N (g2, s3) # 0.

An eye Y is an equivalence class for the relation ~ 4 (see figure 5). A semi-eye is a finite union of
eyes. Remark that the class of semi-eyes is exactly Fu.

Let us consider the function J. : @ x S7* — Q x S* defined by d.(q,s) = (d(q, s), s).

The kernel ker(Y') of a subset Y C @ x S is defined as ker(Y) = ),y 92(Y) and corresponds

neN e
to the greatest (for C) fix-point for J. included in Y. Remark that the kernel of any eye Y is a non

Irisa



Structural Presburger-definable Digit Vector Automata 9

Figure 5: On the left an eye. On the right its kernel.

empty set of the form ker(Y) = {(qo,5),---,(@n-1,5), (gn,s) = (qo,$)} such that 6(g;,s) = g1 for
any i € {0,... ,n — 1} (see figure 5).

Example 1 Let Ax be the minimal DVA representing X = {x € Z3; z[1] + z[2] = z[3]} given in
figure 1. The eyes of A are {(qo,(0,0))}, {(qo, (r — 1,7 = 1))}, {(a1,(0,0)}, {(qu, (r = L,r = 1))},
{(QO, (0,7" - 1)), (Q17 (0,7" - 1))}, and {(QO7 (T‘ - 1,0>), (Q17 (T‘ - 170))}'

3 Presburger-definable DVA

A subset X C Z™ is said Presburger-definable if it can be defined by a formula in the first order
theory FO (Z,+, <) (see figure 6). A DVA A is said Presburger-definable if the set represented by A
is Presburger-definable. A set X is said structurally Presburger-definable if the minimal DVA A that
represents X, is such that AqF is Presburger-definable for any state ¢ € Q and for any semi-eyes ' € F 4.
Naturally, as Ag? represents X, a structurally Presburger-definable set is Presburger-definable. In this
section, we prove the converse.

Figure 6: A Presburger-definable set {z € N?; (2[1] = 2.2[2]) V (2.2[1] = 2[2])} and its minimal DVA
Ax in basis r = 2.

PInl718



10 Jéréme Lerouzx

Remark 2 A linear set X of Z™ 1is a set of the form X = b+ ZpEP N.p where b € Z™ 1is called the
basis and P C Z™ is a finite subset of Z™ called the set of periods. A semi-linear set of Z™ is a finite
union of linear sets of Z™. Recall that a set X is Presburger-definable if and only if it is semi-linear

[12].

Example 2 The Presburger-definable set X = {x € N?; (z[1] = 2.2[2]) V (2.2[1] = 2[2])} and its
minimal DVA Ax in basis r = 2 are given in figure 6. Remark that the set of final states Fy can
be decomposed into 3 eyes Yo = {(qo,€0)}, Y3 = {(g3,€0)} and Yy = {(qs,€0)}. The DVA Ag(o, A?
and A%} respectively represent XY = {ep}, X¥* = {x € N*\{ep}; (1] = 2.2[2]} and X¥* = {z €
N:\{ey}; 2.2[1] = z[2]}.

From proposition 1, we get the following corollary.

Corollary 2 For any reachable state q of a Presburger-definable DVA A, the DVA A, is Presburger-
definable.

Proof : Let A be a DVA that represents a Presburger-definable set X and consider a reachable state
q of A. There exists a path gy — ¢. Proposition 1 proves that X, = Ve 1(X). As X is Presburger-
definable, there exists a Presburger-formula ¢ that defines X. Now, just remark that X, is defined by
the Presburger formula ¢, () := 32/ (2 = rl?l.x + v, ,(eq) A ¢(z')). Hence A, is Presburger-definable.
Q.E.D

A quantification elimination shows that a Presburger-definable set X is a boolean combination in
Z™ of sets of the form X = {z € Z™; z[i] € ¢+ n.Z} where (i,c,n) € {1,...,m} x Z x (N\{0}),
and sets of the form X = {z € Z™; (o, x) < ¢} where (a,c) € (Z"™\{0}) x Z. The following technical
lemmas 2 and 3 prove that these sets are structurally Presburger-definable.

Lemma 2 The set X = {x € Z™; z[i] € ¢+ n.Z} where (i,c,n) € {1,... ,m} x Z x (N\{0}) is
structurally Presburger-definable.

Proof : Let A be the minimal DVA that represents X = {x € Z™; z[i] € ¢ + n.Z}. There exists
a unique integer k € N such that ny = % is a r-prime integer (an integer relatively prime with 7).
Let us consider the set £ of words o € (X7) such that Yra(X) # 0. Remark that for any word
o € L, we have v, }(X) = {z € Z™; r*.z[i] € ¢ — vr0(e0)[i] +n.Z}. As 4, L(X) # 0, we deduce that

C*’Yr,crk(eO) [4]
s
no is r-prime, there exists an integer ky € N such that 70 € 1 + ny.Z. For any ¢ € L and for any

(w,s) € ((Zm)ko)* x 8™ we have:

n
rk
(

Co = is an integer, and in particular we get 4, 1(X) = {z € Z™; z[i] € ¢y + no.Z}. As

Yrow(X) = w({z € Z7; i) € ¢y + no.Z™})
= {z € Z™; vl 2[i] + v, (e0)[i] € co + 10.Z}

%7“ — pr(w, s)[i] +no.Z}

={xeZ™, x[i]eco——i-l

Let us consider an eye Y of A, let s € ST be the unique sign vector such that Y C @ x {s}. Let us
consider the Presburger-definable set Z, = {p,(0,s); o € (£I")*} of vectors with the same sign s.

We first assume that X, # () for any (q,s) € ker(Y). We denote by P the set of p € Z such that
{x € Z™; z[i] € —p+no.Z} € {Xy; (q,5) € ker(Y')}. Remark that P is Presburger-definable because

Irisa



Structural Presburger-definable Digit Vector Automata 11

P = (PnA0,... ,ng— 1}) + ng.Z. Moreover, we have:
ze XY <= 3Joe (X z=p.(0,5) A(0(qo,0),5) €Y
— Jo e L Iw e (E™F)* = p,.(c.w,5) A (6(qo, 0.w), s) € ker(Y)

makoyx ) T = ’Yno'(pr(wvs))
3o € L3we ((5)) {Apr(w,S)[i} ot +P

S eLIeZa= o) Aol €cot o + P
- T

We have proved that XV is Presburger-definable.

Finally, assume that X, = () for at least one (g,s) € ker(Y). We have XY = Z\ Uy eerpry xY
where C is the set of eyes Y/ C @ x {s}. Remark that if there exists an eye Y’ € C\{Y} and
(¢',s) € ker(Y') such that X, = (), as A is minimal, we get ¢ = ¢’ and in particular Y = Y’ which
is impossible. From the previous paragraph, we deduce that XY s Presburger-definable for any
Y’ € C\{Y}. Therefore XY is Presburger-definable. Q.ED

Lemma 3 The set X = {x € Z™; (a,z) < ¢} where (a,c) € (Z™\{0}) x Z is structurally Presburger-
definable.

Proof : Let A be the minimal DVA that represents X = {x € Z™; (a,z) < ¢}. For any (o,s) €
(X7)* x S and for any k € N, we have:

-1 o m. § c— <aap7’(o-’5)>
fyr,a.sk(X) - {.%' € 2" <Oé,.%' 1 7"> < rlol+k

In particular, for any (o,s) € (X7")* x S, there exists kg € N such that for any integer k > ko, we
have:

ey [ a2 <o) i Gt <o
7’70'.81C {IE c Zm’ o,T — 1% < 0} lf <a,pr(0,5)> >c

T

Let us consider an eye Y and the unique sign digit vector s € S/ such that Y C @ x {s}. Let us
consider the Presburger-definable set Z; = {p,(0,s); o € (£]*)*} of vectors with the same sign s.

From the previous equality, we deduce that there exists # € {<, <} such that for any (g, s) € ker(Y")
we have X, = {z € Z'; <a,:r - Tsr> #0}. In particular ker(Y) is reduced to ker(Y) = {(g,s)}. Let
us consider #’ € {<, >} such that (#,#') € {(<,<),(<,>)}. We have:

re XY = 3o e (XM (6(q,0.5%),s) Nker(Y) # 0
=z € ZsN{a,z)#c

Therefore XY is Presburger-definable. Q.ED

Theorem 2 A set X is structurally Presburger-definable if and only if it is Presburger-definable.

Proof : Recall that a quantification elimination shows that a Presburger-definable set is a boolean
combination in Z™ of sets of the form X = {z € Z™; z[i] € ¢+ n.Z} and sets of the form
X ={z € Z™; (a,z) < c}. Lemmas 2 and 3 prove that these sets are structurally Presburger-
definable. Moreover, as the complement of a structurally Presburger-definable set remains struc-
turally Presburger-definable, it is sufficient to prove that the intersection X = X; N X5 of two struc-
turally Presburger-definable sets X; and X, remains structurally Presburger definable. Let A, Ao
PInl1718
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and A’ be the minimal DVA that represent respectively X;, X5 and X. Remark that X is repre-
sented by the Cartesian product A = (Q1 X Q2, X7, 0, qo, Fy) where 6((¢q1,42),0) = (01(q1,b), d2(q2,b)),
9 = (¢1,0,92,0), and Fy = F} o x F5. Remark that for any eye Y of the DVA A’, there exists a finite
sequence (Y7 ;,Y2;)icr where Y7 ; and Y5 ; are some eyes of respectivelly A; and As, such that X Yiis
represented by the DVA AUier Y1ixY2.i - Therefore XY = Uier Xf N X; 2 is Presburger-definable. In
particular X is structurally Presburger-definable. We are done. Q.E.D

4 Future work

We have proved that any Presburger-definable set is structurally Presburger-definable. In particular,
the widening operator for DVA introduced by Bartzis and Bultan provides Presburger-definable DVA
from the widening of two Presburger-definable DVA. We are interested in extending the geometrical
widening operators known for the closed convez polyhedrons [10], to the Presburger-definable DVA.
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